hosted by
publicationslist.org
    
Aldo Di Leonardo

adileon@unipa.it

Journal articles

2007
 
DOI   
PMID 
D Mastrangelo, S De Francesco, A Di Leonardo, L Lentini, T Hadjistilianou (2007)  Retinoblastoma epidemiology: does the evidence matter?   Eur J Cancer 43: 10. 1596-1603 Jul  
Abstract: It has been proposed that retinoblastoma is 'caused' by two sequential mutations affecting the RB1 gene, but this is a rather outdated view of cancer aetiology that does not take into account a large amount of new acquisitions such as chromosomal and epigenetic alterations. Retinoblastoma remains probably the only cancer in which the rather simplistic 'two hit' mutational model is still considered of value, although cancer is known to be associated with genomic and microsatellite instability, defects of the DNA mismatch repair system, alterations of DNA methylation and hystone acethylation/deacethylation, and aneuploidy. Moreover, as it is shown herein, the predictions made by the 'two hit' model, are not fulfilled by the clinical and epidemiological data reported so far. Moreover, while the role of mutational events in cancer has been largely questioned in the more recent literature, no serious effort has been done to investigate the role of epigenetic alterations and aneuploidy in retinoblastoma. Through the analysis of the specialised literature and a set of original epidemiological and biological data concerning retinoblastoma, the authors illustrate the evidences arguing against the 'two hit' hypothesis and propose that epigenetic factors and aneuploidy play central roles in the disease.
Notes:
 
DOI   
PMID 
Domenico Mastrangelo, Sonia De Francesco, Aldo Di Leonardo, Laura Lentini, Theodora Hadjistilianou (2007)  Does the evidence matter in medicine? The retinoblastoma paradigm.   Int J Cancer 121: 11. 2501-2505 Dec  
Abstract: Retinoblastoma (Rb) is the most common intraocular malignant tumour in childhood, with an incidence of 1 in 15,000 live births. Complete information on this rare tumour can be easily accessed through the internet, although many aspect concerning the aetiology and pathogenesis of the disease, are still controversial. The "two hit" theory, formulated in 1971 to explain the variegated clinical expression of the disease, is based on the idea that single gene mutation may determine the development of cancer. However, this view does not take into account the most recent evidences showing the role of aneuploidy and chromosome instability in cancer. Also, a number of other genes and epigenetic mechanisms are involved in the genesis of retinoblastoma. More importantly, the "two hit" theory makes predictions, concerning the age distribution of the tumour, its mode of "transmission" (hereditary retinoblastoma), and its pathogenesis, which are not fulfilled by the clinical reality. Overall, the "two hit" theory represents a rather simplistic and outdated model to explain tumour development and clinical evolution of retinoblastoma.
Notes:
 
DOI   
PMID 
Lentini, Amato, Schillaci, Di Leonardo (2007)  Simultaneous Aurora-A/STK15 overexpression and centrosome amplification induce chromosomal instability in tumour cells with a MIN phenotype.   BMC Cancer 7: 1. Nov  
Abstract: ABSTRACT: BACKGROUND: Genetic instability is a hallmark of tumours and preneoplastic lesions. The predominant form of genome instability in human cancer is chromosome instability (CIN). CIN is characterized by chromosomal aberrations, gains or losses of whole chromosomes (aneuploidy), and it is often associated with centrosome amplification. Centrosomes control cell division by forming a bipolar mitotic spindle and play an essential role in the maintenance of chromosomal stability. However, whether centrosome amplification could directly cause aneuploidy is not fully established. Also, alterations in genes required for mitotic progression could be involved in CIN. A major candidate is represented by Aurora-A/STK15 that associates with centrosomes and is overexpressed in several types of human tumour. METHODS: Centrosome amplification were induced by hydroxyurea treatment and visualized by immunofluorescence microscopy. Aurora-A/STK15 ectopic expression was achieved by retroviral infection and puromycin selection in HCT116 tumour cells. Effects of Aurora-A/STK15 depletion on centrosome status and ploidy were determined by Aurora-A/STK15 transcriptional silencing by RNA interference. Changes in the expression levels of some mitotic genes were determined by Real time RT-PCR. RESULTS: We investigated whether amplification of centrosomes and overexpression of Aurora-A/STK15 induce CIN using as a model system a colon carcinoma cell line (HCT116). We found that in HCT116 cells, chromosomally stable and near diploid cells harbouring a MIN phenotype, centrosome amplification induced by hydroxyurea treatment is neither maintained nor induces aneuploidy. On the contrary, ectopic overexpression of Aurora-A/STK15 induced supernumerary centrosomes and aneuploidy. Aurora-A/STK15 transcriptional silencing by RNA interference in cells ectopically overexpressing this kinase promptly decreased cell numbers with supernumerary centrosomes and aneuploidy. CONCLUSIONS: Our results show that centrosome amplification alone is not sufficient to induce chromosomal instability in colon cancer cells with a MIN phenotype. Alternatively, centrosome amplification has to be associated with alterations in genes regulating mitosis progression such as Aurora-A/STK15 to trigger CIN.
Notes:
2006
 
DOI   
PMID 
Laura Lentini, Flora Iovino, Angela Amato, Aldo Di Leonardo (2006)  Centrosome amplification induced by hydroxyurea leads to aneuploidy in pRB deficient human and mouse fibroblasts.   Cancer Lett 238: 1. 153-160 Jul  
Abstract: Alterations in the number and/or morphology of centrosomes are frequently observed in human tumours. However, it is still debated if a direct link between supernumerary centrosomes and tumorigenesis exists and if centrosome amplification could directly cause aneuploidy. Here, we report that hydroxyurea treatment induced centrosome amplification in both human fibroblasts expressing the HPV16 -E6-E7 oncoproteins, which act principally by targeting p53 and pRB, respectively, and in conditional pRB deficient mouse fibroblasts. Following hydroxyurea removal both normal and p53 deficient human fibroblasts arrested. On the contrary pRB deficient fibroblasts entered the cell cycle generating aneuploid cells. Also the majority of conditional Rb deficient MEFs showed supernumerary centrosomes and aneuploid cells which increased over time. Finally, our results suggest that pRB dysfunction both in human and murine fibroblasts transiently arrested in G1/S by hydroxyurea allows centrosomes amplification, in the absence of DNA synthesis, that in turn could drive aneuploidy.
Notes:
 
DOI   
PMID 
Flora Iovino, Laura Lentini, Angela Amato, Aldo Di Leonardo (2006)  RB acute loss induces centrosome amplification and aneuploidy in murine primary fibroblasts.   Mol Cancer 5: 09  
Abstract: BACKGROUND: Incorrect segregation of whole chromosomes or parts of chromosome leads to aneuploidy commonly observed in cancer. The correct centrosome duplication, assuring assembly of a bipolar mitotic spindle, is essential for chromosome segregation fidelity and preventing aneuploidy. Alteration of p53 and pRb functions by expression of HPV16-E6 and E7 oncoproteins has been associated with centrosome amplification. However, these last findings could be the result of targeting cellular proteins in addition to pRb by HPV16-E7 oncoprotein. To get a more detailed picture on the role of pRb in chromosomal instability and centrosome amplification, we analyzed the effects of the acute loss of retinoblastoma gene function in primary conditional Rb deficient mouse embryonic fibroblasts (MEFs). Moreover, since pRb is a transcriptional repressor, microarray analysis was done on pRb-competent and pRb-deficient MEFs to evaluate changes in expression of genes for centrosome homeostasis and for correct mitosis. RESULTS: Acute loss of pRb induces centrosome amplification and aneuploidy in the vast majority of cells analyzed. A time course analysis shows a decrease of cells with amplified centrosomes after 40 days from the adenoviral infection. At this time only 12% of cells still show amplified centrosomes. Interestingly, cells with pRb constitutive loss show a similar percentage of cells with amplified centrosomes. DNA-Chip analyses in MEFs wt (mock infected) and pRb depleted (Ad-Cre infected) cells reveal differential expression of genes controlling both centrosome duplication and mitotic progression. CONCLUSION: Our findings suggest a direct link between pRb status, centrosome amplification and chromosomal instability, and define specific mitotic genes as targets whose gene expression has to be altered to achieve or maintain aneuploidy.
Notes:
2002
 
DOI   
PMID 
Laura Lentini, Loredana Pipitone, Aldo Di Leonardo (2002)  Functional inactivation of pRB results in aneuploid mammalian cells after release from a mitotic block.   Neoplasia 4: 5. 380-387 Sep/Oct  
Abstract: The widespread chromosome instability observed in tumors and in early stage carcinomas suggests that aneuploidy could be a prerequisite for cellular transformation and tumor initiation. Defects in tumor suppressors and genes that are part of mitotic checkpoints are likely candidates for the aneuploid phenotype. By using flow cytometric, cytogenetic, and immunocytochemistry techniques we investigated whether pRB deficiency could drive perpetual aneuploidy in normal human and mouse fibroblasts after mitotic checkpoint challenge by microtubule-destabilizing drugs. Both mouse and human pRB-deficient primary fibroblasts resulted, upon release from a mitotic block, in proliferating aneuploid cells possessing supernumerary centrosomes. Aneuploid pRB-deficient cells show an elevated variation in chromosome numbers among cells of the same clone. In addition, these cells acquired the capability to grow in an anchorage-independent way at the same extent as tumor cells did suggesting aneuploidy as an initial mutational step in cell transformation. Normal Mouse Embryonic Fibroblasts (MEFs) harboring LoxP sites flanking exon 19 of the Rb gene arrested in G2/M with duplicated centrosomes after colcemid treatment. However, these cells escaped the arrest and became aneuploid upon pRB ablation by CRE recombinase, suggesting pRB as a major component of a checkpoint that controls cellular ploidy.
Notes:
2001
 
PMID 
C Mondello, M Faravelli, L Pipitone, A Rollier, A Di Leonardo, E Giulotto (2001)  Gene amplification in fibroblasts from ataxia telangiectasia (AT) patients and in X-ray hypersensitive AT-like Chinese hamster mutants.   Carcinogenesis 22: 1. 141-145 Jan  
Abstract: In search of functions involved in the regulation of gene amplification, and given the relevance of chromosome breakage in initiating the process, we analyzed the gene amplification ability of cells hypersensitive to inducers of DNA double-strand breaks and defective in cell cycle control: two human fibroblast strains derived from patients affected by ataxia telangiectasia (AT) and two hamster mutant cell lines belonging to complementation group XRCC8 of the rodent X-ray-sensitive mutants. These mutants are considered hamster models of AT cells. To measure gene amplification, the frequency and the rate of occurrence of N-(phosphonacetyl)-L-aspartate resistant cells were determined. In both hamster mutants, these two parameters were increased by about an order of magnitude compared with parental cells, suggesting that amplification ability was increased by the genetic defect. In primary AT fibroblasts, as in normal human fibroblasts, gene amplification was undetectable and a block in the G(1) phase of the cell cycle was induced upon PALA treatment. These results suggest that in AT fibroblasts, where only the ATM gene is mutated, ATM-independent mechanisms prevent gene amplification, while, in the immortalized hamster cell lines, which are already permissive for gene amplification, the AT-like defect increases the probability of gene amplification.
Notes:
 
DOI   
PMID 
P Di Simone, A Di Leonardo, G Costanzo, R Melfi, G Spinelli (2001)  The sea urchin sns insulator blocks CMV enhancer following integration in human cells.   Biochem Biophys Res Commun 284: 4. 987-992 Jun  
Abstract: Insulators are a new class of genetic elements that attenuate enhancer function directionally. Previously, we characterized in sea urchin a 265-bp-long insulator, termed sns. To test insulator activity following stable integration in human cells, we placed sns between the CMV enhancer and a tk promoter upstream of a GFP transgene of plasmid or retroviral vectors. In contrast to controls, cells transfected or transduced with insulated constructs displayed a barely detectable fluorescence. Southern blot and PCR ruled out vector rearrangement following integration into host DNA; RNase protection confirmed the enhancer blocking activity. Finally, we demonstrate that two cis-acting sequences, previously characterized in sea urchin, are also specific binding sites for human proteins. We conclude that sns interferes with enhancer promoter interaction also in a human chromatin context. The relatively small size, evolutionary conservation and apparent lack of enhancer specificity might result useful in gene transfer experiments in human cells.
Notes:
2000
 
PMID 
G Seidita, D Polizzi, G Costanzo, S Costa, A Di Leonardo (2000)  Differential gene expression in p53-mediated G(1) arrest of human fibroblasts after gamma-irradiation or N-phosphoacetyl-L-aspartate treatment.   Carcinogenesis 21: 12. 2203-2210 Dec  
Abstract: In human fibroblasts, N:-phosphoacetyl-L-aspartate (PALA) and gamma-radiation induce reversible and irreversible p53-mediated G(1) cell cycle arrest, respectively. By coupling the premature chromosome condensation technique to fluorescence in situ hybridization, we found no evidence of DNA damage after PALA treatment. We used representational difference analysis (cDNA-RDA) to study changes in gene expression after PALA treatment and gamma-radiation in normal human fibroblasts. The mammary-derived growth inhibitor (MDGI) gene was expressed in PALA-treated cells. Ectopic MDGI expression arrested PALA-treated but not irradiated RKO cells. Expression of an antisense RNA against MDGI resulted in partial G(1) escape of PALA-treated human fibroblasts. The tumor necrosis factor stimulated gene 6, TSG-6, seems to be under the control of p53 and is only and specifically induced upon PALA treatment. In irradiated cells we have identified 'novel' genes that are differentially expressed, along with known genes not previously linked to cell cycle control. Some of these 'novel' genes correspond to clones in the expressed sequence tag (EST) database; one of them shows identity with ESTs mapping to a region on chromosome 7, where gene(s) involved in replicative senescence and frequently deleted in tumors are located. Thus, PALA treatment and gamma-irradiation elicit a pattern of differential gene expression that could contribute to a quiescence or senescence-like phenotype.
Notes:
1997
 
PMID 
A Di Leonardo, S H Khan, S P Linke, V Greco, G Seidita, G M Wahl (1997)  DNA rereplication in the presence of mitotic spindle inhibitors in human and mouse fibroblasts lacking either p53 or pRb function.   Cancer Res 57: 6. 1013-1019 Mar  
Abstract: Cell cycle checkpoints are biochemical signal transduction pathways that prevent downstream events from being initiated until upstream processes are completed. We analyzed whether the p53 or pRb tumor suppressors are involved in a checkpoint(s) that prevents DNA rereplication in the presence of drugs that interfere with spindle assembly. Normal mouse and human fibroblasts arrested with a 4N DNA content when treated with nocodazole and Colcemid, whereas isogeneic p53-deficient or pRb-deficient derivatives became polyploid. Flow cytometric and cytogenetic analyses demonstrated that the polyploidy resulted from genome-wide rereplication without an intervening mitosis. Thus, p53 and pRb help maintain normal cell ploidy by preventing DNA rereplication prior to mitotic division.
Notes:
1996
 
PMID 
S P Linke, K C Clarkin, A Di Leonardo, A Tsou, G M Wahl (1996)  A reversible, p53-dependent G0/G1 cell cycle arrest induced by ribonucleotide depletion in the absence of detectable DNA damage.   Genes Dev 10: 8. 934-947 Apr  
Abstract: Cells with a functional p53 pathway undergo a G0/G1 arrest or apoptosis when treated with gamma radiation or many chemotherapeutic drugs. It has been proposed that DNA damage is the exclusive signal that triggers the arrest response. However, we found that certain ribonucleotide biosynthesis inhibitors caused a p53-dependent G0 or early G1 arrest in the absence of replicative DNA synthesis or detectable DNA damage in normal human fibroblasts. CTP, GTP, or UTP depletion alone was sufficient to induce arrest. In contrast to the p53-dependent response to DNA damage, characterized by long-term arrest and irregular cellular morphologies, the antimetabolite-induced arrest was highly reversible and cellular morphologies remained relatively normal. Both arrest responses correlated with prolonged induction of p53 and the Cdk inhibitor P21(WAF1/CIP1/SDI1) and with dephosphorylation of pRb. Thus, we propose that p53 can serve as a metabolite sensor activated by depletion of ribonucleotides or products or processes dependent on ribonucleotides. Accordingly, p53 may play a role in inducing a quiescence-like arrest state in response to nutrient challenge and a senescence-like arrest state in response to DNA damage. These results have important implications for the mechanisms by which p53 prevents the emergence of genetic variants and for developing more effective approaches to chemotherapy based on genotype.
Notes:
1994
 
PMID 
A Di Leonardo, S P Linke, K Clarkin, G M Wahl (1994)  DNA damage triggers a prolonged p53-dependent G1 arrest and long-term induction of Cip1 in normal human fibroblasts.   Genes Dev 8: 21. 2540-2551 Nov  
Abstract: The tumor suppressor p53 is a cell cycle checkpoint protein that contributes to the preservation of genetic stability by mediating either a G1 arrest or apoptosis in response to DNA damage. Recent reports suggest that p53 causes growth arrest through transcriptional activation of the cyclin-dependent kinase (Cdk)-inhibitor Cip1. Here, we characterize the p53-dependent G1 arrest in several normal human diploid fibroblast (NDF) strains and p53-deficient cell lines treated with 0.1-6 Gy gamma radiation. DNA damage and cell cycle progression analyses showed that NDF entered a prolonged arrest state resembling senescence, even at low doses of radiation. This contrasts with the view that p53 ensures genetic stability by inducing a transient arrest to enable repair of DNA damage, as reported for some myeloid leukemia lines. Gamma radiation administered in early to mid-, but not late, G1 induced the arrest, suggesting that the p53 checkpoint is only active in G1 until cells commit to enter S phase at the G1 restriction point. A log-linear plot of the fraction of irradiated G0 cells able to enter S phase as a function of dose is consistent with single-hit kinetics. Cytogenetic analyses combined with radiation dosage data indicate that only one or a small number of unrepaired DNA breaks may be sufficient to cause arrest. The arrest also correlated with long-term elevations of p53 protein, Cip1 mRNA, and Cip1 protein. We propose that p53 helps maintain genetic stability in NDF by mediating a permanent cell cycle arrest through long-term induction of Cip1 when low amounts of unrepaired DNA damage are present in G1 before the restriction point.
Notes:
1993
 
PMID 
A Di Leonardo, P Cavolina, A Maddalena (1993)  DNA topoisomerase II inhibition and gene amplification in V79/B7 cells.   Mutat Res 301: 3. 177-182 Mar  
Abstract: Topoisomerase II inhibitors such as etoposide (VP16) are able to stabilize the enzyme-DNA complex by trapping the topoisomerase on DNA without affecting its strand-break activity. To test if this inhibition resulting in chromosomal breakage via double-strand breaks could underlie gene amplification, we performed VP16 treatments followed by selection for PALA resistance in V79/B7 Chinese hamster cells. We found that VP16 induced PALA-resistant cells very efficiently, and in a dose-dependent manner. On the other hand VP16 in combination with 3-aminobenzamide (3AB), an inhibitor of poly(ADP-ribose) polymerase involved in DNA repair, reduced the frequency of PALA-resistant cells. Cytogenetic analysis revealed a higher number of chromosomal aberrations in VP16-treated cells than in cells treated with VP16 plus 3AB. These results suggest a correlation between frequency of chromosomal aberrations and frequency of PALA-resistant cells, and are consistent with models which consider chromosomal breakage as an important step in initiating gene amplification.
Notes:
1992
 
PMID 
A Di Leonardo, A Maddalena, P Cavolina (1992)  Nalidixic acid-resistant V79 cells with reduced DNA topoisomerase II activity and amplification prone phenotype.   Mutat Res 269: 2. 319-327 Oct  
Abstract: Spontaneously nalidixic acid-resistant lines (NAr lines) were selected from a V79 Chinese hamster cell line and phenotypically characterized. NAr lines showed an increased doubling time, a higher number of spontaneous SCE, and more interestingly, decreased DNA topoisomerase II activity. These lines were also cross-resistant to the eukaryotic topoisomerase II inhibitors etoposide and adriamycin, but showed the same level of sensitivity as the parental line to the DNA topoisomerase I inhibitor camptothecin. NAr lines were cross-resistant to other drugs, such as PALA, MTX and MPA, resistance to which has been shown to arise by amplification of the target genes. This last feature, together with enhanced cross-resistance to PALA and MTX when employed simultaneously, suggests that NAr lines have an 'amplification prone' phenotype. From these results the decreased activity of topoisomerase II seems to be involved in the generation of amplified sequences possibly by affecting recombinational events underlying gene amplification.
Notes:
1989
 
PMID 
P Cavolina, C Agnese, A Maddalena, G Sciandrello, A Di Leonardo (1989)  Induction of CAD gene amplification by restriction endonucleases in V79,B7 Chinese hamster cells.   Mutat Res 225: 1-2. 61-64 Jan/Feb  
Abstract: The restriction endonucleases PvuII, BamHI and EcoRI were tested for their ability to induce gene amplification in V79,B7 Chinese hamster cells. The results indicate that treatment with these enzymes efficiently increases the frequency of clones resistant to N-phosphonacetyl-L-aspartate, indicating induction of CAD gene amplification.
Notes:
 
PMID 
A Di Leonardo, C Agnese, P Cavolina, A Maddalena, G Sciandrello, R Randazzo (1989)  Cytogenetic manifestations associated with the reversion, by gene amplification, at the HGPRT locus in V79 Chinese hamster cells.   Genet Res 53: 3. 201-206 Jun  
Abstract: Some HGPRT spontaneous revertants were isolated from a mutant line (E2) of V79 Chinese hamster cells and phenotypically characterized. Dot-Blot hybridization with a 32P-labelled HGPRT probe revealed an increase in the number of HGPRT sequences in some of these revertants, suggesting the occurrence of gene amplification. Cytogenetic analysis performed in three of these revertants showed a characteristic abnormally banding region (ABR) on the elongated p arm of the X chromosome. In situ hybridization in one revertant (RHE2) showed that the amplified sequences reside on the p+ arm of the X chromosome in two different localizations. Because of the very probably clonal origin of the revertant, these features indicate that the amplified sequences might rearrange after their integration into the chromosome.
Notes:
1988
 
PMID 
L Ottaggio, C Agnese, S Bonatti, P Cavolina, A De Ambrosis, P Degan, A Di Leonardo, M Miele, R Randazzo, A Abbondandolo (1988)  Chromosome aberrations associated with CAD gene amplification in Chinese hamster cultured cells.   Mutat Res 199: 1. 111-121 May  
Abstract: Eleven sublines with increasing resistance to N-phosphonacetyl-L-aspartate (PALA) were isolated from the V79,B7 Chinese hamster cell line. Aspartate transcarbamylase activity and CAD gene copy number increased with increasing resistance of sublines. In situ hybridization with a DNA probe for the CAD gene showed that the amplified sequences resided in the terminal region of a marker chromosome with elongated q arms. This region stained homogeneously after G-banding. A high incidence of both numerical and structural chromosome aberrations was found in PALA-resistant cells. In hyperdiploid and polyploid cells, containing 2 copies of the marker chromosome, dicentrics were found at a very high frequency. As indicated by in situ hybridization and G-banding, they originated from a rearrangement involving 2 homologous marker chromosomes.
Notes:
Powered by publicationslist.org.