hosted by
publicationslist.org
    
Antoine F Aballea

aballea@isc.cnrs.fr

Journal articles

2007
 
DOI   
PMID 
Mercier, Aballea, Vargas, Paillard, Sirigu (2007)  Vision without Proprioception Modulates Cortico-spinal Excitability during Hand Motor Imagery.   Cereb Cortex May  
Abstract: Several studies have shown a cortico-spinal facilitation during motor imagery. This facilitation effect is weaker when the actual hand posture is incompatible with the imagined movement. To determine whether the source of this interference effect arises from online proprioceptive information, we examined transcranial magnetic stimulation (TMS)-induced motor-evoked potentials during motor imagery in the deafferented subject G.L. The patient and 7 control subjects were asked to close their eyes and imagine joining the tips of the thumb and the little finger while maintaining a hand posture compatible or incompatible with the imagined movement. Contrary to control subjects' performance, G.L.'s results show that the facilitation observed during motor imagery was independent of the hand posture. To examine how vision of the hand interacts with the imagery process, G.L. and control subjects performed the same task with the eyes open. Like control subjects, when G.L. looked at her hand, a greater facilitation was observed when her hand posture was compatible with the imagined movement than when it was incompatible. These results suggest that in the absence of proprioception, vision may facilitate or inhibit motor representations and support the idea that limb position in the brain is organized around multisensory representations.
Notes:
2006
 
DOI   
PMID 
Catherine Mercier, Karen T Reilly, Claudia D Vargas, Antoine Aballea, Angela Sirigu (2006)  Mapping phantom movement representations in the motor cortex of amputees.   Brain 129: Pt 8. 2202-2210 Aug  
Abstract: Limb amputation results in plasticity of connections between the brain and muscles, with the cortical motor representation of the missing limb seemingly shrinking, to the presumed benefit of remaining body parts that have cortical representations adjacent to the now-missing limb. Surprisingly, the corresponding perceptual representation does not suffer a similar fate but instead persists as a phantom limb endowed with sensory and motor qualities. How can cortical reorganization after amputation be reconciled with the maintenance of a motor representation of the phantom limb in the brain? In an attempt to answer this question we explored the relationship between the cortical representation of the remaining arm muscles and that of phantom movements. Using transcranial magnetic stimulation (TMS) we systematically mapped phantom movement perceptions while simultaneously recording stump muscle activity in three above-elbow amputees. TMS elicited sensations of movement in the phantom hand when applied over the presumed hand area of the motor cortex. In one subject the amplitude of the perceived movement was positively correlated with the intensity of stimulation. Interestingly, phantom limb movements that the patient could not produce voluntarily were easily triggered by TMS, suggesting that the inability to voluntarily move the phantom is not equivalent to a loss of the corresponding movement representation. We suggest that hand movement representations survive in the reorganized motor area of amputees even when these cannot be directly accessed. The activation of these representations is probably necessary for the experience of phantom movement.
Notes:
Powered by publicationslist.org.