hosted by
publicationslist.org
    

Sandrine Morel


Sandrine.Morelatunige.ch

Journal articles

2012
Sandrine Morel, Miguel A Frias, Christian Rosker, Richard W James, Stephan Rohr, Brenda R Kwak (2012)  The natural cardioprotective particle HDL modulates connexin43 gap junction channels.   Cardiovasc Res 93: 1. 41-49 Jan  
Abstract: High-density lipoprotein (HDL) is known for its cardioprotective properties independent from its cholesterol transport activity. These properties are mediated by activation of kinases such as protein kinase C (PKC). Connexin43 (Cx43) is a gap junction protein present in ventricular cardiomyocytes. PKC-dependent phosphorylation modifies Cx43 gap junction channel properties and is involved in cardioprotection. We hypothesized that cardioprotective properties of HDL may be mediated in part by affecting Cx43 gap junction channels.
Notes:
2011
Anne Angelillo-Scherrer, Pierre Fontana, Laurent Burnier, Isabelle Roth, Rocco Sugamele, Anne Brisset, Sandrine Morel, Séverine Nolli, Esther Sutter, Alexandra Chassot, Claude Capron, Delphine Borgel, François Saller, Marc Chanson, Brenda R Kwak (2011)  Connexin 37 limits thrombus propensity by downregulating platelet reactivity.   Circulation 124: 8. 930-939 Aug  
Abstract: Formation of platelet plug initiates hemostasis after vascular injury and triggers thrombosis in ischemic disease. However, the mechanisms leading to the formation of a stable thrombus are poorly understood. Connexins comprise a family of proteins that form gap junctions enabling intercellular coordination of tissue activity, a process termed gap junctional intercellular communication.
Notes:
Sandrine Morel, Brenda R Kwak (2011)  Roles of Connexins in Atherosclerosis and Ischemia-Reperfusion Injury.   Curr Pharm Biotechnol Apr  
Abstract: Connexins are members of a large family of transmembrane proteins that oligomerize to form connexons or hemichannels, and connexons of adjacent cells dock to make gap junction channels. These channels allow the exchange of ions and small metabolites between the cytosol and extracellular space, or between the cytosols of neighbouring cells. Connexins are important in cardiovascular physiology; they support conducted vascular responses and allow for coordinated contraction of the heart. Four main connexins are expressed in the cardiovascular system: Cx37, Cx40, Cx43 and Cx45. Their expression pattern is not uniform and depends on intrinsic and environmental factors. Significant changes in the expression pattern, the cellular localization and the opening of connexin channels have been described during the development of atherosclerosis and after ischemia and reperfusion. In this review, we provide an overview of the roles of different connexins in these pathologies.
Notes:
2010
Sandrine Morel, Laurent Burnier, Angela Roatti, Alexandra Chassot, Isabelle Roth, Esther Sutter, Katia Galan, Anna Pfenniger, Marc Chanson, Brenda R Kwak (2010)  Unexpected role for the human Cx37 C1019T polymorphism in tumour cell proliferation.   Carcinogenesis 31: 11. 1922-1931 Nov  
Abstract: Connexins are a large family of proteins that form gap junction channels allowing exchange of ions and small metabolites between neighboring cells. They have been implicated in pathological processes such as tumourigenesis in which they may act as tumour suppressors. A polymorphism in the human connexin37 (Cx37) gene (C1019T), resulting in a non-conservative amino acid change in the regulatory C-terminus (CT) of the Cx37 protein (P319S) has been suggested to be implicated in predisposition to angiosarcomas. In this study, we have used communication-deficient HeLa and SK-HEP-1 cells transfected with Cx37-319S, Cx37-319P or empty vector. We showed that the expression of Cx37-319P limited proliferation of HeLa and SK-HEP-1 cells, whereas Cx37-319S expression was without effect. Using an in vitro kinase assay, we demonstrated phosphorylation of Cx37 CT by glycogen synthase kinase-3 (GSK-3), a kinase known to be implicated in cell proliferation and cancer. GSK-3-induced phosphorylation was associated with reduced gap junctional intercellular communication (GJIC) as measured by microinjection of the tracer neurobiotin. Inhibition of GSK-3 by LiCl or SB415286 reduced phosphorylation of Cx37-319P and increased GJIC. This latter effect on GJIC involved the beta and not the alpha isoform of GSK-3. In contrast, GSK-3 inhibitors were without effect on HeLa cells expressing Cx37-319S. In conclusion, our data indicate functional effects of the Cx37 C1019T polymorphism on GJIC that might contribute to tumour cell growth.
Notes:
Giuseppina Milano, Antonio F Corno, Michele Samaja, Sandrine Morel, Giuseppe Vassalli, Ludwig K von Segesser (2010)  Daily reoxygenation decreases myocardial injury and improves post-ischaemic recovery after chronic hypoxia.   Eur J Cardiothorac Surg 37: 4. 942-949 Apr  
Abstract: In contrast to the clinical evidence, experimental studies showed that chronic hypoxia (CH) confers a certain degree of protection against ischaemia-reperfusion damage. We studied the effects of daily reoxygenation during CH (CHReox) on hearts exposed to ischaemia-reperfusion. We also separated the intrinsic effects on the myocardium of CH and CHReox from those related to circulatory and nervous factors.
Notes:
Giuseppina Milano, Ludwig K von Segesser, Sandrine Morel, Ana Joncic, Paola Bianciardi, Giuseppe Vassalli, Michele Samaja (2010)  Phosphorylation of phosphatidylinositol-3-kinase-protein kinase B and extracellular signal-regulated kinases 1/2 mediate reoxygenation-induced cardioprotection during hypoxia.   Exp Biol Med (Maywood) 235: 3. 401-410 Mar  
Abstract: In vivo exposure to chronic hypoxia (CH) depresses myocardial performance and tolerance to ischemia, but daily reoxyenation during CH (CHR) confers cardioprotection. To elucidate the underlying mechanism, we tested the role of phosphatidylinositol-3-kinase-protein kinase B (Akt) and p42/p44 extracellular signal-regulated kinases (ERK1/2), which are known to be associated with protection against ischemia/reperfusion (I/R). Male Sprague-Dawley rats were maintained for two weeks under CH (10% O(2)) or CHR (as CH but with one-hour daily exposure to room air). Then, hearts were either frozen for biochemical analyses or Langendorff-perfused to determine performance (intraventricular balloon) and tolerance to 30-min global ischemia and 45-min reperfusion, assessed as recovery of performance after I/R and infarct size (tetrazolium staining). Additional hearts were perfused in the presence of 15 micromol/L LY-294002 (inhibitor of Akt), 10 micromol/L UO-126 (inhibitor of ERK1/2) or 10 micromol/L PD-98059 (less-specific inhibitor of ERK1/2) given 15 min before ischemia and throughout the first 20 min of reperfusion. Whereas total Akt and ERK1/2 were unaffected by CH and CHR in vivo, in CHR hearts the phosphorylation of both proteins was higher than in CH hearts. This was accompanied by better performance after I/R (heart rate x developed pressure), lower end-diastolic pressure and reduced infarct size. Whereas the treatment with LY-294002 decreased the phosphorylation of Akt only, the treatment with UO-126 decreased ERK1/2, and that with PD-98059 decreased both Akt and ERK1/2. In all cases, the cardioprotective effect led by CHR was lost. In conclusion, in vivo daily reoxygenation during CH enhances Akt and ERK1/2 signaling. This response was accompanied by a complex phenotype consisting in improved resistance to stress, better myocardial performance and lower infarct size after I/R. Selective inhibition of Akt and ERK1/2 phosphorylation abolishes the beneficial effects of the reoxygenation. Therefore, Akt and ERK1/2 have an important role to mediate cardioprotection by reoxygenation during CH in vivo.
Notes:
2009
Jean-Paul Derouette, Cindy Wong, Laurent Burnier, Sandrine Morel, Esther Sutter, Katia Galan, Anne C Brisset, Isabelle Roth, Christos E Chadjichristos, Brenda R Kwak (2009)  Molecular role of Cx37 in advanced atherosclerosis: a micro-array study.   Atherosclerosis 206: 1. 69-76 Sep  
Abstract: Recently, we showed that connexin37 (Cx37) protects against early atherosclerotic lesion development by regulating monocyte adhesion. The expression of this gap junction protein is altered in mouse and human atherosclerotic lesions; it is increased in macrophages newly recruited to the lesions and disappears from the endothelium of advanced plaques. To obtain more insight into the molecular role of Cx37 in advanced atherosclerosis, we used micro-array analysis for gene expression profiling in aortas of ApoE(-/-) and Cx37(-/-)ApoE(-/-) mice before and after 18 weeks of cholesterol-rich diet. Out of >15,000 genes, 106 genes were significantly differentially expressed in young mice before diet (P-value of <0.05, fold change of >0.7 or <-0.7, and intensity value >2.2 times background). Ingenuity pathway analysis (IPA) revealed differences in genes involved in cell-to-cell signaling and interaction, cellular compromise and nutritional disease. In addition, we identified 100 genes that were significantly perturbed after the cholesterol-rich diet. Similar to the analysis on 10-week-old mice, IPA revealed differences in genes involved in cell-to-cell signaling and interaction as well as to immuno-inflammatory disease. Furthermore, we found important changes in genes involved in vascular calcification and matrix degradation, some of which were confirmed at protein level by (immuno-)histochemistry. In conclusion, we suggest that Cx37 deficiency alters the global differential gene expression profiles in young mice towards a pro-inflammatory phenotype, which are then further influenced in advanced atherosclerosis. The results provide new insights into the significance of Cx37 in plaque calcification.
Notes:
Sandrine Morel, Laurent Burnier, Brenda R Kwak (2009)  Connexins participate in the initiation and progression of atherosclerosis.   Semin Immunopathol 31: 1. 49-61 Jun  
Abstract: Connexins are members of a large family of transmembrane proteins that form hemichannels or gap junctions. These channels allow the exchange of ions and small metabolites between the cytosol and extracellular space or between neighboring cells. Connexins are important in vascular physiology; they support radial and longitudinal cell-to-cell communication in the vascular wall. Four connexins are expressed in the vascular wall: Cx37, Cx40, Cx43, and Cx45. Their expression is not uniform in all blood vessels and varies with vascular territory and species. Significant changes in the expression pattern of vascular connexins have been described during the development of atherosclerosis, a progressive inflammatory disease. In this review, we provide an overview of (1) the tools used to study the involvement of connexins in atherosclerosis, (2) the participation of connexins in atherogenesis, (3) the increasing interest of a polymorphism in the human connexin37 gene as marker of cardiovascular disease, and (4) the possible therapeutic implications of connexins.
Notes:
2008
Christos E Chadjichristos, Sandrine Morel, Jean-Paul Derouette, Esther Sutter, Isabelle Roth, Anne C Brisset, Marie-Luce Bochaton-Piallat, Brenda R Kwak (2008)  Targeting connexin 43 prevents platelet-derived growth factor-BB-induced phenotypic change in porcine coronary artery smooth muscle cells.   Circ Res 102: 6. 653-660 Mar  
Abstract: We previously reported that reducing the expression of the gap junction protein connexin (Cx)43 in mice restricts intimal thickening formation after acute vascular injury by limiting the inflammatory response and the proliferation and migration of smooth muscle cells (SMCs) toward the damaged site. SMC populations isolated from porcine coronary artery exhibit distinct phenotypes: spindle-shaped (S) and rhomboid (R). S-SMCs are predominant in the normal media, whereas R-SMCs are recovered in higher proportion from stent-induced intimal thickening, suggesting that they participate in the restenotic process. Here, we further investigate the relationship between connexin expression and SMC phenotypes using porcine coronary artery SMCs. Cx40 was highly expressed in normal media of porcine coronary artery in vivo, whereas Cx43 was barely detectable. In contrast, Cx40 was downregulated and Cx43 was markedly upregulated in stent-induced intimal thickening. In vitro, S-SMCs expressed Cx40 and Cx43. In R-SMCs, Cx43 expression was increased and Cx40 was absent. We confirmed that S-SMCs treated with platelet-derived growth factor-BB acquire an R phenotype. This was accompanied by an upregulation of Cx43 and a loss of Cx40. Importantly, platelet-derived growth factor-BB-induced S-to-R phenotypic change was prevented by a reduction of Cx43 expression with antisense, ie, S-SMCs retained their typical elongated appearance and the expression of alpha-smooth muscle actin, a well-known SMC differentiation marker, whereas the expression of S100A4, a typical marker of R-SMCs, was prevented. In conclusion, limiting Cx43 expression in S-SMCs prevents platelet-derived growth factor-BB-induced S-to-R modulation. This suggests that Cx43 may be an additional target for local delivery strategies aimed at reducing restenosis.
Notes:
2007
Anna Caretti, Sandrine Morel, Giuseppina Milano, Monica Fantacci, Paola Bianciardi, Raffaella Ronchi, Giuseppe Vassalli, Ludwig K von Segesser, Michele Samaja (2007)  Heart HIF-1alpha and MAP kinases during hypoxia: are they associated in vivo?   Exp Biol Med (Maywood) 232: 7. 887-894 Jul  
Abstract: To study the in vivo dynamics of hypoxia-inducible factor 1alpha (HIF-1alpha), master regulator of O(2)-dependent gene expression, and mitogen-activated protein kinases (MAPKs) in the hypoxic myocardium, Sprague-Dawley rats (n = 4 to 6 per group) were exposed to 1-hr hypoxia (10% O(2)), 23-hr hypoxia, and 23-hr hypoxia, followed by reoxygenation. HIF-1alpha increased 15-fold after 1-hr hypoxia, remained constant for 23 hrs, and returned to baseline on reoxygenation. Extracellular signal-regulated kinases (ERK1/2) were unchanged throughout. Phosphorylated p38 increased 4-fold after 1-hr hypoxia and returned to baseline within 23-hr hypoxia. The activity of stress-activated protein kinases/c-Jun NH(2)-terminal kinases (JNKs), measured as phosphorylated c-Jun, increased 3-fold after 1-hr hypoxia and remained sustained afterward. Furthermore, HIF-1alpha was halved in rats that were administered with the p38 inhibitor SB202190 and made hypoxic for 1 hr. In conclusion, although very sensitive to the reoxygenation, HIF-1alpha is overexpressed in vivo in the hypoxic myocardium, and its acute induction by hypoxia is correlated with that of p38.
Notes:
Giuseppina Milano, Sandrine Morel, Christophe Bonny, Michele Samaja, Ludwig K von Segesser, Pascal Nicod, Giuseppe Vassalli (2007)  A peptide inhibitor of c-Jun NH2-terminal kinase reduces myocardial ischemia-reperfusion injury and infarct size in vivo.   Am J Physiol Heart Circ Physiol 292: 4. H1828-H1835 Apr  
Abstract: The c-Jun NH(2)-terminal kinase (JNK) pathway of the mitogen-activated protein kinase (MAPK) signaling cascade regulates cell function and survival after stress stimulation. Equally robust studies reported dichotomous results suggesting both protective and detrimental effects of JNK during myocardial ischemia-reperfusion (I/R). The lack of a highly specific JNK inhibitor contributed to this controversy. We recently developed a cell-penetrating, protease-resistant peptide inhibitor of JNK, d-JNKI-1. Here we report on the effects of d-JNKI-1 in myocardial I/R. d-JNKI-1 was tested in isolated-perfused adult rat hearts. Increased activation of JNK, p38-MAPK, and extracellular signal-regulated kinase-1/2 (ERK1/2), as assessed by kinase assays and Western blotting, occurred during I/R. d-JNKI-1 delivered before onset of ischemia prevented the increase in JNK activity while not affecting ERK1/2 and p38-MAPK activation. JNK inhibition reduced ischemic injury, as manifested by increased time to contracture (P < 0.05) and decreased left ventricular end-diastolic pressure during ischemia (P < 0.01), and enhanced posthypoxic recovery of systolic and diastolic function (P < 0.01). d-JNKI-1 reduced mitochondrial cytochrome-c release, caspase-3 activation, and the number of apoptotic cells determined by terminal deoxynucleotidyltransferase-mediated dUTP nick-end labeling (P < 0.05), indicating suppression of the mitochondrial machinery of apoptosis. d-JNKI-1 delivered at the time of reperfusion did not improve functional recovery but still prevented apoptosis. In vivo, d-JNKI-1 reduced infarct size after coronary artery occlusion and reperfusion by approximately 50% (P < 0.01). In conclusion, d-JNKI-1 is an important compound that can be used in preclinical models to investigate the role of JNK signaling in vivo. Inhibition of JNK during I/R is cardioprotective in anesthetized rats in vivo.
Notes:
2006
Paola Bianciardi, Monica Fantacci, Anna Caretti, Raffaella Ronchi, Giuseppina Milano, Sandrine Morel, Ludwig von Segesser, Antonio Corno, Michele Samaja (2006)  Chronic in vivo hypoxia in various organs: hypoxia-inducible factor-1alpha and apoptosis.   Biochem Biophys Res Commun 342: 3. 875-880 Apr  
Abstract: We studied the in vivo persistence of hypoxia-inducible factor-1alpha (HIF-1alpha), main transducer of hypoxia, the differential response in organs exposed to the same degree of hypoxemia and the relationship with apoptosis. We measured HIF-1alpha (immunohistochemistry peroxidase and Western blot) and apoptosis (TUNEL) in heart, liver, kidney, gastrocnemius, and brain of rats exposed to chronic normobaric hypoxia (10% O2) or normoxia (21% O2) for 2 weeks. Despite same arterial O2 pressure and increased hemoglobin concentration (219 +/- 5 vs. 124 +/- 4 g/L), the organs responded differently. While marked in brain, muscle, and kidney cortex, HIF-1alpha was undetectable in heart and liver. In kidney medulla, HIF-1alpha was high in both normoxia and hypoxia. By contrast, apoptosis was marked in heart, slight in kidney medulla, and undetectable in other organs. We conclude that the HIF-1alpha response to chronic hypoxia can be a sustained phenomenon, but not in all organs, and that apoptosis responds differently from HIF-1alpha.
Notes:
Sandrine Morel, Giuseppina Milano, Kathi Mujynya Ludunge, Antonio F Corno, Michele Samaja, Sylvain Fleury, Christophe Bonny, Lukas Kappenberger, Ludwig K von Segesser, Giuseppe Vassalli (2006)  Brief reoxygenation episodes during chronic hypoxia enhance posthypoxic recovery of LV function: role of mitogen-activated protein kinase signaling pathways.   Basic Res Cardiol 101: 4. 336-345 Jul  
Abstract: Children with congenital cyanotic heart defects have worse outcomes after surgical repair of their heart defects compared with noncyanotic ones. Institution of extracorporeal circulation in these children exposes the cyanotic heart to reoxygenation injury. Mitogen-activated protein kinase (MAPK) signaling cascades are major regulators of cardiomyocyte function in acute hypoxia and reoxygenation. However, their roles in chronic hypoxia are incompletely understood. We determined myocardial activation of the three major MAPKs, c-Jun NH2-terminal kinase (JNK), extracellular signal-regulated kinase-1/2 (ERK1/2), and p38-MAPK in adult rats exposed to hypoxia (FIO2=0.10) for varying periods of time. Myocardial function was analyzed in isolated perfused hearts. Acute hypoxia stimulated JNK and p38-MAPK activation. Chronic hypoxia (2 weeks) was associated with increased p38-MAPK (but not JNK) activation, increased apoptosis, and impaired posthypoxic recovery of LV function. Brief normoxic episodes (1 h/day) during chronic hypoxia abolished p38-MAPK activation, stimulated MEK-ERK1/2 activation modestly, and restored posthypoxic LV function. In vivo p38-MAPK inhibition by SB203580 or SB202190 in chronically hypoxic rats restored posthypoxic LV function. These results indicate that sustained hypoxemia maintains p38-MAPK in a chronically activated state that predisposes to myocardial impairment upon reoxygenation. Brief normoxic episodes during chronic hypoxia prevent p38-MAPK activation and restore posthypoxic recovery of myocardial function.
Notes:
2005
Sandrine Morel, Corinne Berthonneche, Stéphane Tanguy, Marie-Claire Toufektsian, Pascale Perret, Catherine Ghezzi, Joël de Leiris, François Boucher (2005)  Early pre-diabetic state alters adaptation of myocardial glucose metabolism during ischemia in rats.   Mol Cell Biochem 272: 1-2. 9-17 Apr  
Abstract: Pre-diabetic subjects with high insulin secretory capacity have double risk of cardiovascular disease compared with subjects who do not develop insulin-resistance. It is well established that the ability of the myocardium to increase its glycolytic ATP production plays a crucial role in determining cell survival under conditions of ischemia. Up to now, whether the pre-diabetic state reduces the tolerance of the heart to ischemia by affecting its ability to increase its energy production through glycolysis remains unknown. The aim of the present study was to assess whether insulin resistance affects the ability of the myocardium to increase glycolysis under ischemic conditions. Male Wistar rats were fed for 8 weeks a fructose-enriched (33%) diet to induce a pre-diabetic state. Hearts were isolated and subjected to ex-vivo low-flow (2%) ischemia for 30 min. The fructose diet increased sarcolemmal GLUT4 localisation in myocardial cells under basal conditions compared with controls. This effect was not accompanied by increased glucose utilisation. Ischemia induced the translocation of GLUT4 to the plasma membrane in controls but did not significantly modify the distribution of these transporters in pre-diabetic hearts. Glycolytic flux under ischemic conditions was significantly lower in fructose-fed rat hearts compared with controls. The reduction of glycolytic flux during ischemia in fructose-fed rat hearts was not due to metabolic inhibition downstream hexokinase II since no cardiac accumulation of glucose-6-phosphate was detected. In conclusion, our results suggest that the pre-diabetic state reduces the tolerance of the myocardium to ischemia by decreasing glycolytic flux adaptation.
Notes:
2004
Antonio F Corno, Giuseppina Milano, Sandrine Morel, Piergiorgio Tozzi, Claude Y Genton, Michele Samaja, Ludwig K von Segesser (2004)  Hypoxia: unique myocardial morphology?   J Thorac Cardiovasc Surg 127: 5. 1301-1308 May  
Abstract: OBJECTIVE: The objective of this study was to investigate the effects of chronic and intermittent hypoxia on myocardial morphology. METHODS: Rats randomly divided into 3 groups (n = 14 per group) were exposed to room air (Fio(2) = 0.21), chronic hypoxia (Fio(2) = 0.10), and intermittent hypoxia (chronic hypoxia with 1 hour per day of room air) for 2 weeks. Weight, blood gas analysis, hematocrit, hemoglobin, red cells, and right and left ventricular pressures were measured. Hearts excised for morphologic examination were randomly divided into 2 groups (9 per group for gross morphologic measurements and 5 per group for histologic and morphometric analysis). The weight ratio of right to left ventricles plus interventricular septum, myocyte diameter, cross-sectional area, and free wall thickness in right and left ventricles were measured. RESULTS: Despite the same polycythemia, the right ventricle pressure (P <.05) and ratio of right to left ventricle pressures (P <.02) were higher after chronic hypoxia than intermittent hypoxia. The ratio of heart weight to total body weight and the ratio of right to left ventricles plus interventricular septum was higher (P <.01) in chronic and intermittent hypoxia than in normoxia. Myocyte diameter was not different between the right and left ventricles in normoxia, whereas right ventricle myocytes were larger than left ventricle myocytes in chronic hypoxia (P <.05) and intermittent hypoxia (P <.0005). There was marked dilatation of right ventricle size (P <.001) and marked reduction of left ventricle (P <.001) size in chronic and intermittent hypoxia compared with normoxia. The total ventricular area (right ventricle plus left ventricle area) remained the same in all groups. The wall thickness ratio in chronic hypoxia and intermittent hypoxia was increased (P <.001) compared with normoxia in the right ventricle but not in the left ventricle. CONCLUSIONS: Intermittent reoxygenation episodes do not induce a lesser ventricular hypertrophic response than observed with chronic hypoxia. The functional myocardial preconditioning consequence of intermittent reoxygenation is not supported by structural differences evident with the available techniques.
Notes:
Giuseppina Milano, Paola Bianciardi, Antonio F Corno, Eric Raddatz, Sandrine Morel, Ludwig K von Segesser, Michele Samaja (2004)  Myocardial impairment in chronic hypoxia is abolished by short aeration episodes: involvement of K+ATP channels.   Exp Biol Med (Maywood) 229: 11. 1196-1205 Dec  
Abstract: In vivo exposure to chronic hypoxia is considered to be a cause of myocardial dysfunction, thereby representing a deleterious condition, but repeated aeration episodes may exert some cardioprotection. We investigated the possible role of ATP-sensitive potassium channels in these mechanisms. First, rats (n = 8/group) were exposed for 14 days to either chronic hypoxia (CH; 10% O(2)) or chronic hypoxia with one episode/day of 1-hr normoxic aeration (CH+A), with normoxia (N) as the control. Second, isolated hearts were Langendorff perfused under hypoxia (10% O(2), 30 min) and reoxygenated (94% O(2), 30 min) with or without 3 microM glibenclamide (nonselective K(+)(ATP) channel-blocker) or 100 microM diazoxide (selective mitochondrial K(+)(ATP) channel-opener). Blood gasses, hemoglobin concentration, and plasma malondialdehyde were similar in CH and CH+A and in both different from normoxic (P < 0.01), body weight gain and plasma nitrate/nitrite were higher in CH+A than CH (P < 0.01), whereas apoptosis (number of TUNEL-positive nuclei) was less in CH+A than CH (P < 0.05). During in vitro hypoxia, the efficiency (ratio of ATP production/pressure x rate product) was the same in all groups and diazoxide had no measurable effects on myocardial performance, whereas glibenclamide increased end-diastolic pressure more in N and CH than in CH+A hearts (P < 0.05). During reoxgenation, efficiency was markedly less in CH with respect to N and CH+A (P < 0.0001), and ratex pressure product remained lower in CH than N and CH+A hearts (P < 0.001), but glibenclamide or diazoxide abolished this difference. Glibenclamide, but not diazoxide, decreased vascular resistance in N and CH (P < 0.005 and < 0.001) without changes in CH+A. We hypothesize that cardioprotection in chronically hypoxic hearts derive from cell depolarization by sarcolemmal K(+)(ATP) blockade or from preservation of oxidative phosphorylation efficiency (ATP turnover/myocardial performance) by mitochondrial K(+)(ATP) opening. Therefore K(+)(ATP) channels are involved in the deleterious effects of chronic hypoxia and in the cardioprotection elicited when chronic hypoxia is interrupted with short normoxic aeration episodes.
Notes:
Stéphane Tanguy, Sandrine Morel, Corinne Berthonneche, Marie-Claire Toufektsian, Michel de Lorgeril, Véronique Ducros, Arpad Tosaki, Joel de Leiris, François Boucher (2004)  Preischemic selenium status as a major determinant of myocardial infarct size in vivo in rats.   Antioxid Redox Signal 6: 4. 792-796 Aug  
Abstract: Prospective epidemiological studies have shown that the incidence of numerous cardiovascular pathologies is correlated with body selenium status. However, it remains unclear whether selenium status also influences the outcome of myocardial infarction. The aim of the present study was to test whether dietary selenium intake affects myocardial necrosis induced by transient regional ischemia in vivo in rats. For this purpose, male Wistar rats received either a high-selenium (High-Se: 1.5 mg of Se/kg) or a low-selenium (Low-Se: 0.05 mg of Se/kg) diet for 10 weeks. Animals were subjected to 30 min of myocardial ischemia induced by coronary artery ligation followed by 60 min of reperfusion. Pre- and postischemic blood samples were collected for glutathione (GSH and GSSG) determination and for glutathione peroxidase (GSH-Px) assessment. Our results show that high-selenium intake reduces myocardial infarct size (High-Se: 25.16 +/- 1.19% versus Low-Se: 36.51 +/- 4.14%, p < 0.05), preserves postischemic GSH/GSSG ratio (High-Se: 1.37 +/- 0.37 versus Low-Se: 0.47 +/- 0.10, p < 0.05), increases plasma GSH-Px activity, and improves postischemic mean arterial pressure. In conclusion, preischemic body selenium status is a major determinant of the outcome of myocardial ischemia in vivo in rats probably because it influences the cellular redox status.
Notes:
2003
Marie-Claire Toufektsian, Sandrine Morel, Stéphane Tanguy, André Jeunet, Joël de Leiris, François Boucher (2003)  Involvement of reactive oxygen species in cardiac preconditioning in rats.   Antioxid Redox Signal 5: 1. 115-122 Feb  
Abstract: To date, the involvement of reactive oxygen species in ischemic preconditioning in vivo in rats is not clearly demonstrated. The aim of the present study was to determine whether N-(2-mercaptopropionyl)glycine (MPG), a cell-diffusible hydroxyl radical scavenger, and carnosine, a potent singlet oxygen quencher, could block protection afforded by a single cycle of ischemic preconditioning in vivo in the rat. An ESR study was first performed to validate in vitro the specific antioxidant properties of carnosine and MPG. In a second set of experiments, open-chest rats were subjected to 30 min of left coronary occlusion followed by 60 min of reperfusion. Preconditioning was elicited by 5 min of ischemia and 5 min of reperfusion. Neither MPG (1-h infusion, 20 mg/kg) nor carnosine injection (bolus, 25 micro mol/rat) affected infarct size. The infarct size-limiting effect of preconditioning was completely blunted by MPG, whereas carnosine did not alter the cardioprotection. It is concluded that free radicals and especially hydroxyl radicals could be involved in the adaptive mechanisms induced by a single cycle of preconditioning in vivo in rats.
Notes:
S Morel, C Berthonneche, S Tanguy, M - C Toufektsian, T Foulon, M de Lorgeril, J de Leiris, F Boucher (2003)  Insulin resistance modifies plasma fatty acid distribution and decreases cardiac tolerance to in vivo ischaemia/reperfusion in rats.   Clin Exp Pharmacol Physiol 30: 7. 446-451 Jul  
Abstract: 1. The early stage of insulin resistance, also termed the 'prediabetic state', is characterized by the development of hyperinsulinaemia, which maintains normoglycaemia under fasting conditions. The metabolic disorders induced in myocardial cells during this stage of the disease may constitute a basis for an alteration of the tolerance of the heart to ischaemia and reperfusion. 2. To test this hypothesis, male Wistar rats were fed a 66% fructose diet for 4 weeks, inducing a prediabetic state. Rats were then subjected to in vivo left coronary artery ligation followed by reperfusion. Blood samples were collected for plasma lipid profile determination. 3. The prediabetic state significantly increased the severity of ischaemia-induced arrhythmias (arrhythmia score 1.4 +/- 0.2 vs 2.0 +/- 0.0 in control and fructose-fed rats, respectively; P < 0.05) and the size of infarction (infarct size 41.2 +/- 3.0 vs 56.0 +/- 2.0% in control and fructose-fed rats, respectively; P < 0.01). This alteration of the tolerance to in vivo ischaemia/reperfusion may be the consequence of an increase in mono-unsaturated fatty acids and a decrease in omega3 polyunsaturated fatty acids in fructose-fed-rats. 4. In conclusion, because it is known that the prediabetic state increases the incidence of cardiovascular diseases by promoting coronaropathy, our study suggests that this metabolic disorder may also affect the prognosis of heart disease by decreasing the tolerance of cardiomyocytes to ischaemic insults.
Notes:
2002
N Benajiba, S Morel, J De Leiris, F Boucher, Z Charrouf, N Mokhtar, H Aguenaou (2002)  The effect of argan oil on heart function during ischemia and reperfusion   Therapie 57: 3. 246-252 May/Jun  
Abstract: The aim of this study was to evaluate the effect of organ oil on isolated heart function before and after ischemia and on the activity of cardiac antioxidant enzymes. 16 Wistar rats were divided into 2 groups; control group and treated group receiving 5 mL/kg/day of organ oil. After 8 weeks of treatment, hearts were perfused and subjected to a global ischemia followed by reperfusion. Activity of cardiac antioxidant enzymes was assessed in freeze-clamped hearts at the end of reperfusion. Results showed that organ oil induces: 1--damage to heart function during the preischemic period, 2--decreased functional recovery during reperfusion and 3--significant increase in catalase activity. It seems that, in our experimental conditions, organ oil increases heart sensitivity to ischemia and reperfusion. However, the mechanism involved has yet to be understood.
Notes:
2001
G Hardy, F Stanke-Labesque, M Peoc'h, A Hakim, P Devillier, F Caron, S Morel, P Faure, S Halimi, G Bessard (2001)  Cysteinyl leukotrienes modulate angiotensin II constrictor effects on aortas from streptozotocin-induced diabetic rats.   Arterioscler Thromb Vasc Biol 21: 11. 1751-1758 Nov  
Abstract: Angiotensin II (Ang II) is a vasopressor peptide involved in the pathogenesis of cardiovascular diseases associated with diabetes mellitus. We have previously reported that the 5-lipoxygenase-derived products, particularly the cysteinyl leukotrienes (CysLTs), are involved in Ang II-induced contraction. In this study, we demonstrated that CysLTs contribute to the contraction elicited by Ang II in isolated aortas from streptozotocin-induced diabetic (SS) rats but not from insulin-treated diabetic rats, fructose-fed rats, or control rats. In an organ bath, pretreatment with the 5-lipoxygenase inhibitor (AA861, 10 micromol/L) reduced by 37.6+/-8.2% and 30.1+/-10.9% the Ang II-induced contractions in intact and endothelium-denuded aortic rings, respectively, from SS rats. In contrast, the CysLT(1) receptor antagonist (MK571, 1 micromol/L) or the dual CysLT(1)/CysLT(2) receptor antagonist (BAY-u9773, 0.1 micromol/L) did not affect Ang II-induced contraction. In addition, Ang II induced a 6.2+/-1.5-fold increase in CysLT release through the stimulation of the Ang II type 1 receptor. Furthermore, the urinary excretion of leukotriene E(4) was increased in SS rats (leukotriene E(4), 13.7+/-2.9 ng/24 h [SS rats, n=10] versus 1.5+/-0.5 ng/24 h [control rats, n=6]; P<0.0004). These data suggest the activation of the 5-lipoxygenase pathway in SS rats and the involvement of 5-lipoxygenase-derived products, particularly the CysLTs, in Ang II-induced contraction in aortas from SS rats through stimulation of CysLT receptors different from the well-characterized CysLT(1) or CysLT(2) receptor.
Notes:
M C Toufektsian, F R Boucher, S Tanguy, S Morel, J G de Leiris (2001)  Cardiac toxicity of singlet oxygen: implication in reperfusion injury.   Antioxid Redox Signal 3: 1. 63-69 Feb  
Abstract: Oxygen-derived free radicals (O2.-, H2O2, and .OH) that are produced during postischemic reperfusion are currently suspected to be involved in the pathogenesis of tissue injury. Another reactive oxygen species, the electronically excited molecular oxygen (1O2), is of increasing interest in the area of experimental research in cardiology. In this review are discussed the main potential sources of singlet oxygen in the organism, particularly in the myocardium, the various cardiovascular cytotoxic effects induced by this reactive oxygen intermediate, and the growing evidence of its involvement in ischemia/reperfusion injury.
Notes:
Powered by PublicationsList.org.