hosted by
publicationslist.org
    

Heidi M Mansour

University of Kentucky
College of Pharmacy
Heidi.mansour@uky.edu

Journal articles

2012
Chun-Woong Park, Heidi M Mansour, Tack-Oon Oh, Ju-Young Kim, Jung-Myung Ha, Beom-Jin Lee, Sang-Cheol Chi, Yun-Seok Rhee, Eun-Seok Park (2012)  Phase behavior of itraconazole-phenol mixtures and its pharmaceutical applications.   Int J Pharm 436: 1-2. 652-658 Oct  
Abstract: The aims of this study were to examine the phase behavior of itraconazole-phenol mixtures and assess the feasibility of topical formulations of itraconazole using eutectic mixture systems. Itraconazole-phenol eutectic mixtures were characterized using differential scanning calorimetry, Fourier transform infrared spectroscopy, (1)H-nuclear magnetic resonance, and powder X-ray diffractometry. The skin permeation rates of itraconazole-phenol eutectic formulations were determined using Franz diffusion cells fitted with excised hairless mouse skins. Itraconazole can form eutectic compounds with phenol, and the hydrogen-bonding interactions between the carbonyl group in the itraconazole and hydroxyl group in phenol play a major role in itraconazole-phenol eutectic formation. Despite its high molecular weight and hydrophobicity, the drug (i.e., itraconazole) can be permeated through excised hairless mouse skins from itraconazole-phenol eutectic formulations. The findings of this study emphasize the capabilities of the topical application of itraconazole via external preparations.
Notes:
Don Hayes, Michael A Winkler, Stephen Kirkby, Patrizio Capasso, Heidi M Mansour, Anil K Attili (2012)  Preprocedural planning with prospectively triggered multidetector row CT angiography prior to bronchial artery embolization in cystic fibrosis patients with massive hemoptysis.   Lung 190: 2. 221-225 Apr  
Abstract: The aim of this study was to determine if electrocardiographically synchronized, prospectively triggered multidetector row computed tomography (ECG-MDR-CT) angiography of the aorta can accurately predict the location of ectopic bronchial arteries in patients with cystic fibrosis (CF) with massive hemoptysis prior to bronchial artery embolization (BAE).
Notes:
Jinghua Duan, Heidi M Mansour, Yangde Zhang, Xingming Deng, Yuxiang Chen, Jiwei Wang, Yifeng Pan, Jinfeng Zhao (2012)  Reversion of multidrug resistance by co-encapsulation of doxorubicin and curcumin in chitosan/poly(butyl cyanoacrylate) nanoparticles.   Int J Pharm 426: 1-2. 193-201 Apr  
Abstract: Co-encapsulated doxorubicin (DOX) and curcumin (CUR) in poly(butyl cyanoacrylate) nanoparticles (PBCA-NPs) were prepared with emulsion polymerization and interfacial polymerization. The mean particle size and mean zeta potential of CUR-DOX-PBCA-NPs were 133 ± 5.34 nm in diameter and +32.23 ± 4.56 mV, respectively. The entrapment efficiencies of doxorubicin and curcumin were 49.98 ± 3.32% and 94.52 ± 3.14%, respectively. Anticancer activities and reversal efficacy of the formulations and various combination approaches were assessed using 3-[4,5-dimethylthiazol-2-yl] 2,5-diphenyltetrazolium bromide assay and western blotting. The results showed that the dual-agent loaded PBCA-NPs system had the similar cytotoxicity to co-administration of two single-agent loaded PBCA-NPs (DOX-PBCA-NPs+CUR-PBCA-NPs), which was slightly higher than that of the free drug combination (DOX+CUR) and one free drug/another agent loaded PBCA-NPs combination (DOX+CUR-PBCA-NPs or CUR+DOX-PBCA-NPs). The simultaneous administration of doxorubicin and curcumin achieved the highest reversal efficacy and down-regulation of P-glycoprotein in MCF-7/ADR cell lines, an MCF-7 breast carcer cell line resistant to adriamycin. Multidrug resistance can be enhanced by combination delivery of encapsulated cytotoxic drugs and reversal agents.
Notes:
Lauren Willis, Don Hayes, Heidi M Mansour (2012)  Therapeutic liposomal dry powder inhalation aerosols for targeted lung delivery.   Lung 190: 3. 251-262 Jun  
Abstract: Therapeutic liposomal powders (i.e., lipospheres and proliposomes) for dry powder inhalation aerosol delivery, formulated with phospholipids similar to endogenous lung surfactant, offer unique opportunities in pulmonary nanomedicine while offering controlled release and enhanced stability. Many pulmonary diseases such as lung cancer, tuberculosis (TB), cystic fibrosis (CF), bacterial and fungal lung infections, asthma, and chronic obstructive pulmonary disease (COPD) could greatly benefit from this type of pulmonary nanomedicine approach that can be delivered in a targeted manner by dry powder inhalers (DPIs). These delivery systems may require smaller doses for efficacy, exhibit reduced toxicity, fewer side effects, controlled drug release over a prolonged time period, and increased formulation stability as inhaled powders. This state-of-the-art review presents these novel aspects in depth.
Notes:
D Hayes, H M Mansour, S Kirkby, A B Phillips (2012)  Rapid acute onset of bronchiolitis obliterans syndrome in a lung transplant recipient after respiratory syncytial virus infection.   Transpl Infect Dis Jun  
Abstract: Bronchiolitis obliterans syndrome (BOS) can have either an acute or chronic onset with an abrupt or insidious course. The diagnosis is typically achieved by physiological criteria with development of a sustained decline in expiratory flow rates for at least 3 weeks. We review the rapid development of acute BOS and bronchiectasis after respiratory syncytial virus infection in a lung transplant recipient, who had been doing well with normal pulmonary function for 3 years after lung transplantation.
Notes:
Don Hayes Jr, Heidi M Mansour (2012)  Vanishing bronchus intermedius syndrome in a pediatric patient with cystic fibrosis after lung transplantation.   Pediatr Transplant Apr  
Abstract: Hayes D Jr, Mansour HM. Vanishing bronchus intermedius syndrome in a pediatric patient with cystic fibrosis after lung transplantation. Abstract:  Airway complications occur frequently after lung transplantation. Bronchial stenosis is the most frequently encountered complication with the most severe form of that being the vanishing bronchus intermedius syndrome (VBIS). This rare disorder has never been reported in the pediatric population. This is the first report of VBIS in a pediatric patient, specifically a 16-yr-old male patient with cystic fibrosis whose course was complicated by a lower airway infection with Aspergillus fumigatus. The VBIS responded to bronchoscopic balloon dilation and placement of an airway stent.
Notes:
Chun-Woong Park, Yun-Seok Rhee, Frederick G Vogt, Don Hayes, Joseph B Zwischenberger, Patrick P DeLuca, Heidi M Mansour (2012)  Advances in microscopy and complementary imaging techniques to assess the fate of drugs ex vivo in respiratory drug delivery: an invited paper.   Adv Drug Deliv Rev 64: 4. 344-356 Mar  
Abstract: The technical advances in microscopy imaging techniques have been applied to assess the fate of drugs for researching respiratory drug delivery in ex vivo and in vivo experiments. Recent developments in optical imaging (confocal microscopy, multi-photon microscopy, fluorescence imaging (FLI) and bioluminescence imaging (BLI)), and in non-optical imaging (magnetic resonance imaging (MRI), computing tomography (CT), positron-emission tomography (PET) and single-photon-emission computed tomography (SPECT)) are presented with their derivative medical devices. Novel microscopy have been utilized to address many biological questions in basic research and are becoming powerful clinical tools for non-invasive objective diagnosis, guided treatment, and monitoring therapies. The goal of this paper is to present recent advances in microscopy imaging techniques and to discuss their novel applications in respiratory drug delivery imaging.
Notes:
2011
Don Hayes, Heidi M Mansour (2011)  Improved outcomes of patients with end-stage cystic fibrosis requiring invasive mechanical ventilation for acute respiratory failure.   Lung 189: 5. 409-415 Oct  
Abstract: The aim of this study was to determine the effects of an antibiotic strategy with intravenous (IV) continuous infusion of a β-lactam (CIBL) antibiotic and high-dose extended-interval (HDEI) tobramycin upon outcomes in patients with cystic fibrosis (CF) requiring invasive mechanical ventilation (IMV) for acute respiratory failure.
Notes:
Xiaojian Li, Heidi M Mansour (2011)  Physicochemical characterization and water vapor sorption of organic solution advanced spray-dried inhalable trehalose microparticles and nanoparticles for targeted dry powder pulmonary inhalation delivery.   AAPS PharmSciTech 12: 4. 1420-1430 Dec  
Abstract: Novel advanced spray-dried inhalable trehalose microparticulate/nanoparticulate powders with low water content were successfully produced by organic solution advanced spray drying from dilute solution under various spray-drying conditions. Laser diffraction was used to determine the volumetric particle size and size distribution. Particle morphology and surface morphology was imaged and examined by scanning electron microscopy. Hot-stage microscopy was used to visualize the presence/absence of birefringency before and following particle engineering design pharmaceutical processing, as well as phase transition behavior upon heating. Water content in the solid state was quantified by Karl Fisher (KF) coulometric titration. Solid-state phase transitions and degree of molecular order were examined by differential scanning calorimetry (DSC) and powder X-ray diffraction, respectively. Scanning electron microscopy showed a correlation between particle morphology, surface morphology, and spray drying pump rate. All advanced spray-dried microparticulate/nanoparticulate trehalose powders were in the respirable size range and exhibited a unimodal distribution. All spray-dried powders had very low water content, as quantified by KF. The absence of crystallinity in spray-dried particles was reflected in the powder X-ray diffractograms and confirmed by thermal analysis. DSC thermal analysis indicated that the novel advanced spray-dried inhalable trehalose microparticles and nanoparticles exhibited a clear glass transition (T(g)). This is consistent with the formation of the amorphous glassy state. Spray-dried amorphous glassy trehalose inhalable microparticles and nanoparticles exhibited vapor-induced (lyotropic) phase transitions with varying levels of relative humidity as measured by gravimetric vapor sorption at 25°C and 37°C.
Notes:
Yun-Seok Rhee, MinJi Sohn, Byung H Woo, B C Thanoo, Patrick P DeLuca, Heidi M Mansour (2011)  Sustained-release delivery of octreotide from biodegradable polymeric microspheres.   AAPS PharmSciTech 12: 4. 1293-1301 Dec  
Abstract: The study reports on the drug release behavior of a potent synthetic somatostatin analogue, octreotide acetate, from biocompatible and biodegradable microspheres composed of poly-lactic-co-glycolic acid (PLGA) following a single intramuscular depot injection. The serum octreotide levels of three Oakwood Laboratories formulations and one Sandostatin LAR(®) formulation were compared. Three formulations of octreotide acetate-loaded PLGA microspheres were prepared by a solvent extraction and evaporation procedure using PLGA polymers with different molecular weights. The in vivo drug release study was conducted in male Sprague-Dawley rats. Blood samples were taken at predetermined time points for up to 70 days. Drug serum concentrations were quantified using a radioimmunoassay procedure consisting of radiolabeled octreotide. The three octreotide PLGA microsphere formulations and Sandostatin LAR(®) all showed a two-phase drug release profile (i.e., bimodal). The peak serum drug concentration of octreotide was reached in 30 min for all formulations followed by a decline after 6 h. Following this initial burst and decline, a second-release phase occurred after 3 days. This second-release phase exhibited sustained-release behavior, as the drug serum levels were discernible between days 7 and 42. Using pharmacokinetic computer simulations, it was estimated that the steady-state octreotide serum drug levels would be predicted to fall in the range of 40-130 pg/10 μL and 20-100 pg/10 μL following repeat dosing of the Oakwood formulations and Sandostatin LAR(®) every 28 days and every 42 days at a dose of 3 mg/rat, respectively.
Notes:
Don Hayes, Amanda M Ball, Heidi M Mansour, Craig A Martin, Jeremy D Flynn (2011)  Fungal infection in heart-lung transplant recipients receiving single-agent prophylaxis with itraconazole.   Exp Clin Transplant 9: 6. 399-404 Dec  
Abstract: Heart and lung transplant recipients are at risk for invasive fungal infections. This study evaluated the affect of single-agent antifungal prophylaxis with itraconazole on the rate of fungal infections after heart or lung transplant.
Notes:
2010
Zhen Xu, Heidi M Mansour, Tako Mulder, Richard McLean, John Langridge, Anthony J Hickey (2010)  Dry powder aerosols generated by standardized entrainment tubes from drug blends with lactose monohydrate: 2. Ipratropium bromide monohydrate and fluticasone propionate.   J Pharm Sci 99: 8. 3415-3429 Aug  
Abstract: The objectives of this study were: systematic investigation of dry powder aerosol performance using standardized entrainment tubes (SETs) and lactose-based formulations with two model drugs; mechanistic evaluation of performance data by powder aerosol deaggregation equation (PADE). The drugs (IPB and FP) were prepared in sieved and milled lactose carriers (2% w/w). Aerosol studies were performed using SETs (shear stresses tau(s) = 0.624-13.143 N/m(2)) by twin-stage liquid impinger, operated at 60 L/min. PADE was applied for formulation screening. Excellent correlation was observed when PADE was adopted correlating FPF to tau(s). Higher tau(s) corresponded to higher FPF values followed by a plateau representing invariance of FPF with increasing tau(s). The R(2) values for PADE linear regression were 0.9905-0.9999. Performance described in terms of the maximum FPF (FPF(max): 15.0-37.6%) resulted in a rank order of ML-B/IPB > ML-A/IPB > SV-A/IPB > SV-B/IPB > ML-B/FP > ML-A/FP > SV-B/FP > SV-A/FP. The performance of IPB was superior to FP in all formulations. The difference in lactose monohydrate carriers was less pronounced for the FPF in IPB than in FP formulations. The novel PADE offers a robust method for evaluating aerodynamic performance of dry powder formulations within a defined tau(s) range.
Notes:
Zhen Xu, Heidi M Mansour, Tako Mulder, Richard McLean, John Langridge, Anthony J Hickey (2010)  Dry powder aerosols generated by standardized entrainment tubes from drug blends with lactose monohydrate: 1. Albuterol sulfate and disodium cromoglycate.   J Pharm Sci 99: 8. 3398-3414 Aug  
Abstract: The major objective of this study was: discriminatory assessment of dry powder aerosol performance using standardized entrainment tubes (SETs) and lactose-based formulations with two model drugs. Drug/lactose interactive physical mixtures (2%w/w) were prepared. Their properties were measured: solid-state characterization of phase behavior and molecular interactions by differential scanning calorimetry and X-ray powder diffraction; particle morphology and size by scanning electron microscopy and laser diffraction; aerosol generation by SETs and characterization by twin-stage liquid impinger and Andersen cascade impactor operated at 60 L/min. The fine particle fraction (FPF) was correlated with SET shear stress (tau(s)), using a novel powder aerosol deaggregation equation (PADE). Drug particles were <5 microm in volume diameter with narrow unimodal distribution (Span <1). The lowest shear SET (tau(s) = 0.624 N/m(2)) gave a higher emitted dose (ED approximately 84-93%) and lower FPF (FPF(6.4) approximately 7-25%). In contrast, the highest shear SET (tau(s) = 13.143 N/m(2)) gave a lower ED (ED approximately 75-89%) and higher FPF (FPF(6.4) approximately 15-46%). The performance of disodium cromoglycate was superior to albuterol sulfate at given tau(s), as was milled with respect to sieved lactose monohydrate. Excellent correlation was observed (R(2) approximately 0.9804-0.9998) when pulmonary drug particle release from the surface of lactose carriers was interpreted by PADE linear regression for dry powder formulation evaluation and performance prediction.
Notes:
Heidi M Mansour, Zhen Xu, Anthony J Hickey (2010)  Dry powder aerosols generated by standardized entrainment tubes from alternative sugar blends: 3. Trehalose dihydrate and D-mannitol carriers.   J Pharm Sci 99: 8. 3430-3441 Aug  
Abstract: The relationship between physicochemical properties of drug/carrier blends and aerosol drug powder delivery was evaluated. Four pulmonary drugs each representing the major pulmonary therapeutic classes and with a different pharmacological action were employed. Specifically, the four pulmonary drugs were albuterol sulfate, ipratropium bromide monohydrate, disodium cromoglycate, and fluticasone propionate. The two carrier sugars, each representing a different sugar class, were D-mannitol and trehalose dihydrate. Dry powder aerosols (2%, w/w, drug in carrier) delivered using standardized entrainment tubes (SETs) were characterized by twin-stage liquid impinger. The fine particle fraction (FPF) was correlated with SET shear stress, tau(s), and the maximum fine particle fraction (FPF(max)) was correlated with a deaggregation constant, k(d), by using a powder aerosol deaggregation equation (PADE) by nonlinear and linear regression analyses applied to pharmaceutical inhalation aerosol systems in the solid state. For the four pulmonary drugs representing the major pulmonary therapeutic classes and two chemically distinct pulmonary sugar carriers (non-lactose types) aerosolized with SETs having well-defined shear stress values, excellent correlation and predictive relationships were demonstrated for the novel and rigorous application of PADE for dry powder inhalation aerosol dispersion within a well-defined shear stress range, in the context of pulmonary drug/sugar carrier physicochemical and interfacial properties.
Notes:
D Hayes, J B Zwischenberger, H M Mansour (2010)  Aerosolized tacrolimus: a case report in a lung transplant recipient.   Transplant Proc 42: 9. 3876-3879 Nov  
Abstract: Long-term outcomes after lung transplantation remain poor mainly to the development of bronchiolitis obliterans syndrome (BOS). Currently, treatment options for BOS are very limited. Strategies to prevent and treat this complication include the use of aerosolized therapy with only cyclosporine used in patients to date. We describe the use of aerosolized tacrolimus in a lung transplant recipient with BOS. The patient demonstrated clinical improvement in functional capacity and oxygenation while receiving tacrolimus by nebulization. Further research is needed to study whether aerosolized tacrolimus is beneficial in lung transplant recipients with BOS.
Notes:
Heidi M Mansour, Minji Sohn, Abeer Al-Ghananeem, Patrick P Deluca (2010)  Materials for pharmaceutical dosage forms: molecular pharmaceutics and controlled release drug delivery aspects.   Int J Mol Sci 11: 9. 3298-3322 09  
Abstract: Controlled release delivery is available for many routes of administration and offers many advantages (as microparticles and nanoparticles) over immediate release delivery. These advantages include reduced dosing frequency, better therapeutic control, fewer side effects, and, consequently, these dosage forms are well accepted by patients. Advances in polymer material science, particle engineering design, manufacture, and nanotechnology have led the way to the introduction of several marketed controlled release products and several more are in pre-clinical and clinical development.
Notes:
Zhen Xu, Heidi M Mansour, Tako Mulder, Richard McLean, John Langridge, Anthony J Hickey (2010)  Heterogeneous particle deaggregation and its implication for therapeutic aerosol performance.   J Pharm Sci 99: 8. 3442-3461 Aug  
Abstract: Aerosolization performance of dry powder blends of drugs for the treatment of asthma or chronic obstructive pulmonary diseases have been reported in three previous articles. In vitro aerosolization was performed at defined shear stresses (0.624-13.143 N/m(2)). Formulations were characterized aerodynamically and powder aerosol deaggregation equations (PADE) and corresponding linear regression analyses for pharmaceutical aerosolization were applied. Particle deaggregation is the result of overcoming fundamental forces acting at the particle interface. A new method, PADE, describing dry powder formulation performance in a shear stress range has been developed which may allow a fundamental understanding of interparticulate and surface forces. The application of PADE predicts performance efficiency and reproducibility and supports rational design of dry powder formulations. The analogy of aerosol performance with surface molecular adsorption has important implications. Expressions describing surface adsorption were intended to allow elucidation of mechanisms involving surface heterogeneity, lateral interaction, and multilayer adsorption of a variety of materials. By using a similar expression for drug aerosolization performance, it is conceivable that an analogous mechanistic approach to the evaluation of particulate systems would be possible.
Notes:
2009
Heidi M Mansour, Yun-Seok Rhee, Xiao Wu (2009)  Nanomedicine in pulmonary delivery.   Int J Nanomedicine 4: 299-319 12  
Abstract: The lung is an attractive target for drug delivery due to noninvasive administration via inhalation aerosols, avoidance of first-pass metabolism, direct delivery to the site of action for the treatment of respiratory diseases, and the availability of a huge surface area for local drug action and systemic absorption of drug. Colloidal carriers (ie, nanocarrier systems) in pulmonary drug delivery offer many advantages such as the potential to achieve relatively uniform distribution of drug dose among the alveoli, achievement of improved solubility of the drug from its own aqueous solubility, a sustained drug release which consequently reduces dosing frequency, improves patient compliance, decreases incidence of side effects, and the potential of drug internalization by cells. This review focuses on the current status and explores the potential of colloidal carriers (ie, nanocarrier systems) in pulmonary drug delivery with special attention to their pharmaceutical aspects. Manufacturing processes, in vitro/in vivo evaluation methods, and regulatory/toxicity issues of nanomedicines in pulmonary delivery are also discussed.
Notes:
2008
Heidi M Mansour, Srinivasan Damodaran, George Zografi (2008)  Characterization of the in situ structural and interfacial properties of the cationic hydrophobic heteropolypeptide, KL4, in lung surfactant bilayer and monolayer models at the air-water interface: implications for pulmonary surfactant delivery.   Mol Pharm 5: 5. 681-695 Sep/Oct  
Abstract: This study examines the various equilibrium in situ secondary structures of the pharmaceutical heteropolypeptide, KL 4, in the solid state, in solution, and in the monolayer state alone and mixed with dipalmitoylphosphatidylcholine (DPPC) and palmitoyloleoylphosphatidylglycerol (POPG). In situ surface circular dichroism spectroscopy, using a method first reported by Damodaran (Damodaran, S. Anal. Bioanal. Chem. 2003, 376, 182-188), of equilibrated KL 4, DPPC/KL 4, POPG/KL 4, and DPPC/POPG/KL 4 monolayers at the air-water interface was used to examine the in situ two-dimensional conformation of KL 4. Gravimetric vapor sorption by solid KL 4 was used to analyze the effects of water molecules on the conformation of KL 4 when confined as a monolayer at the surface of water. Solid-state KL 4 conformation was determined by X-ray powder diffraction (XRPD). The equilibrium interfacial and spreading properties were measured at 25 degrees C, 37 degrees C, and 45 degrees C using the Wilhelmy plate method and Langmuir film balance. Equilibrium phase transition temperatures were measured using differential scanning calorimetry (DSC). It was found that solid-state KL 4, which takes up very little water, exhibits beta-sheet and alpha-helix secondary structures, whereas KL 4 in solution appears to exist only as an alpha-helix. KL 4 forms a stable, insoluble monolayer, exhibiting beta-sheet and aperiodic structures. These structures provide KL 4, when confined in two-dimensions, the structural flexibility to maximize favorable cationic lysine-water interactions and favorable leucine-leucine hydrophobic and van der Waals interactions; while effectively "shielding" the leucine residues away from water. In DPPC/KL 4 monolayers, KL 4 retains its native beta-sheet and aperiodic structures, consistent with phase separation of DPPC and KL 4 in bilayers and monolayers. In POPG/KL 4 monolayers, KL 4 exhibits an increase in aperiodic secondary structures (loss of beta-sheet) to maximize favorable electrostatic interactions, consistent with the observed negative deviations from ideal monolayer mixing.
Notes:
2007
Heidi M Mansour, George Zografi (2007)  The relationship between water vapor absorption and desorption by phospholipids and bilayer phase transitions.   J Pharm Sci 96: 2. 377-396 Feb  
Abstract: Water vapor absorption and desorption at 25 degrees C and phase transition temperatures of phospholipid bilayers were measured as a function of relative humidity (RH) to better understand how the patterns of water vapor absorption and desorption are linked to corresponding phase changes induced by the level of hydration. Comparisons were made of the dipalmitoyl and palmitoyloleyol esters of glycerol derivatized with phosphatidyl-choline, -glycerol, -ethanolamine and with phosphatidic acid. The results suggest that the extent of water vapor absorption and desorption at a given RH reflects the combined effects of water-polar group interaction and access of water to the polar region as controlled by intra- and interbilayer molecular packing and intermolecular attractive and repulsive interactions. The results further suggest that the extent of water vapor absorption and desorption over a range of relative humidities reflects the combined effects of the polar group's ability to interact with water, the access that water has to the polar groups as determined by molecular size and various intermolecular and intrabilayer forces of attraction and repulsion, and interbilayer interactions which influence the degree of order/disorder present in the overall solid-state structure. This behavior is also reflected in the changes observed in the various bilayer phase transition temperatures as a function of RH. Analyses of absorption isotherms suggests that after exceeding a critical RH, water initially interacting with these phospholipids most likely forms either stoichiometric or nonstoichiometric crystal hydrates, as with the disaturated derivatives, or hydrated mesophases, as with the gel states of the monounsaturated derivatives.
Notes:
Heidi M Mansour, George Zografi (2007)  Relationships between equilibrium spreading pressure and phase equilibria of phospholipid bilayers and monolayers at the air-water interface.   Langmuir 23: 7. 3809-3819 Mar  
Abstract: The intricate interplay between the bilayer and monolayer properties of phosphatidylcholine (PC), phosphatidylglycerol (PG), and phosphatidylethanolamine (PE) phospholipids, in relation to their polar headgroup properties, and the effects of chain permutations on those polar headgroup properties have been demonstrated for the first time with a set of time-independent bilayer-monolayer equilibria studies. Bilayer and monolayer phase behavior for PE is quite different than that observed for PC and PG. This difference is attributed to the characteristic biophysical PE polar headgroup property of favorable intermolecular hydrogen-bonding and electrostatic interactions in both the bilayer and monolayer states. This characteristic hydrogen-bonding ability of the PE polar headgroup is reflected in the condensed nature of PE monolayers and a decrease in equilibrium monolayer collapse pressure at temperatures below the monolayer critical temperature, T(c) (whether above or below the monolayer triple point temperature, T(t)). This interesting phenomena is compared to equilibrated PC and PG monolayers which collapse to form bilayers at 45 mN/m at temperatures both above and below monolayer T(c). Additionally, it has been demonstrated by measurements of the equilibrium spreading pressure, pie, that at temperatures above the bilayer main gel-to-liquid-crystalline phase-transition temperature, T(m), all liquid-crystalline phospholipid bilayers spread to form monolayers with pie around 45 mN/m, and spread liquid-expanded equilibrated monolayers collapse at 45 mN/m to form their respective thermodynamically stable liquid-crystalline bilayers. At temperatures below bilayer T(m), PC and PG gel bilayers exhibit a drop in bilayer pi(e) values < or =0.2 mN/m forming gaseous monolayers, whereas the value of pic of spread monolayers remains around 45 mN/m. This suggests that spread equilibrated PC and PG monolayers collapse to a metastable liquid-crystalline bilayer structure at temperatures below bilayer T(m) (where the thermodynamically stable bilayer liquid-crystalline phase does not exist) and with a surface pressure of 45 mN/m, a surface chemical property characteristically observed at temperatures above bilayer T(m) (monolayer T(c)). In contrast, PE gel bilayers, which exist at temperatures below bilayer T(m) but above bilayer T(s) (bilayer crystal-to-gel phase-transition temperature), exhibit gel bilayer spreading to form equilibrated monolayers with intermediate pie values in the range of 30-40 mN/m; however, bilayer pie and monolayer pic values remain equal in value to one another. Contrastingly, at temperatures below bilayer T(s), PE crystalline bilayers exhibit bilayer pie values < or =0.2 mN/m forming equilibrated gaseous monolayers, whereas spread monolayers collapse at a value of pic remaining around 30 mN/m, indicative of metastable gel bilayer formation.
Notes:
Heidi M Mansour, Anthony J Hickey (2007)  Raman characterization and chemical imaging of biocolloidal self-assemblies, drug delivery systems, and pulmonary inhalation aerosols: a review.   AAPS PharmSciTech 8: 4. 11  
Abstract: This review presents an introduction to Raman scattering and describes the various Raman spectroscopy, Raman microscopy, and chemical imaging techniques that have demonstrated utility in biocolloidal self-assemblies, pharmaceutical drug delivery systems, and pulmonary research applications. Recent Raman applications to pharmaceutical aerosols in the context of pulmonary inhalation aerosol delivery are discussed. The "molecular fingerprint" insight that Raman applications provide includes molecular structure, drug-carrier/excipient interactions, intramolecular and intermolecular bonding, surface structure, surface and interfacial interactions, and the functional groups involved therein. The molecular, surface, and interfacial properties that Raman characterization can provide are particularly important in respirable pharmaceutical powders, as these particles possess a higher surface-area-to-volume ratio; hence, understanding the nature of these solid surfaces can enable their manipulation and tailoring for functionality at the nanometer level for targeted pulmonary delivery and deposition. Moreover, Raman mapping of aerosols at the micro- and nanometer level of resolution is achievable with new, sophisticated, commercially available Raman microspectroscopy techniques. This noninvasive, highly versatile analytical and imaging technique exhibits vast potential for in vitro and in vivo molecular investigations of pulmonary aerosol delivery, lung deposition, and pulmonary cellular drug uptake and disposition in unfixed living pulmonary cells.
Notes:
Anthony J Hickey, Heidi M Mansour, Martin J Telko, Zhen Xu, Hugh D C Smyth, Tako Mulder, Richard McLean, John Langridge, Dimitris Papadopoulos (2007)  Physical characterization of component particles included in dry powder inhalers. II. Dynamic characteristics.   J Pharm Sci 96: 5. 1302-1319 May  
Abstract: Characteristics of particles included in dry powder inhalers is extended from our previous report (in this journal) to include properties related to their dynamic performance. The performance of dry powder aerosols for pulmonary delivery is known to depend on fluidization and dispersion which reflects particle interactions in static powder beds. Since the solid state, surface/interfacial chemistry and static bulk properties were assessed previously, it remains to describe dynamic performance with a view to interpreting the integrated database. These studies result in complex data matrices from which correlations between specific properties and performance may be deduced. Lactose particles were characterized in terms of their dynamic flow, powder and aerosol electrostatics, and aerodynamic performance with respect to albuterol aerosol dispersion. There were clear correlations between flow properties and aerosol dispersion that would allow selection of lactose particles for formulation. Moreover, these properties can be related to data reported earlier on the morphological and surface properties of the carrier lactose particles. The proposed series of analytical approaches to the evaluation of powders for inclusion in aerosol products has merit and may be the basis for screening and ultimately predicting particle performance with a view to formulation optimization.
Notes:
Anthony J Hickey, Heidi M Mansour, Martin J Telko, Zhen Xu, Hugh D C Smyth, Tako Mulder, Richard McLean, John Langridge, Dimitris Papadopoulos (2007)  Physical characterization of component particles included in dry powder inhalers. I. Strategy review and static characteristics.   J Pharm Sci 96: 5. 1282-1301 May  
Abstract: The performance of dry powder aerosols for the delivery of drugs to the lungs has been studied extensively in the last decade. The focus for different research groups has been on aspects of the powder formulation, which relate to solid state, surface and interfacial chemistry, bulk properties (static and dynamic) and measures of performance. The nature of studies in this field, tend to be complex and correlations between specific properties and performance seem to be rare. Consequently, the adoption of formulation approaches that on a predictive basis lead to desirable performance has been an elusive goal but one that many agree is worth striving towards. The purpose of this paper is to initiate a discussion of the use of a variety of techniques to elucidate dry particle behavior that might guide the data collection process. If the many researchers in this field can agree on this, or an alternative, guide then a database can be constructed that would allow predictive models to be developed. This is the first of two papers that discuss static and dynamic methods of characterizing dry powder inhaler formulations.
Notes:
Powered by PublicationsList.org.