hosted by
publicationslist.org
    

Arthur Hsu


ahsu@ngmbio.com

Journal articles

2008
Tamar Juven-Gershon, Jer-Yuan Hsu, Joshua Wm Theisen, James T Kadonaga (2008)  The RNA polymerase II core promoter - the gateway to transcription.   Curr Opin Cell Biol 20: 3. 253-259 Jun  
Abstract: The RNA polymerase II core promoter is generally defined to be the sequence that directs the initiation of transcription. This simple definition belies a diverse and complex transcriptional module. There are two major types of core promoters - focused and dispersed. Focused promoters contain either a single transcription start site or a distinct cluster of start sites over several nucleotides, whereas dispersed promoters contain several start sites over 50-100 nucleotides and are typically found in CpG islands in vertebrates. Focused promoters are more ancient and widespread throughout nature than dispersed promoters; however, in vertebrates, dispersed promoters are more common than focused promoters. In addition, core promoters may contain many different sequence motifs, such as the TATA box, BRE, Inr, MTE, DPE, DCE, and XCPE1, that specify different mechanisms of transcription and responses to enhancers. Thus, the core promoter is a sophisticated gateway to transcription that determines which signals will lead to transcription initiation.
Notes:
Tamar Juven-Gershon, Jer-Yuan Hsu, James T Kadonaga (2008)  Caudal, a key developmental regulator, is a DPE-specific transcriptional factor.   Genes Dev 22: 20. 2823-2830 Oct  
Abstract: The regulation of gene transcription is critical for the proper development and growth of an organism. The transcription of protein-coding genes initiates at the RNA polymerase II core promoter, which is a diverse module that can be controlled by many different elements such as the TATA box and downstream core promoter element (DPE). To understand the basis for core promoter diversity, we explored potential biological functions of the DPE. We found that nearly all of the Drosophila homeotic (Hox) gene promoters, which lack TATA-box elements, contain functionally important DPE motifs that are conserved from Drosophila melanogaster to Drosophila virilis. We then discovered that Caudal, a sequence-specific transcription factor and key regulator of the Hox gene network, activates transcription with a distinct preference for the DPE relative to the TATA box. The specificity of Caudal activation for the DPE is particularly striking when a BRE(u) core promoter motif is associated with the TATA box. These findings show that Caudal is a DPE-specific activator and exemplify how core promoter diversity can be used to establish complex regulatory networks.
Notes:
Jer-Yuan Hsu, Tamar Juven-Gershon, Michael T Marr, Kevin J Wright, Robert Tjian, James T Kadonaga (2008)  TBP, Mot1, and NC2 establish a regulatory circuit that controls DPE-dependent versus TATA-dependent transcription.   Genes Dev 22: 17. 2353-2358 Sep  
Abstract: The RNA polymerase II core promoter is a structurally and functionally diverse transcriptional module. RNAi depletion and overexpression experiments revealed a genetic circuit that controls the balance of transcription from two core promoter motifs, the TATA box and the downstream core promoter element (DPE). In this circuit, TBP activates TATA-dependent transcription and represses DPE-dependent transcription, whereas Mot1 and NC2 block TBP function and thus repress TATA-dependent transcription and activate DPE-dependent transcription. This regulatory circuit is likely to be one means by which biological networks can transmit transcriptional signals, such as those from DPE-specific and TATA-specific enhancers, via distinct pathways.
Notes:
2006
T Juven-Gershon, J - Y Hsu, J T Kadonaga (2006)  Perspectives on the RNA polymerase II core promoter.   Biochem Soc Trans 34: Pt 6. 1047-1050 Dec  
Abstract: The RNA polymerase II core promoter is a critical yet often overlooked component in the transcription process. The core promoter is defined as the stretch of DNA, which encompasses the RNA start site and is typically approx. 40-50 nt in length, that directs the initiation of gene transcription. In the past, it has been generally presumed that core promoters are general in function and that transcription initiation occurs via a common shared mechanism. Recent studies have revealed, however, that there is considerable diversity in core promoter structure and function. There are a number of DNA elements that contribute to core promoter activity, and the specific properties of a given core promoter are dictated by the presence or absence of these core promoter motifs. The known core promoter elements include the TATA box, Inr (initiator), BRE(u) {BRE [TFIIB (transcription factor for RNA polymerase IIB) recognition element] upstream of the TATA box} and BRE(d) (BRE downstream of the TATA box), MTE (motif ten element), DCE (downstream core element) and DPE (downstream core promoter element). In this paper, we will provide some perspectives on current and future issues that pertain to the RNA polymerase II core promoter.
Notes:
Powered by publicationslist.org.