hosted by
publicationslist.org
    
Anne-Laure Sérandour

anne-laure.serandour@club-internet.fr

Journal articles

2008
 
DOI   
PMID 
A L Sérandour, O Grémy, M Fréchou, D Renault, J L Poncy, P Fritsch (2008)  In vitro and in vivo assessment of plutonium speciation and decorporation in blood and target retention tissues after a systemic contamination followed by an early treatment with DTPA.   Radiat Res 170: 2. 208-215 Aug  
Abstract: This study identifies the main sources of systemic plutonium decorporated in the rat after DTPA i.v. at the dose recommended for humans (30 mumol kg(-1)). For this purpose, standard biokinetic approaches are combined to plasma ultrafiltration for separation of plutonium complexes according to their molecular weight. In vitro studies show that at the recommended DTPA dose, less than 5% of the plasma plutonium of contaminated rats can be displaced from high-molecular-weight ligands. After i.v. administration of Pu-DTPA, early ultrafiltrability of plutonium in plasma decreases with total DTPA dose, which is associated with an increase in plutonium bone retention. This demonstrates the instability of Pu-DTPA complexes, injected in vivo, below the minimal Ca-DTPA dose of 30 mumol kg(-1). Plutonium biokinetics is compared in rats contaminated by plutonium-citrate i.v. and treated or not with DTPA after 1 h. No significant decrease in plasma plutonium is observed for the first hour after treatment, and the fraction of low-molecular-weight plutonium in plasma is nearly constant [5.4% compared with 90% in Pu-DTPA i.v. (30 mumol kg(-1)) and 0.7% in controls]. Thus plutonium decorporation by DTPA is a slow process that mainly involves retention compartments other than the blood. Plutonium-ligand complexes formed during plutonium deposition in the retention organs appear to be the main source of decorporated plutonium.
Notes:
 
DOI   
PMID 
Sawicki, Lecerclé, Grillon, Le Gall, Sérandour, Poncy, Bailly, Burgada, Lecouvey, Challeix, Leydier, Pellet-Rostaing, Ansoborlo, Taran (2008)  Bisphosphonate sequestering agents. Synthesis and preliminary evaluation for in vitro and in vivo uranium(VI) chelation.   Eur J Med Chem Jan  
Abstract: A library of bisphosphonate-based ligands was prepared using solution-phase parallel synthesis and tested for its uranium-binding properties. With the help of a screening method, based on a chromophoric complex displacement procedure, 23 dipodal and tripodal chelates bearing bisphosphonate chelating functions were found to display very high affinity for the uranyl ion and were selected for evaluation of their in vivo uranyl-removal efficacy. Among them, 11 ligands induced a huge modification of the uranyl biodistribution by deviating the metal from kidney and bones to liver. Among the other ligands, the most potent was the dipodal bisphosphonate 3C which reduced the retention of uranyl and increased its excretion by around 10% of the injected metal.
Notes:
2007
 
DOI   
PMID 
A L Sérandour, N Tsapis, C Gervelas, G Grillon, M Fréchou, J R Deverre, H Bénech, E Fattal, P Fritsch, J L Poncy (2007)  Decorporation of plutonium by pulmonary administration of Ca-DTPA dry powder: a study in rat after lung contamination with different plutonium forms.   Radiat Prot Dosimetry 127: 1-4. 472-476 06  
Abstract: This study evaluates the decorporation efficacy of a pulmonary administration of a new Ca-DTPA (diethylenetriaminepentaacetic acid) dry powder (18 micromol kg(-1) of body mass) after pulmonary contamination of rats with different Pu compounds. After inhalation of PuO2, a delayed intratracheal administration of DTPA cannot reduce significantly the retention of Pu in the lungs but limits its transfer in liver and skeleton. After pulmonary contamination by Pu nitrate, early insufflation of the DTPA powder appears twice as more efficient than an i.v injection of DTPA (30 micromol kg(-1)) to reduce Pu retention in the lungs and is as effective as i.v. injection to limit the extrapulmonary deposit. In contrast, a delayed administration of DTPA cannot reduce the lung or extrapulmonary retention. In conclusion, the improvement of aerodynamic properties of DTPA powder leads to an increase of DTPA amount deposited in the lungs and enhances the body decorporation.
Notes:
 
DOI   
PMID 
C Gervelas, A - L Serandour, S Geiger, G Grillon, P Fritsch, C Taulelle, B Le Gall, H Benech, J - R Deverre, E Fattal, N Tsapis (2007)  Direct lung delivery of a dry powder formulation of DTPA with improved aerosolization properties: effect on lung and systemic decorporation of plutonium.   J Control Release 118: 1. 78-86 Mar  
Abstract: DTPA, an actinide chelating agent, has demonstrated its ability to complex plutonium (Pu) and to facilitate its urinary excretion after internal contamination. This process, known as decorporation is crucial to diminish the burden of Pu in the body. The ability to deliver a chelating agent directly to the alveolar region may increase its local concentration as compared to systemic delivery and therefore increase the extent of decorporation. Second, inhalation offers the potential for needle-free, systemic delivery of small molecules and would be convenient in case of nuclear accident as a first pass emergency treatment. To benefit from the improvement of inhalation technology, we have formulated DTPA into porous particles by spray-drying with dl-Leucine, DPPC and ammonium bicarbonate. The optimized particles possess a volume mean geometric diameter around 4.5 mum and crumpled paper morphology. The in vitro aerodynamic evaluation shows that about 56% of the powder should deposits in the lungs, with about 27% in the alveolar region, an improvement as compared with the micronized powder available with the Spinhaler. After pulmonary administration to rats contaminated with PuO(2), a 3-fold increase of the Pu urinary excretion was observed, but the dissolution of PuO(2) in the lungs was not enhanced.
Notes:
2005
 
DOI   
PMID 
David Gilot, Anne-Laure Serandour, Guennady P Ilyin, Dominique Lagadic-Gossmann, Pascal Loyer, Anne Corlu, Alexandre Coutant, Georges Baffet, Marcus E Peter, Olivier Fardel, Christiane Guguen-Guillouzo (2005)  A role for caspase-8 and c-FLIPL in proliferation and cell-cycle progression of primary hepatocytes.   Carcinogenesis 26: 12. 2086-2094 Dec  
Abstract: Growth factors are known to favor both proliferation and survival of hepatocytes. In the present study, we investigated if c-FLIP(L) (cellular FLICE-inhibitory protein, long isoform) could be involved in epidermal growth factor (EGF)-stimulated proliferation of rat hepatocytes since c-FLIP(L) regulates both cell proliferation and procaspase-8 maturation. Treatment with MEK inhibitors prevented induction of c-FLIP(L) by EGF along with total inhibition of DNA replication. However, EGF failed to inhibit processing of procaspase-8 in the presence of EGF suggesting that c-FLIP(L) does not play its canonical anti-apoptotic role in this model. Downregulation of c-FLIP expression using siRNA oligonucleotides strongly reduced DNA replication but did not result in enhanced apoptosis. Moreover, intermediate cleavage products of c-FLIP(L) and caspase-8 were found in EGF-treated hepatocytes in the absence of caspase-3 maturation and cell death. To determine whether the Fas/FADD/caspase-8/c-FLIP(L) complex was required for this activity, Fas, procaspase-8 and Fas-associated death domain protein (FADD) expression or function was inhibited using siRNA or constructs encoding dominant negative mutant proteins. Inhibition of any of these components of the Fas/FADD/caspase-8 pathway decreased DNA replication suggesting a function of these proteins in cell-cycle arrest. Similar results were obtained when the IETD-like caspase activity detectable in EGF-treated hepatocytes was inhibited by the pan-caspase inhibitor, z-ASP. Finally, we demonstrated co-immunoprecipitation between EGFR and Fas within 15 min following EGF stimulation. In conclusion, our results indicate that the Fas/FADD/c-FLIP(L)/caspase-8 pathway positively controls the G(1)/S transition in EGF-stimulated hepatocytes. Our data provide new insights into the mechanisms by which apoptotic proteins participate to mitogenic signals during the G(1) phase.
Notes:
 
DOI   
PMID 
Anne-Laure Sérandour, Pascal Loyer, Delphine Garnier, Brice Courselaud, Nathalie Théret, Denise Glaise, Christiane Guguen-Guillouzo, Anne Corlu (2005)  TNFalpha-mediated extracellular matrix remodeling is required for multiple division cycles in rat hepatocytes.   Hepatology 41: 3. 478-486 Mar  
Abstract: During liver regeneration, hepatocytes proliferate under the control of both proinflammatory cytokines such as tumor necrosis factor alpha (TNFalpha) and growth factors, in parallel to extracellular matrix remodeling. This study investigated mechanisms by which mitogen and extracellular matrix signals are linked for inducing proliferation of differentiated hepatocytes. The authors used adult rat hepatocytes in coculture with liver biliary cells, because cells are stably differentiated for several weeks, capable of extracellular matrix deposition, and unable to divide in response to growth factor alone. This work demonstrated that hepatocytes could undergo several proliferation waves without loss of differentiation by using alternating periods of TNFalpha/growth factor stimulation and deprivation. Three days after stimulation with TNFalpha and epidermal growth factor (EGF), up to 35% of hepatocytes divided. Demonstration was also provided that EGF alone only promoted cell progression up to late G(1), whereas TNFalpha was necessary for G(1)/S transition and Cdk1 induction. TNFalpha promoted an extracellular matrix (ECM) degradation that involved the matrix metalloproteinase MMP-9 induction through activation of NF-kappaB pathway. Finally, the authors showed that ECM remodeling signal was required for initiating any new hepatocyte division wave, in presence of mitogen. In conclusion, these results highlight that hepatocyte division is dependent on ECM deposition associated with differentiation status, and that ECM degradation signal is critical in controlling G(1)/S transition and Cdk1 induction. These results provide new insights for understanding the unique hepatocyte proliferation control and improving regeneration in patients suffering from liver damage.
Notes:
2002
 
PMID 
Gennady P Ilyin, Anne-Laure Sérandour, Christelle Pigeon, Mickael Rialland, Denise Glaise, Christiane Guguen-Guillouzo (2002)  A new subfamily of structurally related human F-box proteins.   Gene 296: 1-2. 11-20 Aug  
Abstract: F-box proteins, a critical component of the evolutionary conserved ubiquitin-protein ligase complex SCF (Skp1/Cdc53-Cullin1/F-box), recruit substrates for ubiquitination and consequent degradation through their specific protein-protein interaction domains. Here, we report the identification of full-length cDNAs encoding three novel human F-box proteins named FBG3, FBG4 and FBG5 which display similarity with previously identified NFB42 (FBX2) and FBG2 (FBX6) proteins. All five proteins are characterized by an approximately 180-amino-acid (aa) conserved C-terminal domain and thus constitute a third subfamily of mammalian F-box proteins. Analysis of genomic organization of the five FBG genes revealed that all of them consist of six exons and five introns. FBG1, FBG2 and FBG3 genes are located in tandem on chromosome 1p36, and FBG4 and FBG5 are mapped to chromosome 19q13. FBG genes are expressed in a limited number of human tissues including kidney, liver, brain and muscle tissues. Expression of rat FBG2 gene was found related to differentiation/proliferation status of hepatocytes. Specifically, FBG2 mRNA was expressed in foetal liver, decreased after birth and re-accumulated in adult liver. Expression of FBG2 was strongly inhibited in hepatoma cells by okadaic acid.
Notes:
Powered by publicationslist.org.