hosted by
publicationslist.org
    

Antonio Pisani


pisani@uniroma2.it

Journal articles

2009
G Martella, P Platania, D Vita, G Sciamanna, D Cuomo, A Tassone, A Tscherter, T Kitada, P Bonsi, J Shen, A Pisani (2009)  Enhanced sensitivity to group II mGlu receptor activation at corticostriatal synapses in mice lacking the familial parkinsonism-linked genes PINK1 or Parkin.   Exp Neurol 215: 2. 388-396 Feb  
Abstract: An altered glutamatergic input at corticostriatal synapses has been shown in experimental models of Parkinson's disease (PD). In the present work, we analyzed the membrane and synaptic responses of striatal neurons to metabotropic glutamate (mGlu) receptor activation in two different mouse models of inherited PD, linked to mutations in PINK1 or Parkin genes. Both in PINK1 and Parkin knockout ((-/-)) mice, activation of group I mGlu receptors by 3,5-DHPG caused a membrane depolarization coupled to an increase in firing frequency in striatal cholinergic interneurons that was comparable to the response observed in the respective wild-type (WT) interneurons. The sensitivity to group II and III mGlu receptors was tested on cortically-evoked excitatory postsynaptic potentials (EPSPs) recorded from medium spiny neurons (MSNs). Both LY379268 and L-AP4, agonists for group II and III, respectively, had no effect on intrinsic membrane properties, but dose-dependently reduced the amplitude of corticostriatal EPSPs. However, both in PINK1(-/-) and Parkin(-/-) mice, LY379268, but not L-AP4, exhibited a greater potency as compared to WT in depressing EPSP amplitude. Accordingly, the dose-response curve for the response to LY379268 in both knockout mice was shifted leftward. Moreover, consistent with a presynaptic site of action, both LY379268 and L-AP4 increased the paired-pulse ratio either in PINK1(-/-) and Parkin(-/-) or in WT mice. Acute pretreatment with L-dopa did not rescue the enhanced sensitivity to LY379268. Together, these results suggest that the selective increase in sensitivity of striatal group II mGlu receptors represents an adaptive change in mice in which an altered dopamine metabolism has been documented.
Notes:
Giuseppina Martella, Paola Bonsi, Giuseppe Sciamanna, Paola Platania, Graziella Madeo, Annalisa Tassone, Dario Cuomo, Antonio Pisani (2009)  Seletracetam (ucb 44212) inhibits high-voltage-activated Ca2+ currents and intracellular Ca2+ increase in rat cortical neurons in vitro.   Epilepsia 50: 4. 702-710 Apr  
Abstract: PURPOSE: We analyzed the effects of seletracetam (ucb 44212; SEL), a new antiepileptic drug candidate, in an in vitro model of epileptic activity. The activity of SEL was compared to the effects of levetiracetam (LEV; Keppra), in the same assays. METHODS: Combined electrophysiologic and microfluorometric recordings were performed from layer V pyramidal neurons in rat cortical slices to study the effects of SEL on the paroxysmal depolarization shifts (PDSs), and the simultaneous elevations of intracellular Ca(2+) concentration [Ca(2+)](i). Moreover, the involvement of high-voltage activated Ca(2+) currents (HVACCs) was investigated by means of patch-clamp recordings from acutely dissociated pyramidal neurons. RESULTS: SEL significantly reduced both the duration of PDSs (IC(50) = 241.0 +/- 21.7 nm) as well as the number of action potentials per PDS (IC(50) = 82.7 +/- 9.7 nm). In addition, SEL largely decreased the [Ca(2+)](i) rise accompanying PDSs (up to 75% of control values, IC(50) = 345.0 +/- 15.0 nm). Furthermore, SEL significantly reduced HVACCs in pyramidal neurons. This effect was mimicked by omega-conotoxin GVIA and, to a lesser extent, by omega-conotoxin MVIIC, blockers of N- and Q-type HVACC, respectively. The combination of these two toxins occluded the action of SEL, suggesting that N-type Ca(2+) channels, and partly Q-type subtypes are preferentially targeted. CONCLUSIONS: These results demonstrate a powerful inhibitory effect of SEL on epileptiform events in vitro. SEL showed a higher potency than LEV. The effective limitation of [Ca(2+)](i) influx might be relevant for its antiepileptic efficacy and, more broadly, for pathologic processes involving neuronal [Ca(2+)](i) overload.
Notes:
Gianluigi Lunardi, Salvatore Galati, Domenicantonio Tropepi, Vincenzo Moschella, Livia Brusa, Mariangela Pierantozzi, Alessandro Stefani, Silvia Rossi, Francesco Fornai, Ernesto Fedele, Paolo Stanzione, Atticus H Hainsworth, Antonio Pisani (2009)  Correlation between changes in CSF dopamine turnover and development of dyskinesia in Parkinson's disease.   Parkinsonism Relat Disord 15: 5. 383-389 Jun  
Abstract: To assess possible differences in dopamine metabolism that could parallel disease progression in Parkinson's disease (PD), we measured dopamine (DA) and its metabolites in the cerebrospinal fluid (CSF) in PD patients at different stages of disease: de novo (DEN), advanced not showing dyskinesias (ADV), and advanced with dyskinesias (DYS). DA, homovanillic acid (HVA) and dihydroxyphenylacetic acid (DOPAC) were significantly higher in DEN patients compared with other groups. A negative exponential correlation related DA level and disease duration. The HVA/DA ratio was significantly higher in the ADV and DYS group than that found in DEN group. Our data show that disease progression produces an early large decay of DA levels, followed by a stabilization. On the contrary, a late change in DA turnover (increased HVA/DA ratio) is documented in patients with longer disease duration. Our results suggest that the appearance of dyskinesia may not be related to a further loss of DA terminals but to a different, abnormal, DA turnover.
Notes:
Youren Tong, Antonio Pisani, Giuseppina Martella, Maha Karouani, Hiroo Yamaguchi, Emmanuel N Pothos, Jie Shen (2009)  R1441C mutation in LRRK2 impairs dopaminergic neurotransmission in mice.   Proc Natl Acad Sci U S A 106: 34. 14622-14627 Aug  
Abstract: Dominantly inherited mutations in leucine-rich repeat kinase 2 (LRRK2) are a common genetic cause of Parkinson's disease (PD). The importance of the R1441 residue in the pathogenesis is highlighted by the identification of three distinct missense mutations. To investigate the pathogenic mechanism underlying LRRK2 dysfunction, we generated a knockin (KI) mouse in which the R1441C mutation is expressed under the control of the endogenous regulatory elements. Homozygous R1441C KI mice appear grossly normal and exhibit no dopaminergic (DA) neurodegeneration or alterations in steady-state levels of striatal dopamine up to 2 years of age. However, these KI mice show reductions in amphetamine (AMPH)-induced locomotor activity and stimulated catecholamine release in cultured chromaffin cells. The introduction of the R1441C mutation also impairs dopamine D2 receptor function, as suggested by decreased responses of KI mice in locomotor activity to the inhibitory effect of a D2 receptor agonist, quinpirole. Furthermore, the firing of nigral neurons in R1441C KI mice show reduced sensitivity to suppression induced by quinpirole, dopamine, or AMPH. Together, our data suggest that the R1441C mutation in LRRK2 impairs stimulated dopamine neurotransmission and D2 receptor function, which may represent pathogenic precursors preceding dopaminergic degeneration in PD brains.
Notes:
Giuseppe Sciamanna, Paola Bonsi, Annalisa Tassone, Dario Cuomo, Anne Tscherter, Maria Teresa Viscomi, Giuseppina Martella, Nutan Sharma, Giorgio Bernardi, David G Standaert, Antonio Pisani (2009)  Impaired striatal D2 receptor function leads to enhanced GABA transmission in a mouse model of DYT1 dystonia.   Neurobiol Dis 34: 1. 133-145 Apr  
Abstract: DYT1 dystonia is caused by a deletion in a glutamic acid residue in the C-terminus of the protein torsinA, whose function is still largely unknown. Alterations in GABAergic signaling have been involved in the pathogenesis of dystonia. We recorded GABA- and glutamate-mediated synaptic currents from a striatal slice preparation obtained from a mouse model of DYT1 dystonia. In medium spiny neurons (MSNs) from mice expressing human mutant torsinA (hMT), we observed a significantly higher frequency, but not amplitude, of GABAergic spontaneous inhibitory postsynaptic currents (sIPSCs) and miniature currents (mIPSCs), whereas glutamate-dependent spontaneous excitatory synaptic currents (sEPSCs) were normal. No alterations were found in mice overexpressing normal human torsinA (hWT). To identify the possible sources of the increased GABAergic tone, we recorded GABAergic Fast-Spiking (FS) interneurons that exert a feed-forward inhibition on MSNs. However, both sEPSC and sIPSC recorded from hMT FS interneurons were comparable to hWT and non-transgenic (NT) mice. In physiological conditions, dopamine (DA) D2 receptor act presynaptically to reduce striatal GABA release. Of note, application of the D2-like receptor agonist quinpirole failed to reduce the frequency of sIPSCs in MSNs from hMT as compared to hWT and NT mice. Likewise, the inhibitory effect of quinpirole was lost on evoked IPSCs both in MSNs and FS interneurons from hMT mice. Our findings demonstrate a disinhibition of striatal GABAergic synaptic activity, that can be at least partially attributed to a D2 DA receptor dysfunction.
Notes:
Giuseppina Martella, Annalisa Tassone, Giuseppe Sciamanna, Paola Platania, Dario Cuomo, Maria Teresa Viscomi, Paola Bonsi, Emanuele Cacci, Stefano Biagioni, Alessandro Usiello, Giorgio Bernardi, Nutan Sharma, David G Standaert, Antonio Pisani (2009)  Impairment of bidirectional synaptic plasticity in the striatum of a mouse model of DYT1 dystonia: role of endogenous acetylcholine.   Brain 132: Pt 9. 2336-2349 Sep  
Abstract: DYT1 dystonia is a severe form of inherited dystonia, characterized by involuntary twisting movements and abnormal postures. It is linked to a deletion in the dyt1 gene, resulting in a mutated form of the protein torsinA. The penetrance for dystonia is incomplete, but both clinically affected and non-manifesting carriers of the DYT1 mutation exhibit impaired motor learning and evidence of altered motor plasticity. Here, we characterized striatal glutamatergic synaptic plasticity in transgenic mice expressing either the normal human torsinA or its mutant form, in comparison to non-transgenic (NT) control mice. Medium spiny neurons recorded from both NT and normal human torsinA mice exhibited normal long-term depression (LTD), whereas in mutant human torsinA littermates LTD could not be elicited. In addition, although long-term potentiation (LTP) could be induced in all the mice, it was greater in magnitude in mutant human torsinA mice. Low-frequency stimulation (LFS) can revert potentiated synapses to resting levels, a phenomenon termed synaptic depotentiation. LFS induced synaptic depotentiation (SD) both in NT and normal human torsinA mice, but not in mutant human torsinA mice. Since anti-cholinergic drugs are an effective medical therapeutic option for the treatment of human dystonia, we reasoned that an excess in endogenous acetylcholine could underlie the synaptic plasticity impairment. Indeed, both LTD and SD were rescued in mutant human torsinA mice either by lowering endogenous acetylcholine levels or by antagonizing muscarinic M1 receptors. The presence of an enhanced acetylcholine tone was confirmed by the observation that acetylcholinesterase activity was significantly increased in the striatum of mutant human torsinA mice, as compared with both normal human torsinA and NT littermates. Moreover, we found similar alterations of synaptic plasticity in muscarinic M2/M4 receptor knockout mice, in which an increased striatal acetylcholine level has been documented. The loss of LTD and SD on one hand, and the increase in LTP on the other, demonstrate that a 'loss of inhibition' characterizes the impairment of synaptic plasticity in this model of DYT1 dystonia. More importantly, our results indicate that an unbalanced cholinergic transmission plays a pivotal role in these alterations, providing a clue to understand the ability of anticholinergic agents to restore motor deficits in dystonia.
Notes:
Dario Cuomo, Giuseppina Martella, Emanuela Barabino, Paola Platania, Daniela Vita, Graziella Madeo, Chelliah Selvam, Cyril Goudet, Nadia Oueslati, Jean-Philippe Pin, Francine Acher, Antonio Pisani, Corinne Beurrier, Christophe Melon, Lydia Kerkerian-Le Goff, Paolo Gubellini (2009)  Metabotropic glutamate receptor subtype 4 selectively modulates both glutamate and GABA transmission in the striatum: implications for Parkinson's disease treatment.   J Neurochem 109: 4. 1096-1105 May  
Abstract: Alterations of striatal synaptic transmission have been associated with several motor disorders involving the basal ganglia, such as Parkinson's disease. For this reason, we investigated the role of group-III metabotropic glutamate (mGlu) receptors in regulating synaptic transmission in the striatum by electrophysiological recordings and by using our novel orthosteric agonist (3S)-3-[(3-amino-3-carboxypropyl(hydroxy)phosphinyl)-hydroxymethyl]-5-nitrothiophene (LSP1-3081) and l-2-amino-4-phosphonobutanoate (L-AP4). Here, we show that both drugs dose-dependently reduced glutamate- and GABA-mediated post-synaptic potentials, and increased the paired-pulse ratio. Moreover, they decreased the frequency, but not the amplitude, of glutamate and GABA spontaneous and miniature post-synaptic currents. Their inhibitory effect was abolished by (RS)-alpha-cyclopropyl-4-phosphonophenylglycine and was lost in slices from mGlu4 knock-out mice. Furthermore, (S)-3,4-dicarboxyphenylglycine did not affect glutamate and GABA transmission. Finally, intrastriatal LSP1-3081 or L-AP4 injection improved akinesia measured by the cylinder test. These results demonstrate that mGlu4 receptor selectively modulates striatal glutamate and GABA synaptic transmission, suggesting that it could represent an interesting target for selective pharmacological intervention in movement disorders involving basal ganglia circuitry.
Notes:
Paolo Barone, Angelo Antonini, Carlo Colosimo, Roberto Marconi, Letterio Morgante, Tania P Avarello, Eugenio Bottacchi, Antonino Cannas, Gabriella Ceravolo, Roberto Ceravolo, Giulio Cicarelli, Roberto M Gaglio, Rosa M Giglia, Francesco Iemolo, Michela Manfredi, Giuseppe Meco, Alessandra Nicoletti, Massimo Pederzoli, Alfredo Petrone, Antonio Pisani, Francesco E Pontieri, Rocco Quatrale, Silvia Ramat, Rosanna Scala, Giuseppe Volpe, Salvatore Zappulla, Anna Rita Bentivoglio, Fabrizio Stocchi, Giorgio Trianni, Paolo Del Dotto (2009)  The PRIAMO study: A multicenter assessment of nonmotor symptoms and their impact on quality of life in Parkinson's disease.   Mov Disord 24: 11. 1641-1649 Aug  
Abstract: We performed a multicenter survey using a semistructured interview in 1,072 consecutive patients with Parkinson's disease (PD) enrolled during 12 months in 55 Italian centers to assess the prevalence of nonmotor symptoms (NMSs), their association with cognitive impairment, and the impact on patients' quality of life (QoL). We found that 98.6% of patients with PD reported the presence of NMSs. The most common were as follows: fatigue (58%), anxiety (56%), leg pain (38%), insomnia (37%), urgency and nocturia (35%), drooling of saliva and difficulties in maintaining concentration (31%). The mean number of NMS per patient was 7.8 (range, 0-32). NMS in the psychiatric domain were the most frequent (67%). Frequency of NMS increased along with the disease duration and severity. Patients with cognitive impairment reported more frequently apathy, attention/memory deficit, and psychiatric symptoms. Apathy was the symptom associated with worse PDQ-39 score but also presence of fatigue, attention/memory, and psychiatric symptoms had a negative impact on QoL. These findings further support a key role for NMS in the clinical frame of PD and the need to address them specifically in clinical trials using dedicated scales.
Notes:
Tohru Kitada, Antonio Pisani, Maha Karouani, Marian Haburcak, Giuseppina Martella, Anne Tscherter, Paola Platania, Bei Wu, Emmanuel N Pothos, Jie Shen (2009)  Impaired dopamine release and synaptic plasticity in the striatum of parkin-/- mice.   J Neurochem 110: 2. 613-621 Jul  
Abstract: Parkin is the most common causative gene of juvenile and early-onset familial Parkinson's diseases and is thought to function as an E3 ubiquitin ligase in the ubiquitin-proteasome system. However, it remains unclear how loss of Parkin protein causes dopaminergic dysfunction and nigral neurodegeneration. To investigate the pathogenic mechanism underlying these mutations, we used parkin-/- mice to study its physiological function in the nigrostriatal circuit. Amperometric recordings showed decreases in evoked dopamine release in acute striatal slices of parkin-/- mice and reductions in the total catecholamine release and quantal size in dissociated chromaffin cells derived from parkin-/- mice. Intracellular recordings of striatal medium spiny neurons revealed impairments of long-term depression and long-term potentiation in parkin-/- mice, whereas long-term potentiation was normal in the Schaeffer collateral pathway of the hippocampus. Levels of dopamine receptors and dopamine transporters were normal in the parkin-/- striatum. These results indicate that Parkin is involved in the regulation of evoked dopamine release and striatal synaptic plasticity in the nigrostriatal pathway, and suggest that impairment in evoked dopamine release may represent a common pathophysiological change in recessive parkinsonism.
Notes:
2008
Mariangela Pierantozzi, Maria Giuseppina Palmieri, Salvatore Galati, Paolo Stanzione, Antonella Peppe, Domenicantonio Tropepi, Livia Brusa, Antonio Pisani, Vincenzo Moschella, Maria Grazia Marciani, Paolo Mazzone, Alessandro Stefani (2008)  Pedunculopontine nucleus deep brain stimulation changes spinal cord excitability in Parkinson's disease patients.   J Neural Transm 115: 5. 731-735 May  
Abstract: Bilateral peduncolopontine nucleus (PPN) and subthalamic nucleus (STN) deep brain stimulation (DBS) was performed in six-advanced Parkinson's disease (PD) patients. We report the effect of both PPN-DBS (25 Hz) and STN-DBS (185 Hz) on patient spinal reflex excitability by utilizing the soleus-Hoffman reflex (HR) threshold. Compared to controls (n = 9), patients showed an increase of HR-threshold, which was scarcely affected by levodopa, but significantly reduced by DBS. In particular, we found that PPN-DBS alone, or plus STN-DBS induced a complete recovery of HR-threshold up to control values. The HR-threshold changes, although do not allow to investigate the contribution of specific intraspinal pathways, suggest that PPN may play a key-role in modulating spinal excitability in PD possibly by improving the basal ganglia-brainstem descending system activity.
Notes:
G Martella, F Spadoni, G Sciamanna, A Tassone, G Bernardi, A Pisani, P Bonsi (2008)  Age-related functional changes of high-voltage-activated calcium channels in different neuronal subtypes of mouse striatum.   Neuroscience 152: 2. 469-476 Mar  
Abstract: By means of whole-cell patch-clamp recordings, we characterized the developmental profile of high-voltage-activated (HVA) calcium (Ca(2+)) channel subtypes in distinct neuronal populations of mouse striatum. Acutely dissociated medium spiny neurons (MSNs) and cholinergic interneurons (ChIs) were recorded from mice at five developmental stages: postnatal-days (PD) 14, 23, 40, 150 and 270. During ageing, total HVA Ca(2+) current recorded from both MSNs and ChIs was unchanged. However, the pharmacological analysis of the differential contribution of HVA Ca(2+) channel subtypes showed a significant rearrangement of each component. In both neuronal subtypes, a large fraction of the total HVA current recorded from PD14 mice was inhibited by the L-type HVA channel blocker nifedipine. This dihydropyridine-sensitive component accounted for nearly 50%, in MSNs, and 35%, in ChIs, of total current at PD14, but its contribution was down-regulated up to 20-25% at 9 months. Likewise, the N-type, omega-conotoxin GVIA-sensitive component decreased from 35% to 40% to about 25% in MSNs and 15% in ChIs. The P-type, omega-agatoxin-sensitive fraction did not show significant changes in both neuronal subtypes, whereas the Q-type, omega-conotoxin MVIIC-sensitive channels did show a significant up-regulation at 9 months. As compared with striatal neurons, we recorded pyramidal neurons dissociated from cortical layers IV-V and found no significant developmental change in the different components of HVA Ca(2+) currents. In conclusion, our data demonstrate a functional reconfiguration of HVA Ca(2+) channels in striatal but not cortical pyramidal neurons during mouse development. Such changes might have profound implications for physiological and pathophysiological processes of the striatum.
Notes:
Paola Bonsi, Giuseppina Martella, Dario Cuomo, Paola Platania, Giuseppe Sciamanna, Giorgio Bernardi, Jürgen Wess, Antonio Pisani (2008)  Loss of muscarinic autoreceptor function impairs long-term depression but not long-term potentiation in the striatum.   J Neurosci 28: 24. 6258-6263 Jun  
Abstract: Muscarinic autoreceptors regulate cholinergic tone in the striatum. We investigated the functional consequences of genetic deletion of striatal muscarinic autoreceptors by means of electrophysiological recordings from either medium spiny neurons (MSNs) or cholinergic interneurons (ChIs) in slices from single M(4) or double M(2)/M(4) muscarinic acetylcholine receptor (mAChR) knock-out (-/-) mice. In control ChIs, the muscarinic agonist oxotremorine (300 nM) produced a self-inhibitory outward current that was mostly reduced in M(4)(-/-) and abolished in M(2)/M(4)(-/-) mice, suggesting an involvement of both M(2) and M(4) autoreceptors. In MSNs from both M(4)(-/-) and M(2)/M(4)(-/-) mice, muscarine caused a membrane depolarization that was prevented by the M(1) receptor-preferring antagonist pirenzepine (100 nM), suggesting that M(1) receptor function was unaltered. Acetylcholine has been involved in striatal long-term potentiation (LTP) or long-term depression (LTD) induction. Loss of muscarinic autoreceptor function is predicted to affect synaptic plasticity by modifying striatal cholinergic tone. Indeed, high-frequency stimulation of glutamatergic afferents failed to induce LTD in MSNs from both M(4)(-/-) and M(2)/M(4)(-/-) mice, as well as in wild-type mice pretreated with the M(2)/M(4) antagonist AF-DX384 (11-[[2-[(diethylamino)methyl]-1-piperidinyl]acetyl]-5,1 1-dihydro-6H-pyrido[2,3b][1,4] benzodiazepin-6-one). Interestingly, LTD could be restored by either pirenzepine (100 nM) or hemicholinium-3 (10 microM), a depletor of endogenous ACh. Conversely, LTP induction did not show any difference among the three mouse strains and was prevented by pirenzepine. These results demonstrate that M(2)/M(4) muscarinic autoreceptors regulate ACh release from striatal ChIs. As a consequence, endogenous ACh drives the polarity of bidirectional synaptic plasticity.
Notes:
P Bonsi, P Platania, G Martella, G Madeo, D Vita, A Tassone, G Bernardi, A Pisani (2008)  Distinct roles of group I mGlu receptors in striatal function.   Neuropharmacology 55: 4. 392-395 Sep  
Abstract: In the recent past, evidence accumulated in favour of a central role of group I metabotropic glutamate (mGlu) receptors, mGlu1 and mGlu5, in the modulation of cell excitability both of striatal medium spiny projection neurons (MSNs) and interneuronal population. Electrophysiological and pharmacological studies have clearly shown that activation of mGlu1 and mGlu5 receptors exerts distinct actions, depending on the neuronal subtype involved. MGlu5 receptor activation mediates the potentiation of NMDA responses in MSNs, and underlies the retrograde inhibitory signaling by endocannabinoids at corticostriatal synapses. Conversely, both group I mGlu receptors are involved in long-term synaptic plasticity of MSNs. Likewise, either mGlu1 or mGlu5 receptors are engaged in shaping the excitability of large cholinergic interneurons, playing different roles in the membrane responses. Differently, although GABAergic parvalbumin-positive, fast-spiking interneurons have been shown to express both group I receptors, only mGlu1 receptor seems to mediate membrane and synaptic responses. This review provides a brief survey of the cellular and synaptic actions of group I mGlu receptors, and discusses the potential relevance of these findings in neostriatal function and motor control.
Notes:
G Martella, C Costa, A Pisani, L M Cupini, G Bernardi, P Calabresi (2008)  Antiepileptic drugs on calcium currents recorded from cortical and PAG neurons: therapeutic implications for migraine.   Cephalalgia 28: 12. 1315-1326 Dec  
Abstract: Cortex and periaqueductal grey (PAG) play a major role in the pathophysiology of migraine. Some antiepileptic drugs (AEDs) influence the activity of these structures by modulating high-voltage-activated (HVA) Ca(2+) channels and are effective in migraine prevention. The aim of the present study was to investigate the expression of total HVA Ca(2+) channels in cortical and PAG neurons and to study the differential action of AEDs on these channels. Isolated neurons were visually identified based on morphological criteria. HVA currents were recorded by whole-cell patch-clamp technique. The distribution ratio of L-, N-, P-, Q- and R-type HVA Ca(2+) channels was different between cortical and PAG neurons. In particular, we found that P- and Q-type HVA Ca(2+) channels were more expressed in PAG neurons than in cortical cells, whereas L- and R-type HVA Ca(2+) channels showed an opposite distribution. Interestingly, N-type HVA Ca(2+) channels were equally distributed in these two neuronal populations. A differential sensitivity to AEDs of HVA Ca(2+) channels located on cortical and PAG neurons was observed for topiramate (TPM), but not for lamotrigine (LTG) or levetiracetam (LEV). In fact, whereas both LTG and LEV were equally effective and potent in inhibiting HVA Ca(2+) currents in the two neuronal populations, TPM showed a much higher potency and efficacy in blocking these currents in PAG neurons than in cortical pyramidal cells. TPM, in fact, inhibited N-, P- and L-type channels in PAG neurons, whereas in cortical neurons this AED modulated only P- and L-type channels. Unlike the other AEDs investigated, valproic acid did not affect HVA Ca(2+) currents in cortical and PAG neurons. The negative modulation of specific subtypes of HVA Ca(2+) channels by various AEDs can restore normal electrical activity in target brain areas such as cortex and PAG, providing interesting therapeutic approaches in migraine prevention.
Notes:
2007
Paola Bonsi, Dario Cuomo, Jun Ding, Giuseppe Sciamanna, Sasha Ulrich, Anne Tscherter, Giorgio Bernardi, D James Surmeier, Antonio Pisani (2007)  Endogenous serotonin excites striatal cholinergic interneurons via the activation of 5-HT 2C, 5-HT6, and 5-HT7 serotonin receptors: implications for extrapyramidal side effects of serotonin reuptake inhibitors.   Neuropsychopharmacology 32: 8. 1840-1854 Aug  
Abstract: The striatum is richly innervated by serotonergic afferents from the raphe nucleus. We explored the effects of this input on striatal cholinergic interneurons from rat brain slices, by means of both conventional intracellular and whole-cell patch-clamp recordings. Bath-applied serotonin (5-HT, 3-300 microM), induced a dose-dependent membrane depolarization and increased the rate of spiking. This effect was mimicked by the 5-HT reuptake blockers citalopram and fluvoxamine. In voltage-clamped neurons, 5-HT induced an inward current, whose reversal potential was close to the K(+) equilibrium potential. Accordingly, the involvement of K(+) channels was confirmed either by increasing extracellular K(+) concentration and by blockade of K(+) channels with barium. Single-cell reverse transcriptase-polymerase chain reaction (RT-PCR) profiling demonstrated the presence of 5-HT2C, 5-HT6, and 5-HT7 receptor mRNAs in identified cholinergic interneurons. The depolarization/inward current induced by 5-HT was partially mimicked by the 5-HT2 receptor agonist 2,5-dimethoxy-4-iodoamphetamine and antagonized by both ketanserin and the selective 5-HT2C antagonist RS102221, whereas the selective 5-HT3 and 5-HT4 receptor antagonists tropisetron and RS23597-190 had no effect. The depolarizing response to 5-HT was also reduced by the selective 5-HT6 and 5-HT7 receptor antagonists SB258585 and SB269970, respectively, and mimicked by the 5-HT7 agonist, 5-CT. Accordingly, activation of either 5-HT6 or 5-HT7 receptor induced an inward current. The 5-HT response was attenuated by U73122, blocker of phospholipase C, and by SQ22,536, an inhibitor of adenylyl cyclase. These results suggest that 5-HT released by serotonergic fibers originating in the raphe nuclei has a potent excitatory effect on striatal cholinergic interneurons.
Notes:
P Bonsi, D Cuomo, B Picconi, G Sciamanna, A Tscherter, M Tolu, G Bernardi, P Calabresi, A Pisani (2007)  Striatal metabotropic glutamate receptors as a target for pharmacotherapy in Parkinson's disease.   Amino Acids 32: 2. 189-195 Feb  
Abstract: Parkinson's disease (PD) is a common neurodegenerative disorder characterized by the loss of dopamine (DA)-containing neurons in the substantia nigra pars compacta (SNc). The symptoms are resting tremor, slowness of movement, rigidity and postural instability. Evidence that an imbalance between dopaminergic and cholinergic transmission takes place within the striatum led to the utilization of DA precursors, DA receptor agonists and anticholinergic drugs in the symptomatic therapy of PD. However, upon disease progression the therapy becomes less effective and debilitating effects such as dyskinesias and motor fluctuations appear. Hence, the need for the development of alternative therapeutic strategies has emerged. Several observations in different experimental models of PD suggest that blockade of excitatory amino acid transmission exerts antiparkinsonian effects. In particular, recent studies have focused on metabotropic glutamate receptors (mGluRs). Drugs acting on group I and II mGluRs have indeed been proven useful in ameliorating the parkinsonian symptoms in animal models of PD and therefore might represent promising therapeutic targets. This beneficial effect could be due to the reduction of both glutamatergic and cholinergic transmission. A novel target for drugs acting on mGluRs in PD therapy might be represented by striatal cholinergic interneurons. Indeed, the activation of mGluR2, highly expressed on this cell type, is able to reduce calcium-dependent plateau potentials by interfering with somato-dendritic N-type calcium channel activity, in turn reducing ACh release in the striatum. Similarly, the blockade of both group I mGluR subtypes reduces cholinergic interneuron excitability, and decreases striatal ACh release. Thus, targeting mGluRs located onto cholinergic interneurons might result in a beneficial pharmacological effect in the parkinsonian state.
Notes:
Antonio Orlacchio, Paolo Calabresi, Adriana Rum, Anna Tarzia, Anna Maria Salvati, Toshitaka Kawarai, Alessandro Stefani, Antonio Pisani, Giorgio Bernardi, Paolo Cianciulli, Patrizia Caprari (2007)  Neuroacanthocytosis associated with a defect of the 4.1R membrane protein.   BMC Neurol 7: 02  
Abstract: BACKGROUND: Neuroacanthocytosis (NA) denotes a heterogeneous group of diseases that are characterized by nervous system abnormalities in association with acanthocytosis in the patients' blood. The 4.1R protein of the erythrocyte membrane is critical for the membrane-associated cytoskeleton structure and in central neurons it regulates the stabilization of AMPA receptors on the neuronal surface at the postsynaptic density. We report clinical, biochemical, and genetic features in four patients from four unrelated families with NA in order to explain the cause of morphological abnormalities and the relationship with neurodegenerative processes. CASE PRESENTATION: All patients were characterised by atypical NA with a novel alteration of the erythrocyte membrane: a 4.1R protein deficiency. The 4.1R protein content was significantly lower in patients (3.40 +/- 0.42) than in controls (4.41 +/- 0.40, P < 0.0001), reflecting weakened interactions of the cytoskeleton with the membrane. In patients IV:1 (RM23), IV:3 (RM15), and IV:6 (RM16) the 4.1 deficiency seemed to affect the horizontal interactions of spectrin and an impairment of the dimer self-association into tetramers was detected. In patient IV:1 (RM16) the 4.1 deficiency seemed to affect the skeletal attachment to membrane and the protein band 3 was partially reduced. CONCLUSION: A decreased expression pattern of the 4.1R protein was observed in the erythrocytes from patients with atypical NA, which might reflect the expression pattern in the central nervous system, especially basal ganglia, and might lead to dysfunction of AMPA-mediated glutamate transmission.
Notes:
Paola Bonsi, Giuseppe Sciamanna, Darlene A Mitrano, Dario Cuomo, Giorgio Bernardi, Paola Platania, Yoland Smith, Antonio Pisani (2007)  Functional and ultrastructural analysis of group I mGluR in striatal fast-spiking interneurons.   Eur J Neurosci 25: 5. 1319-1331 Mar  
Abstract: Striatal parvalbumin-containing fast-spiking (FS) interneurons provide a powerful feedforward GABAergic inhibition on spiny projection neurons, through a widespread arborization and electrical coupling. Modulation of FS interneuron activity might therefore strongly affect striatal output. Metabotropic glutamate receptors (mGluRs) exert a modulatory action at various levels in the striatum. We performed electrophysiological recordings from a rat striatal slice preparation to investigate the effects of group I mGluR activation on both the intrinsic and synaptic properties of FS interneurons. Bath-application of the group I mGluR agonist, (S)-3,5-dihydroxyphenylglycine (3,5-DHPG), caused a dose-dependent depolarizing response. Both (S)-(+)-alpha-amino-4-carboxy-2-methylbenzeneacetic acid (LY367385) and 7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxylate ethyl ester (CPCCOEt), selective mGluR1 antagonists, significantly reduced the amplitude of the membrane depolarization caused by 3,5-DHPG application. Conversely, mGluR5 antagonists, 2-methyl-6-(phenylethylnyl)pyridine hydrochloride (MPEP) and 6-methyl-2-(phenylazo)-3-pyridinol (SIB1757), were unable to affect the response to 3,5-DHPG, suggesting that only mGluR1 contributes to the 3,5-DHPG-mediated excitatory action on FS interneurons. Furthermore, mGluR1 blockade significantly decreased the amplitude of the glutamatergic postsynaptic potentials, whereas the mGluR5 antagonist application produced a small nonsignificant inhibitory effect. Surprisingly, our electron microscopic data demonstrate that the immunoreactivity for both mGluR1a and mGluR5 is expressed extrasynaptically on the plasma membrane of parvalbumin-immunoreactive dendrites of FS interneurons. Together, these results suggest that despite a common pattern of distribution, mGluR1 and mGluR5 exert distinct functions in the modulation of FS interneuron activity.
Notes:
Antonio Pisani, Giorgio Bernardi, Jun Ding, D James Surmeier (2007)  Re-emergence of striatal cholinergic interneurons in movement disorders.   Trends Neurosci 30: 10. 545-553 Oct  
Abstract: Twenty years ago, striatal cholinergic neurons were central figures in models of basal ganglia function. But since then, they have receded in importance. Recent studies are likely to lead to their re-emergence in our thinking. Cholinergic interneurons have been implicated as key players in the induction of synaptic plasticity and motor learning, as well as in motor dysfunction. In Parkinson's disease and dystonia, diminished striatal dopaminergic signalling leads to increased release of acetylcholine by interneurons, distorting network function and inducing structural changes that undoubtedly contribute to the symptoms. By contrast, in Huntington's disease and progressive supranuclear palsy, there is a fall in striatal cholinergic markers. This review gives an overview of these recent experimental and clinical studies, placing them within the context of the pathogenesis of movement disorders.
Notes:
Tohru Kitada, Antonio Pisani, Douglas R Porter, Hiroo Yamaguchi, Anne Tscherter, Giuseppina Martella, Paola Bonsi, Chen Zhang, Emmanuel N Pothos, Jie Shen (2007)  Impaired dopamine release and synaptic plasticity in the striatum of PINK1-deficient mice.   Proc Natl Acad Sci U S A 104: 27. 11441-11446 Jul  
Abstract: Parkinson's disease (PD) is characterized by the selective vulnerability of the nigrostriatal dopaminergic circuit. Recently, loss-of-function mutations in the PTEN-induced kinase 1 (PINK1) gene have been linked to early-onset PD. How PINK1 deficiency causes dopaminergic dysfunction and degeneration in PD patients is unknown. Here, we investigate the physiological role of PINK1 in the nigrostriatal dopaminergic circuit through the generation and multidisciplinary analysis of PINK1(-/-) mutant mice. We found that numbers of dopaminergic neurons and levels of striatal dopamine (DA) and DA receptors are unchanged in PINK1(-/-) mice. Amperometric recordings, however, revealed decreases in evoked DA release in striatal slices and reductions in the quantal size and release frequency of catecholamine in dissociated chromaffin cells. Intracellular recordings of striatal medium spiny neurons, the major dopaminergic target, showed specific impairments of corticostriatal long-term potentiation and long-term depression in PINK1(-/-) mice. Consistent with a decrease in evoked DA release, these striatal plasticity impairments could be rescued by either DA receptor agonists or agents that increase DA release, such as amphetamine or l-dopa. These results reveal a critical role for PINK1 in DA release and striatal synaptic plasticity in the nigrostriatal circuit and suggest that altered dopaminergic physiology may be a pathogenic precursor to nigrostriatal degeneration.
Notes:
L Brusa, F Petta, A Pisani, V Moschella, C Iani, P Stanzione, R Miano, E Finazzi-Agrò (2007)  Acute vs chronic effects of l-dopa on bladder function in patients with mild Parkinson disease.   Neurology 68: 18. 1455-1459 May  
Abstract: OBJECTIVE: To compare acute and chronic effects of l-dopa on bladder function in levodopa-naive Parkinson disease (PD) patients who had urinary urgency. METHODS: We evaluated 26 l-dopa-naive PD patients at a university-based PD center with a first urodynamic session with a double examination: in the off treatment condition and 1 hour after acute challenge with carbidopa/l-dopa 50/200 mg; then, a chronic l-dopa monotherapy was administered (mean dose 300 +/- 150 mg). Two months later, patients underwent a second urodynamic session with a single evaluation 1 hour after the acute carbidopa/l-dopa challenge. RESULTS: The first acute l-dopa challenge significantly worsened bladder overactivity (neurogenic overactive detrusor contractions threshold [NDOC-t; 32% of worsening] and bladder capacity [BC; 22% of worsening]); on the contrary, l-dopa challenge during chronic administration ameliorated the first sensation of bladder filling (FS; 120% of improvement), NDOCT-t (93% improvement), and BC (33% of improvement) vs the values obtained with acute administration. An 86% significant improvement of FS in comparison with the basal value was observed. CONCLUSIONS: The acute and chronic l-dopa effects may be due to the different synaptic concentrations or to the activation of postsynaptic mechanisms obtained by chronic administration.
Notes:
2006
Cinzia Costa, Giuseppina Martella, Barbara Picconi, Chiara Prosperetti, Antonio Pisani, Massimiliano Di Filippo, Francesco Pisani, Giorgio Bernardi, Paolo Calabresi (2006)  Multiple mechanisms underlying the neuroprotective effects of antiepileptic drugs against in vitro ischemia.   Stroke 37: 5. 1319-1326 May  
Abstract: BACKGROUND AND PURPOSE: The possible neuroprotective effects of classic and new antiepileptic drugs on the electrophysiological changes induced by in vitro ischemia on striatal neurons were investigated. In particular, the aim of the study was to correlate the putative neuroprotective effects with the action of these drugs on fast sodium (Na+) and high-voltage-activated (HVA) calcium (Ca2+) currents. METHODS: Extracellular field potentials were recorded from rat corticostriatal brain-slice preparations. In vitro ischemia was delivered by switching to an artificial cerebrospinal fluid solution in which glucose and oxygen were omitted. Na+ and HVA Ca2+ currents were analyzed by whole-cell patch-clamp recordings from acutely isolated rat striatal neurons. Excitatory postsynaptic potential was measured following synaptic stimulation in corticostriatal slices by sharp intracellular microelectrodes. RESULTS: Neuroprotection against in vitro ischemia was observed in slices treated with carbamazepine (CBZ), valproic acid (VPA), and topiramate (TPM), whereas it was not achieved by using levetiracetam (LEV). Fast Na+ conductances were inhibited by CBZ and TPM, whereas VPA and LEV showed no effect. HVA Ca2+ conductances were reduced by CBZ, TPM, and LEV. VPA had no effect on this current. All antiepileptic drugs induced a small reduction of excitatory postsynaptic potential amplitude at concentrations higher than 100 microm without changes of paired-pulse facilitation. CONCLUSIONS: The concomitant inhibition of fast Na+ and HVA Ca2+ conductances is critically important for the neuroprotection, whereas the presynaptic inhibition on glutamate transmission does not seem to play a major role.
Notes:
Diego Centonze, Cinzia Costa, Silvia Rossi, Chiara Prosperetti, Antonio Pisani, Alessandro Usiello, Giorgio Bernardi, Nicola B Mercuri, Paolo Calabresi (2006)  Chronic cocaine prevents depotentiation at corticostriatal synapses.   Biol Psychiatry 60: 5. 436-443 Sep  
Abstract: BACKGROUND: The advanced stages of addiction are characterized by compulsive drug-seeking and drug-taking behaviors despite the loss of the hedonic effect of drug consumption. A pathology of habit forming systems might underlie these features of addiction. METHODS: We have compared use-dependent plasticity of corticostriatal synapses in saline- and cocaine-treated rats by means of single neuron electrophysiological recordings. RESULTS: High-frequency stimulation of cortical afferents induced long-term potentiation (LTP) of corticostriatal synapses in treated and untreated animals. Saline- and acute-cocaine-treated rats, however, showed synaptic depotentiation in response to subsequent low-frequency stimulation of the same pathway, whereas chronic cocaine-treated animals were refractory to this process. Depotentiation was also absent in control slices bathed with cocaine, dopamine, or with the D1 receptor agonist SKF38393. The effect of cocaine on depotentiation was prevented by D1 but not D2 dopamine receptor antagonists and was mimicked by pharmacological inhibition of cyclin-dependent kinase 5, to enhance D1-receptor-associated intracellular signaling. CONCLUSIONS: These results provide the first evidence that cocaine blocks the reversal of LTP in brain circuits. This alteration might be important for the persistence of addictive behavior despite efforts to abstain.
Notes:
Barbara Picconi, Enrica Passino, Carmelo Sgobio, Paola Bonsi, Ilaria Barone, Veronica Ghiglieri, Antonio Pisani, Giorgio Bernardi, Martine Ammassari-Teule, Paolo Calabresi (2006)  Plastic and behavioral abnormalities in experimental Huntington's disease: a crucial role for cholinergic interneurons.   Neurobiol Dis 22: 1. 143-152 Apr  
Abstract: Huntington's disease (HD) is a fatal hereditary neurodegenerative disease causing degeneration of striatal spiny neurons, whereas cholinergic interneurons are spared. This cell-type specific pathology produces an array of abnormalities including involuntary movements, cognitive impairments, and psychiatric disorders. Although the genetic mutation responsible for HD has been identified, little is known about the early synaptic changes occurring within the striatal circuitry at the onset of clinical symptoms. We therefore studied the synaptic plasticity of spiny neurons and cholinergic interneurons in two animal models of early HD. As a pathogenetic model, we used the chronic subcutaneous infusion of the mitochondrial toxin 3-nitropropionic acid (3-NP) in rats. This treatment caused striatal damage and impaired response flexibility in the cross-maze task as well as defective extinction of conditioned fear suggesting a perseverative behavior. In these animals, we observed a loss of depotentiation in striatal spiny neurons and a lack of long-term potentiation (LTP) in cholinergic interneurons. These abnormalities of striatal synaptic plasticity were also observed in R6/2 transgenic mice, a genetic model of HD, indicating that both genetic and phenotypic models of HD show cell-type specific alterations of LTP. We also found that in control rats, as well as in wild-type (WT) mice, depotentiation of spiny neurons was blocked by either scopolamine or hemicholinium, indicating that reversal of LTP requires activation of muscarinic receptors by endogenous acetylcholine. Our findings suggest that the defective plasticity of cholinergic interneurons could be the primary event mediating abnormal functioning of striatal circuits, and the loss of behavioral flexibility typical of early HD might largely depend on cell-type specific plastic abnormalities.
Notes:
A Pisani, G Martella, A Tscherter, C Costa, N B Mercuri, G Bernardi, J Shen, P Calabresi (2006)  Enhanced sensitivity of DJ-1-deficient dopaminergic neurons to energy metabolism impairment: role of Na+/K+ ATPase.   Neurobiol Dis 23: 1. 54-60 Jul  
Abstract: DJ-1 gene mutations lead to an inherited form of early-onset parkinsonism. The function of DJ-1 is unclear, though a neuroprotective role has been postulated. Electrophysiological recordings were made of striatal and dopaminergic nigral neurons both of wild-type (WT) and DJ-1-knockout (DJ-1(-/-)) mice. We assessed the responses of dopaminergic cells to combined oxygen and glucose deprivation (OGD), and to the mitochondrial toxin rotenone. OGD induced a membrane hyperpolarization in nigral neurons from WT mice. Similarly, rotenone hyperpolarized neurons and then a depolarization occurred. In DJ-1(-/-) mice, the OGD-induced hyperpolarization was significantly enhanced. Moreover, rotenone caused a shorter hyperpolarization followed by an irreversible depolarization. To evaluate the involvement of Na+/K+ ATPase, we tested ouabain, a Na+/K+ ATPase inhibitor, on two distinct neuronal subtypes. Compared to WT mice, in dopaminergic neurons from DJ-1(-/-) mice, ouabain induced rapid and irreversible membrane potential changes. Notably, this effect was observed at concentrations that were unable to produce membrane potential shifts on striatal spiny neurons, both from WT and DJ-1(-/-) mice. These findings suggest that DJ-1 loss-of-function enhances vulnerability to energy metabolism alterations, and that nigral neurons are particularly sensitive to Na+/K+ ATPase impairment.
Notes:
Livia Brusa, Filomena Petta, Antonio Pisani, Roberto Miano, Paolo Stanzione, Vincenzo Moschella, Salvatore Galati, Enrico Finazzi Agrò (2006)  Central acute D2 stimulation worsens bladder function in patients with mild Parkinson's disease.   J Urol 175: 1. 202-6; discussion 206-7 Jan  
Abstract: PURPOSE: The different roles of D1 and D2 dopamine receptors in LUT behavior have been demonstrated in animal studies. In particular D2 selective agonists and D1 selective antagonists seem to produce a reduction of the bladder capacity in conscious rats. This finding has never been confirmed in human studies. Thus, in this study we investigated the role of D1 and D2 agonists/antagonists on LUT behavior in patients with PD. MATERIALS AND METHODS: A total of 87 patients with mild PD were evaluated. Patients were evaluated with urodynamic studies (cystometry followed by a pressure flow study with perineal floor electromyography) performed in off status and after oral administration of 250 mg of LD. In 70 patients a third urodynamic evaluation was conducted in one of the following conditions: after simultaneous administration of 250 mg oral LD and 60 or 120 mg oral domperidone (D2 peripheral antagonist); after simultaneous administration of 250 mg oral LD and 25, 50 or 150 mg intramuscular L-sulpiride (D2 central and peripheral antagonist). Several urodynamic parameters were evaluated and results obtained in different conditions compared. RESULTS: LD alone worsened detrusor overactivity: in particular, a reduction of first urinary sensation, involuntary detrusor contraction threshold (reflex volume) and bladder capacity was observed. L-sulpiride (central and peripheral D2 antagonist) coadministration counteracted the worsening in a dose dependent manner. Domperidone (peripheral D2 antagonist) coadministration failed to determine the same counteraction. CONCLUSIONS: According to our results, a central acute D2 stimulation seems to be responsible of a reduction of bladder capacity with worsening of detrusor overactivity in patients with mild PD.
Notes:
Barbara Picconi, Ilaria Barone, Antonio Pisani, Raffaella Nicolai, Paola Benatti, Giorgio Bernardi, Menotti Calvani, Paolo Calabresi (2006)  Acetyl-L-carnitine protects striatal neurons against in vitro ischemia: the role of endogenous acetylcholine.   Neuropharmacology 50: 8. 917-923 Jun  
Abstract: The neuronal death after ischemia is closely linked to the essential role of mitochondrial metabolism. Inhibition of mitochondrial respiratory chain reduces ATP generation leading to a dysregulation of ion metabolism. Acetyl-L-carnitine (ALC) influences the maintenance of key mitochondrial proteins for maximum energy production and it may play a neuroprotective role in some pathological conditions. In this study we have analyzed ALC-mediated neuroprotection on an in vitro model of brain ischemia. Field potential recordings were obtained from a rat corticostriatal slice preparation. In vitro ischemia (oxygen and glucose deprivation) was delivered by switching to a solution in which glucose was omitted and oxygen was replaced with N2. Ten minutes of in vitro ischemia caused an irreversible loss of the field potential amplitude. Pretreatment with ALC produced a progressive and dose-dependent recovery of the field potential amplitude following in vitro ischemia. The neuroprotective effect of ALC was stereospecific since the pretreatment with two different carnitine-related compounds did not cause neuroprotection. The choline transporter inhibitor hemicholinium-3 blocked the neuroprotective effect of ALC. ALC-mediated neuroprotection was also prevented either by the non-selective muscarinic antagonist scopolamine, or by the putative M2-like receptor antagonist methoctramine. Conversely, the effect of ALC was not altered by the M1-like receptor antagonist pirenzepine. These findings show that ALC exert a neuroprotective action against in vitro ischemia. This neuroprotective effect requires the activity of choline uptake system and the activation of M2 muscarinic receptors.
Notes:
Barbara Picconi, Anna Tortiglione, Ilaria Barone, Diego Centonze, Fabrizio Gardoni, Paolo Gubellini, Paola Bonsi, Antonio Pisani, Giorgio Bernardi, Monica Di Luca, Paolo Calabresi (2006)  NR2B subunit exerts a critical role in postischemic synaptic plasticity.   Stroke 37: 7. 1895-1901 Jul  
Abstract: BACKGROUND AND PURPOSE: We characterized the differential effect of the NR2B subunit antagonist ifenprodil in the induction of activity-dependent long-term potentiation (LTP) and of postischemic LTP as well as in the neuronal damage induced by focal ischemia. METHODS: Intracellular recordings were obtained from rat corticostriatal slice preparations. High-frequency stimulation of corticostriatal fibers was used as a LTP-inducing protocol. In vitro ischemia was induced by oxygen and glucose deprivation. In vivo ischemia was induced by permanent middle cerebral artery occlusion. Intracellular recordings were also performed in the ischemic penumbra. RESULTS: Antagonists selectively targeting N-methyl-d-aspartate receptors containing the NR2B subunit blocked postischemic LTP without affecting activity-dependent LTP. In a model of focal ischemia, blockade of NR2B subunit in vivo caused reduction of brain damage, amelioration of neurological outcome, and normalization of the synaptic levels of NR2B subunits. Moreover, the antagonism of NR2B subunit was able to rescue the activity-dependent LTP in the ischemic penumbra. CONCLUSIONS: We suggest that NR2B subunits contribute to the striatal damage caused by in vivo and in vitro ischemia and play a critical role in the induction of postischemic LTP as well as in the suppression of activity-dependent LTP in the ischemic penumbra.
Notes:
A Pisani, G Martella, A Tscherter, P Bonsi, N Sharma, G Bernardi, D G Standaert (2006)  Altered responses to dopaminergic D2 receptor activation and N-type calcium currents in striatal cholinergic interneurons in a mouse model of DYT1 dystonia.   Neurobiol Dis 24: 2. 318-325 Nov  
Abstract: Early-onset torsion dystonia (DYT1) is an autosomal dominant disease caused by a deletion in the gene encoding the protein torsinA. Recently, a transgenic mouse model of DYT1 has been described, expressing either the human wild-type torsinA (hWT) or mutant torsinA (hMT). We recorded the activity of striatal cholinergic interneurons of hWT, hMT, and control mice. In slice preparations, no significant differences were observed in resting membrane potential (RMP), firing activity, action potential duration or Ih current. Quinpirole, a D2-like dopamine receptor agonist, did not produce detectable effects on RMP of cholinergic interneurons in control mice and hWT mice, but in the hMT mice caused membrane depolarization and an increase in the firing rate. D2 receptor activation inhibits N-type high-voltage-activated calcium currents. We found that, in isolated interneurons from hMT mice, the quinpirole-mediated inhibition of N-type currents was significantly larger than in hWT and controls. Moreover, the N-type component was significantly over-represented in hMT mice. The altered sensitivity of N-type channels in hMT mice could account for the paradoxical excitatory effect of D2 stimulation. Our data support the existence of an imbalance between striatal dopaminergic and cholinergic signaling in DYT1 dystonia.
Notes:
A Stefani, E Fedele, S Galati, M Raiteri, O Pepicelli, L Brusa, M Pierantozzi, A Peppe, A Pisani, G Gattoni, A H Hainsworth, G Bernardi, P Stanzione, P Mazzone (2006)  Deep brain stimulation in Parkinson's disease patients: biochemical evidence.   J Neural Transm Suppl 70. 401-408  
Abstract: Deep brain stimulation (DBS) of the subthalamic nucleus (STN) in Parkinson's disease (PD) patients augments STN-driven excitation of the internal globus pallidus (GPi). However, other DBS-induced changes are largely unknown. Here we report the biochemical effects of STN-DBS in two basal ganglia stations (putamen--PUT--and GPi) and in a thalamic relay nucleus, the anteroventral thalamus (VA). In six advanced PD patients undergoing surgery, microdialysis samples were collected from GPi, PUT and VA before, during and after one hour of STN-DBS. cGMP was measured in the GPi and PUT as an index of glutamatergic transmission, whereas GABA was measured in the VA. During clinically effective STN-DBS, we found a significant decrease in GABA extracellular concentrations in the VA (-25%). Simultaneously, cGMP extracellular concentrations were enhanced in the PUT (+200%) and GPi (+481%). DBS differentially affects fibers crossing the STN area: it activates the STN-GPi pathway while inhibiting the GPi-VA one. These findings support a thalamic dis-inhibition, as the main responsible for the clinical effect of STN-DBS. This, in turn, re-establishes a more physiological level of PUT activity.
Notes:
Salvatore Galati, Paolo Mazzone, Ernesto Fedele, Antonio Pisani, Antonella Peppe, Mariangela Pierantozzi, Livia Brusa, Domenicantonio Tropepi, Vincenzo Moschella, Maurizio Raiteri, Paolo Stanzione, Giorgio Bernardi, Alessandro Stefani (2006)  Biochemical and electrophysiological changes of substantia nigra pars reticulata driven by subthalamic stimulation in patients with Parkinson's disease.   Eur J Neurosci 23: 11. 2923-2928 Jun  
Abstract: To understand the events underlying the clinical efficacy of deep brain stimulation (DBS) of the subthalamic nucleus (STN), electrophysiological recordings and microdialysis evaluations were carried out in the substantia nigra pars reticulata (SNr), one of the two basal ganglia (BG) nuclei targeted by STN output, in patients with Parkinson's disease (PD). Clinically effective STN-DBS caused a significant increase of the SNr firing rate. The poststimulus histogram (PSTH) showed an excitation peak at 1.92-3.85 ms after the STN stimulus. The spontaneous discharge of SNr neurons was driven at the frequency of the stimulation (130 Hz), as shown in the autocorrelograms (AutoCrl). The fast Fourier transform (FFT) analysis showed a peak at 130 Hz, and a less pronounced second one at 260 Hz. Accordingly, in the distribution of the interspike intervals (ISIs), the mode was earlier, and skewness more asymmetric. Biochemically, the increased excitatory driving from the STN was reflected by a clear-cut increase in cyclic guanosine 3',5'-monophosphate (cGMP) levels in the SNr. These results indicate that the beneficial effect of DBS in PD patients is paralleled with a stimulus-synchronized activation of the STN target, SNr. Our findings suggest that, during STN-DBS, a critical change towards a high-frequency oscillatory discharge occurs.
Notes:
P Bonsi, D Cuomo, G Martella, G Sciamanna, M Tolu, P Calabresi, G Bernardi, A Pisani (2006)  Mitochondrial toxins in Basal Ganglia disorders: from animal models to therapeutic strategies.   Curr Neuropharmacol 4: 1. 69-75 Jan  
Abstract: Current knowledge of the pathogenesis of basal ganglia disorders, such as Huntington's disease (HD) and Parkinson's disease (PD) appoints a central role to a dysfunction in mitochondrial metabolism. The development of animal models, based upon the use of mitochondrial toxins has been successfully introduced to reproduce human disease, leading to important acquisitions. Most notably, experimental evidence supports the existence, within basal ganglia, of a peculiar regional vulnerability to distinct mitochondrial toxins. MPTP and rotenone, both selective inhibitors of mitochondrial complex I have been extensively used to mimic PD. Accordingly, in human PD, a specific dysfunction of complex I activity was found in vulnerable dopaminergic neurons of the substantia nigra. Conversely, in HD a selective impairment of mitochondrial succinate dehydrogenase, key enzyme in complex II activity was found in medium spiny neurons of the caudate-putamen. The relevance of such finding is further demonstrated by the evidence that toxins able to primarily target mitochondrial complex II, such as malonic acid and 3-nitropropionic acid (3-NP), strikingly reproduce the main phenotypic and pathological features of HD.Despite the advances obtained from these experimental models, a deeper understanding of the molecular and cellular mechanisms underlying such neuronal vulnerability is lacking.The present review provides a brief survey of currently utilized animal models of mitochondrial intoxication, in attempt to address the cellular mechanisms triggered by energy metabolism failure and to identify potential therapeutic targets.
Notes:
2005
Matthew S Goldberg, Antonio Pisani, Marian Haburcak, Timothy A Vortherms, Tohru Kitada, Cinzia Costa, Youren Tong, Giuseppina Martella, Anne Tscherter, Andrea Martins, Giorgio Bernardi, Bryan L Roth, Emmanuel N Pothos, Paolo Calabresi, Jie Shen (2005)  Nigrostriatal dopaminergic deficits and hypokinesia caused by inactivation of the familial Parkinsonism-linked gene DJ-1.   Neuron 45: 4. 489-496 Feb  
Abstract: The manifestations of Parkinson's disease are caused by reduced dopaminergic innervation of the striatum. Loss-of-function mutations in the DJ-1 gene cause early-onset familial parkinsonism. To investigate a possible role for DJ-1 in the dopaminergic system, we generated a mouse model bearing a germline disruption of DJ-1. Although DJ-1(-/-) mice had normal numbers of dopaminergic neurons in the substantia nigra, evoked dopamine overflow in the striatum was markedly reduced, primarily as a result of increased reuptake. Nigral neurons lacking DJ-1 were less sensitive to the inhibitory effects of D2 autoreceptor stimulation. Corticostriatal long-term potentiation was normal in medium spiny neurons of DJ-1(-/-) mice, but long-term depression (LTD) was absent. The LTD deficit was reversed by treatment with D2 but not D1 receptor agonists. Furthermore, DJ-1(-/-) mice displayed hypoactivity in the open field. Collectively, our findings suggest an essential role for DJ-1 in dopaminergic physiology and D2 receptor-mediated functions.
Notes:
Antonio Pisani, Diego Centonze, Giorgio Bernardi, Paolo Calabresi (2005)  Striatal synaptic plasticity: implications for motor learning and Parkinson's disease.   Mov Disord 20: 4. 395-402 Apr  
Abstract: Changing the strength of synaptic connections between neurons is widely assumed to be the mechanism by which memory traces are encoded and stored in the central nervous system. Plastic changes appear to follow a regional specialization and underlie the specific type of memory mediated by the brain area in which plasticity occurs. Thus, long-term changes occurring at excitatory corticostriatal synapses should be critically involved in motor learning. Indeed, repetitive stimulation of the corticostriatal pathway can cause either a long-lasting increase or an enduring decrease in synaptic strength, respectively referred to as long-term potentiation (LTP), and long-term depression, both requiring a complex sequence of biochemical events. Once established, LTP can be reversed to control levels by a low-frequency stimulation protocol, an active phenomenon defined "synaptic depotentiation," required to erase redundant information. In the 6-hydroxydopamine rat model of Parkinson's disease (PD), striatal synaptic plasticity has been shown to be impaired, although chronic treatment with levodopa was able to restore it. Of interest, a consistent number of L-dopa-treated animals developed involuntary movements, resembling human dyskinesias. Strikingly, electrophysiological recordings from the dyskinetic group of rats demonstrated a selective impairment of synaptic depotentiation. This survey will provide an overview of plastic changes occurring at striatal synapses. The potential relevance of these findings in the control of motor function and in the pathogenesis both of PD and L-dopa-induced motor complications will be discussed.
Notes:
Giuseppina Martella, Cristiano De Persis, Paola Bonsi, Silvia Natoli, Dario Cuomo, Giorgio Bernardi, Paolo Calabresi, Antonio Pisani (2005)  Inhibition of persistent sodium current fraction and voltage-gated L-type calcium current by propofol in cortical neurons: implications for its antiepileptic activity.   Epilepsia 46: 5. 624-635 May  
Abstract: PURPOSE: Although it is widely used in clinical practice, the mechanisms of action of 2,6-di-isopropylphenol (propofol) are not completely understood. We examined the electrophysiologic effects of propofol on an in vitro model of epileptic activity obtained from a slice preparation. METHODS: The effects of propofol were tested both on membrane properties and on epileptiform events consisting of long-lasting, paroxysmal depolarization shifts (PDSs) induced by reducing the magnesium concentration from the solution and by adding bicuculline and 4-aminopyridine. These results were integrated with a patch-clamp analysis of Na(+) and high-voltage activated (HVA) calcium (Ca(2+)) currents from isolated cortical neurons. RESULTS: In bicuculline, to avoid any interference by gamma-aminobutyric acid (GABA)-A receptors, propofol (3-100 microM) did not cause significant changes in the current-evoked, sodium (Na(+))-dependent action-potential discharge. However, propofol reduced both the duration and the number of spikes of PDSs recorded from cortical neurons. Interestingly, relatively low concentrations of propofol [half-maximal inhibitory concentration (IC(50)), 3.9 microM) consistently inhibited the "persistent" fraction of Na(+) currents, whereas even high doses (< or =300 microM) had negligible effects on the "fast" component of Na(+) currents. HVA Ca(2+) currents were significantly reduced by propofol, and the pharmacologic analysis of this effect showed that propofol selectively reduced L-type HVA Ca(2+) currents, without affecting N or P/Q-type channels. CONCLUSIONS: These results suggest that propofol modulates neuronal excitability by selectively suppressing persistent Na(+) currents and L-type HVA Ca(2+) conductances in cortical neurons. These effects might cooperate with the opening of GABA-A-gated chloride channels, to achieve depression of cortical activity during both anesthesia and status epilepticus.
Notes:
Barbara Picconi, Antonio Pisani, Ilaria Barone, Paola Bonsi, Diego Centonze, Giorgio Bernardi, Paolo Calabresi (2005)  Pathological synaptic plasticity in the striatum: implications for Parkinson's disease.   Neurotoxicology 26: 5. 779-783 Oct  
Abstract: Repetitive stimulation of the corticostriatal pathway can cause either a long-lasting increase, or an enduring decrease in synaptic strength, respectively referred to as long-term potentiation (LTP), and long-term depression (LTD), both requiring a complex sequence of biochemical events. Once established, LTP can be reversed to control levels by a low-frequency stimulation (LFS) protocol, an active phenomenon defined "synaptic depotentiation", required to erase redundant information. In the 6-hydroxydopamine (6-OHDA) rat model of Parkinson's disease (PD), striatal synaptic plasticity has been shown to be impaired, though chronic treatment with l-dopa was able to restore it. Interestingly, a consistent number of l-dopa-treated animals developed involuntary movements, resembling human dyskinesias. Strikingly, electrophysiological recordings from the dyskinetic group of rats demonstrated a selective impairment of synaptic depotentiation. This survey will provide an overview of plastic changes occurring at striatal synapses. The potential relevance of these findings in the control of motor function and in the pathogenesis both of Parkinson's disease and l-dopa-induced motor complications will be discussed.
Notes:
A Pisani, M Diomedi, A Rum, P Cianciulli, R Floris, A Orlacchio, G Bernardi, P Calabresi (2005)  Acanthocytosis as a predisposing factor for non-ketotic hyperglycaemia induced chorea-ballism.   J Neurol Neurosurg Psychiatry 76: 12. 1717-1719 Dec  
Abstract: BACKGROUND: Episodic non-ketotic hyperglycaemia in patients with diabetes may be responsible for a syndrome characterised by hemichorea-hemiballism associated with unique radiological features. OBJECTIVE: To investigate whether factors other than hyperglycaemia may be responsible for the neurological involvement. METHODS: Three patients who developed a persistent chorea-ballism syndrome triggered by a hyperglycaemic crisis were investigated. In these patients, the persistence of the involuntary movements required neuroleptic medication. RESULTS: T1 weighted magnetic resonance imaging revealed bilateral hyperintense lesions involving the striatum. Surprisingly, in these patients, the laboratory investigations revealed peripheral red blood cell acanthocytosis in a significant proportion of cells. CONCLUSION: Compared with the large population of patients with diabetes who do not show abnormal involuntary movements, unrecognised acanthocytosis in diabetes might render patients prone to develop hemichorea-hemiballism.
Notes:
D Centonze, P Gubellini, S Rossi, B Picconi, A Pisani, G Bernardi, P Calabresi, C Baunez (2005)  Subthalamic nucleus lesion reverses motor abnormalities and striatal glutamatergic overactivity in experimental parkinsonism.   Neuroscience 133: 3. 831-840  
Abstract: Subthalamic nucleus (STN) is a target of choice for the neurosurgical treatment of Parkinson's disease (PD). The therapeutic effect of STN lesion in PD is classically ascribed to the rescue of physiological activity in the output structures of the basal ganglia, and little is known about the possible involvement of the striatum. In the present study, therefore, we electrophysiologically recorded in vitro single striatal neurons of DA-depleted rats unilaterally lesioned by 6-hydroxydopamine, treated or not with therapeutic doses of levodopa (l-DOPA), or with a consecutive ipsilateral STN lesion. We show that the beneficial motor effects produced in parkinsonian rats by STN lesion or l-DOPA therapy were paralleled by the normalization of overactive frequency and amplitude of striatal glutamate-mediated spontaneous excitatory postsynaptic currents (sEPSCs). Since neither l-DOPA treatment nor STN lesion affected sEPSCs kinetic properties, the reversal of these abnormalities in striatal excitatory synaptic transmission can be attributable to the normalization of glutamate release.
Notes:
P Bonsi, D Cuomo, C De Persis, D Centonze, G Bernardi, P Calabresi, A Pisani (2005)  Modulatory action of metabotropic glutamate receptor (mGluR) 5 on mGluR1 function in striatal cholinergic interneurons.   Neuropharmacology 49 Suppl 1: 104-113  
Abstract: Within basal ganglia, group I metabotropic glutamate receptor subtypes (mGluR1 and 5) frequently co-localize in the same neuron. However, little is known about how these receptors functionally interact. We addressed this issue by means of electrophysiological recordings of striatal cholinergic interneurons, a neuronal subtype that co-express both group I mGluRs. The group I non-selective agonist 3,5-DHPG induced a membrane depolarization/inward current that was prevented by co-application of LY 367385, a selective mGluR1 antagonist, and SIB 1757 or MPEP, blockers of mGluR5 subtype. The reversal potential for the response to 3,5-DHPG was close to the equilibrium potential for potassium channels. Repeated bath or focal applications of 3,5-DHPG induced a progressive decline in the amplitude of the membrane depolarization, suggesting that group I mGluRs undergo receptor desensitization. Interestingly, in the presence of the mGluR5 blocker, SIB 1757, this event was not observed, whereas it occurred in LY 367385. PKC blockers chelerythrine and calphostin C mimicked the inhibitory effect of SIB 1757. In a subset of interneurons, in MPEP or SIB 1757, 3,5-DHPG induced a 0.5-1 Hz oscillatory response, that was prevented by L-type Ca2+ channel blockers, and by the tyrosine kinase inhibitors genistein and lavendustin. Together, these data suggest that mGluR5 modulates mGluR1 activity to shape cell excitability.
Notes:
2004
Antonio Pisani, Paola Bonsi, Giuseppina Martella, Cristiano De Persis, Cinzia Costa, Francesco Pisani, Giorgio Bernardi, Paolo Calabresi (2004)  Intracellular calcium increase in epileptiform activity: modulation by levetiracetam and lamotrigine.   Epilepsia 45: 7. 719-728 Jul  
Abstract: PURPOSE: Alterations in neuronal calcium (Ca2+) homeostasis are believed to play an essential role in the generation and propagation of epileptiform events. Levetiracetam (LEV) and lamotrigine (LTG), novel antiepileptic drugs (AEDs), were tested on epileptiform events and the corresponding elevations in intracellular Ca2+ concentration ([Ca2+]i) recorded from rat neocortical slices. METHODS: Electrophysiological recordings were performed from single pyramidal neurons from a slice preparation. Spontaneous epileptiform events consisting of long-lasting, repetitive paroxysmal depolarization shifts (PDSs) and interictal spike activity were induced by reducing the magnesium concentration from the solution and by adding bicuculline and 4-aminopyridine. Simultaneously, microfluorimetric measurements of [Ca2+]i were performed. Optical imaging with Ca2+ indicators revealed a close correlation between Ca2+ transients and epileptiform events. RESULTS: Both LEV and LTG were able to reduce both amplitude and duration of PDSs, as well as the concomitant elevation in [Ca2+]i, in a dose-dependent fashion. Whole-cell patch-clamp recordings from isolated neocortical neurons revealed that LEV significantly reduced N-, and partially P/Q-type high-voltage-activated (HVA) Ca2+ currents, whereas sodium currents were unaffected. Interestingly, the inhibitory effects of LEV were mimicked and occluded by LTG or by a combination of omega-conotoxin GVIA and omega-agatoxin IVA, selective blockers of N- and P/Q-type HVA channels, respectively, suggesting a common site of action for these AEDs. CONCLUSIONS: These results demonstrate that large, transient elevations in neuronal [Ca2+]i correlate to epileptiform discharges. The antagonistic effects of LEV and LTG on [Ca2+]i overload might represent the basis for their anticonvulsant efficacy and could preserve neuronal viability.
Notes:
Emilia Saulle, Paolo Gubellini, Barbara Picconi, Diego Centonze, Domenicantonio Tropepi, Antonio Pisani, Michele Morari, Matteo Marti, Luisa Rossi, Michele Papa, Giorgio Bernardi, Paolo Calabresi (2004)  Neuronal vulnerability following inhibition of mitochondrial complex II: a possible ionic mechanism for Huntington's disease.   Mol Cell Neurosci 25: 1. 9-20 Jan  
Abstract: An impaired complex II (succinate dehydrogenase, SD) striatal mitochondrial activity is one of the prominent metabolic alterations in Huntington's disease (HD), and intoxication with 3-nitropropionic acid (3-NP), an inhibitor of mitochondrial complex II, mimics the motor abnormalities and the pathology of HD. We found that striatal spiny neurons responded to this toxin with an irreversible membrane depolarization/inward current, while cholinergic interneurons showed a hyperpolarization/outward current. Both these currents were sensitive to intracellular concentration of ATP. The 3-NP-induced depolarization was associated with an increased release of endogenous GABA, while acetylcholine levels were reduced. Moreover, 3-NP induced a higher depolarization in presymptomatic R6/2 HD transgenic mice compared to wild-type (WT) mice, showing an increased susceptibility to SD inhibition. Conversely, the hyperpolarization did not significantly differ from the one recorded in WT mice. The diverse membrane changes induced by SD inhibition may contribute to the cell-type-specific neuronal death in HD.
Notes:
P Bonsi, P Calabresi, C De Persis, M Papa, D Centonze, G Bernardi, A Pisani (2004)  Early ionic and membrane potential changes caused by the pesticide rotenone in striatal cholinergic interneurons.   Exp Neurol 185: 1. 169-181 Jan  
Abstract: Mitochondrial metabolism impairment has been implicated in the pathogenesis of several neurodegenerative disorders. In the present work, we combined electrophysiological recordings and microfluorometric measurements from cholinergic interneurons obtained from a rat neostriatal slice preparation. Acute application of the mitochondrial complex I inhibitor rotenone produced an early membrane hyperpolarization coupled to a fall in input resistance, followed by a late depolarizing response. Current-voltage relationship showed a reversal potential of -80 +/- 3 mV, suggesting the involvement of a potassium (K+) current. Simultaneous measurement of intracellular sodium [Na+]i or calcium [Ca2+]i concentrations revealed a striking correlation between [Na+]i elevation and the early membrane hyperpolarization, whereas a significant [Ca2+]i rise matched the depolarizing phase. Interestingly, ion and membrane potential changes were mimicked by ouabain, inhibitor of the Na+-K+ATPase, and were insensitive to tetrodotoxin (TTX) or to a combination of glutamate receptor antagonists. The rotenone effects were partially reduced by blockers of ATP-sensitive K+ channels, glibenclamide and tolbutamide, and largely attenuated by a low Na+-containing solution. Morphological analysis of the rotenone effects on striatal slices showed a significant decrease in the number of choline acetyltransferase (ChAT) immunoreactive cells. These results suggest that rotenone rapidly disrupts the ATP content, leading to a decreased Na+-K+ATPase function and, therefore, to [Na+]i overload. In turn, the hyperpolarizing response might be generated both by the opening of ATP-sensitive K+ channels and by Na+-activated K+ conductances. The increase in [Ca2+]i occurs lately and does not seem to influence the early events.
Notes:
D Centonze, P Gubellini, A Usiello, S Rossi, A Tscherter, E Bracci, E Erbs, N Tognazzi, G Bernardi, A Pisani, P Calabresi, E Borrelli (2004)  Differential contribution of dopamine D2S and D2L receptors in the modulation of glutamate and GABA transmission in the striatum.   Neuroscience 129: 1. 157-166  
Abstract: Compelling evidence indicates that the long (D2L) and the short (D2S) isoform of dopamine (DA) D2 receptors serve distinct physiological functions in vivo. To address the involvement of these isoforms in the control of synaptic transmission in the striatum, we measured the sensitivity to D2 receptor stimulation of glutamate- and GABA-mediated currents recorded from striatal neurons of three mutant mice, in which the expression of D2L and D2S receptors was either ablated or variably altered. Our data indicate that both isoforms participate in the presynaptic inhibition of GABA transmission in the striatum, while the D2-receptor-dependent modulation of glutamate release preferentially involves the D2S receptor. Accordingly, the inhibitory effects of the DA D2 receptor agonist quinpirole (10 microM) on GABA(A)-mediated spontaneous inhibitory postsynaptic currents (IPSCs)correlate with the total number of D2 receptor sites in the striatum, irrespective of the specific receptor isoform expressed. In contrast, glutamate-mediated spontaneous excitatory postsynaptic currents (EPSCs) were significantly inhibited by quinpirole only when the total number of D2 receptor sites, normally composed by both D2L and D2S receptors in a ratio favoring the D2L isoform, was modified to express only the D2S isoform at higher than normal levels. Understanding the physiological roles of DA D2 receptors in the striatum is essential for the treatment of several neuropsychiatric conditions, such as Parkinson's disease, Tourette's syndrome, schizophrenia, and drug addiction.
Notes:
Antonio Pisani, Paola Bonsi, Paolo Calabresi (2004)  Calcium signaling and neuronal vulnerability to ischemia in the striatum.   Cell Calcium 36: 3-4. 277-284 Sep/Oct  
Abstract: Neurons express extremely different sensitivity to ischemic insults. The neuronal vulnerability is region-specific and the striatum is among the most susceptible areas to ischemic damage. Projecting GABAergic medium-sized neurons are very sensitive to energy metabolism impairment, whereas interneurons are selectively spared. However, the reasons for this differential vulnerability are largely unknown. Calcium ions (Ca2+) are important intracellular messengers enabling several physiological processes. However, excessive Ca2+ influx from the extracellular space or release from internal stores can elevate Ca2+ to levels that exceed the capacity of single neurons to appropriately buffer such overload. This capacity also appears to be a peculiar feature of single neuronal subtypes. This review will provide a brief survey of the ionic basis underlying the differential responses to in vitro ischemia of distinct striatal neuronal subtypes, mainly focusing on the role of Ca2+. The potential relevance of these findings in the development of therapeutic strategies for acute stroke will be discussed.
Notes:
Paolo Gubellini, Antonio Pisani, Diego Centonze, Giorgio Bernardi, Paolo Calabresi (2004)  Metabotropic glutamate receptors and striatal synaptic plasticity: implications for neurological diseases.   Prog Neurobiol 74: 5. 271-300 Dec  
Abstract: Long- and short-term changes in the efficacy of synaptic transmission are known as synaptic plasticity. Phenomena such as long-term depression (LTD) and long-term potentiation (LTP) are two classical forms of synaptic plasticity that are expressed in several brain areas, including the striatum. Bi-directional changes in corticostriatal synaptic transmission, i.e. LTD and LTP, have been proposed to represent the cellular mechanisms underlying the physiological processes of motor learning and behavior. In parallel, other forms of synaptic plasticity induced by different experimental pathological conditions have been described in the striatum; these changes are presumed to represent the cellular processes underlying several neurological disorders, including Parkinson's disease and Huntington's chorea. A considerable number of receptor and post-receptor systems participate in the mechanisms of synaptic plasticity in the striatum, where glutamate plays a primary role through its ionotropic and metabotropic receptors (mGluRs). These latter constitute a group of recently characterized molecules, which have been shown to modulate synaptic transmission by acting on cellular excitability, ionic conductances and neurotransmitter release. These receptors have also been involved in several neuronal pathophysiological processes. The role of mGluRs in synaptic transmission and synaptic plasticity has been recently deeply studied and characterized in the striatum, in both physiological and pathological conditions. These findings open new and interesting perspectives in the study of basal ganglia function, and introduce new possible pharmacological approaches for the treatment of neurological disorders in which mGluRs have been experimentally involved.
Notes:
Paola Bonsi, Cristiano De Persis, Paolo Calabresi, Giorgio Bernardi, Antonio Pisani (2004)  Coordinate high-frequency pattern of stimulation and calcium levels control the induction of LTP in striatal cholinergic interneurons.   Learn Mem 11: 6. 755-760 Nov/Dec  
Abstract: Current evidence appoints a central role to cholinergic interneurons in modulating striatal function. Recently, a long-term potentiation (LTP) of synaptic transmission has been reported to occur in these neurons. The relationship between the pattern of cortico/thalamostriatal fibers stimulation, the consequent changes in the intracellular calcium concentration ([Ca2+]i), and the induction of synaptic plasticity was investigated in striatal cholinergic interneurons from a rat corticostriatal slice preparation by means of combined electrophysiological intracellular recordings and microfluorometric techniques. Different protocols of stimulation were considered, varying both the frequency and the duration of the train of stimuli. High-frequency stimulation (HFS) (three trains at 100 Hz for 3 sec, 20-sec interval) induced a rise in [Ca2+]i, exceeding by fivefold the resting level, and caused a LTP of synaptic transmission. Tetanic stimulation delivered at lower frequencies (5-30 Hz) failed to induce long-term changes of synaptic efficacy. The observed elevation in [Ca2+]i during HFS was primarily mediated by L-type high-voltage activated (HVA)-Ca2+ channels, as it was fully prevented by nifedipine. Conversely, blockade of NMDA and AMPA glutamate receptor did not affect either LTP or the magnitude of the [Ca2+]i rise. Interestingly, the pharmacological analysis of the post-tetanic depolarizing postsynaptic potential (DPSP) revealed that LTP was attributable, to a large extent, to the potentiation of the GABA(A)-mediated component. In conclusion, the expression of LTP in striatal cholinergic interneurons is a selective response to a precise stimulation pattern of induction requiring a critical rise in [Ca2+]i.
Notes:
2003
A Pisani, P Bonsi, D Centonze, P Gubellini, G Bernardi, P Calabresi (2003)  Targeting striatal cholinergic interneurons in Parkinson's disease: focus on metabotropic glutamate receptors.   Neuropharmacology 45: 1. 45-56 Jul  
Abstract: In the early sixties, anticholinergic drugs were introduced in the pharmacological treatment of Parkinson's disease (PD). The rationale behind their utilisation in the treatment of the disease was based on the evidence of an imbalance between the dopaminergic inputs and the intrinsic cholinergic innervation within the striatum. Metabotropic glutamate (mGlu) receptors have been shown to play a key role in striatal function both in physiological conditions and in experimental models of diseases affecting this brain area. Indeed, compelling electrophysiological and morphological evidence shows that mGlu receptors are highly expressed at cellular level and exert a profound modulatory role on cholinergic interneurons excitability. This review will provide a brief survey of studies on the localization and function of mGlu receptors in cholinergic interneurons. The potential relevance of these findings in the control of motor function and in the treatment of PD will be discussed.
Notes:
Paola Bonsi, Tiziana Florio, Annamaria Capozzo, Antonio Pisani, Paolo Calabresi, Alberto Siracusano, Eugenio Scarnati (2003)  Behavioural learning-induced increase in spontaneous GABAA-dependent synaptic activity in rat striatal cholinergic interneurons.   Eur J Neurosci 17: 1. 174-178 Jan  
Abstract: Cholinergic striatal interneurons play a crucial role in cognitive aspects of context-dependent motor behaviours. They are considered to correspond to the tonically active neurons (TANs) of the primate striatum, which phasically decrease their discharge at the presentation of reward-related sensory stimuli. The origin of this response is still poorly understood. Therefore, in the present paper, we have investigated whether synaptic changes establish in cholinergic interneurons from young rats that have learned a rewarded, externally cued sensorimotor task. Corticostriatal slices were prepared from both control and trained rats. No significant change in intrinsic membrane properties and evoked synaptic activity was observed in cholinergic interneurons, nor the responsiveness to exogenously applied dopaminergic and glutamatergic agonists was modified. Conversely, an increased occurrence of spontaneous bicuculline-sensitive depolarizing postsynaptic potentials (sDPSP) was recorded. The frequency of the GABAA-mediated sDPSP was increased in comparison to not-conditioned rats. Overall, these results suggest that after learning a rewarded sensorimotor paradigm an increased GABA influence develops on cholinergic interneurons. The origin of this effect might be searched in collaterals of GABAergic output spiny neurons as well as in GABAergic striatal interneurons impinging onto cholinergic interneurons. This intrastriatal mechanism might be involved in the phasic suppression of discharge of TANs at the presentation of reward-related sensory stimuli.
Notes:
Paola Bonsi, Antonio Pisani, Giorgio Bernardi, Paolo Calabresi (2003)  Stimulus frequency, calcium levels and striatal synaptic plasticity.   Neuroreport 14: 3. 419-422 Mar  
Abstract: Electrophysiological and microfluorimetric measurements were combined to correlate the changes in intracellular calcium concentration to synaptic plasticity in striatal medium spiny projection neurons, during three different protocols of synaptic stimulation (1, 10, and 100 Hz). The 1 Hz stimulation protocol did not cause significant changes either in excitatory postsynaptic potential amplitude or in intracellular calcium concentration. The 10 Hz stimulation protocol induced a moderate increase of intracellular calcium without significantly affecting the excitatory postsynaptic potential amplitude. During the high frequency stimulation large, transient intracellular calcium elevations were recorded, and a significant long-term depression of excitatory postsynaptic potential was achieved. These results suggest that the induction of long-term depression required large, transient increases in intracellular calcium concentration.
Notes:
A Pisani, P Bonsi, D Centonze, A Martorana, F Fusco, G Sancesario, C De Persis, G Bernardi, P Calabresi (2003)  Activation of beta1-adrenoceptors excites striatal cholinergic interneurons through a cAMP-dependent, protein kinase-independent pathway.   J Neurosci 23: 12. 5272-5282 Jun  
Abstract: The role of noradrenergic neurotransmission was analyzed in striatal cholinergic interneurons. Conventional intracellular and whole-cell patch-clamp recordings were made of cholinergic interneurons in rat brain slice preparations. Bath-applied noradrenaline (NA) (1-300 microm) dose-dependently induced both an increase in the spontaneous firing activity and a membrane depolarization of the recorded cells. In voltage-clamped neurons, an inward current was induced by NA. This effect was not prevented by alpha-adrenoceptor antagonists, whereas it was mimicked by the beta-adrenoceptor agonist isoproterenol and blocked by the beta1 antagonists propranolol and betaxolol. Interestingly, forskolin, activator of adenylate cyclase, mimicked and occluded the membrane depolarization obtained at saturating doses of both dopamine and NA. Accordingly, SQ22,536, a selective adenylate cyclase inhibitor, reduced the response to NA. Analysis of the reversal potential of the NA-induced current did not provide homogeneous results, indicating the involvement of multiple membrane conductances. Because cAMP is known to modulate Ih, the effects of ZD7288, a selective inhibitor of Ih current, were examined on the NA-induced membrane depolarization/inward current. ZD7288 mostly reduced the response to NA. However, both KT-5720 and H-89, selective protein kinase A (PKA) blockers, failed to prevent the excitatory action of NA. Likewise, calphostin C, antagonist of PKC, genistein, inhibitor of tyrosine kinase, and 8-Bromo-cGMP, blocker of PKG, did not affect the response to NA. Finally, double-labeling experiments combining beta1-adrenoceptor and choline acetyltransferase immunocytochemistry by means of confocal microscopy revealed a strong beta1-adrenoceptor labeling on cholinergic interneurons. We conclude that NA depolarizes striatal cholinergic interneurons via beta1-adrenoceptor activation, through a cAMP-dependent but PKA-independent mechanism.
Notes:
Diego Centonze, Cristina Grande, Alessandro Usiello, Paolo Gubellini, Eric Erbs, Ana B Martin, Antonio Pisani, Nadia Tognazzi, Giorgio Bernardi, Rosario Moratalla, Emiliana Borrelli, Paolo Calabresi (2003)  Receptor subtypes involved in the presynaptic and postsynaptic actions of dopamine on striatal interneurons.   J Neurosci 23: 15. 6245-6254 Jul  
Abstract: By stimulating distinct receptor subtypes, dopamine (DA) exerts presynaptic and postsynaptic actions on both large aspiny (LA) cholinergic and fast-spiking (FS) parvalbumin-positive interneurons of the striatum. Lack of receptor- and isoform-specific pharmacological agents, however, has hampered the progress toward a detailed identification of the specific DA receptors involved in these actions. To overcome this issue, in the present study we used four different mutant mice in which the expression of specific DA receptors was ablated. In D1 receptor null mice, D1R-/-, DA dose-dependently depolarized both LA and FS interneurons. Interestingly, SCH 233390 (10 microm), a D1-like (D1 and D5) receptor antagonist, but not l-sulpiride (3-10 microm), a D2-like (D2, D3, D4) receptor blocker, prevented this effect, implying D5 receptors in this action. Accordingly, immunohistochemical analyses in both wild-type and D1R-/- mice confirmed the expression of D5 receptors in both cholinergic and parvalbumin-positive interneurons of the striatum. In mice lacking D2 receptors, D2R-/-, the DA-dependent inhibition of GABA transmission was lost in both interneuron populations. Both isoforms of D2 receptor, D2L and D2S, were very likely involved in this inhibitory action, as revealed by the electrophysiological analysis of the effect of the DA D2-like receptor agonist quinpirole in two distinct mutants lacking D2L receptors and expressing variable contents of D2S receptors. The identification of the receptor subtypes involved in the actions of DA on different populations of striatal cells is essential to understand the circuitry of the basal ganglia and to develop pharmacological strategies able to interfere selectively with specific neuronal functions.
Notes:
Paolo Calabresi, Diego Centonze, Antonio Pisani, LetiziaM Cupini, Giorgio Bernardi (2003)  Synaptic plasticity in the ischaemic brain.   Lancet Neurol 2: 10. 622-629 Oct  
Abstract: Activity-dependent long-term potentiation (LTP) of excitatory neurotransmission underlies specific forms of associative learning and memory. A brief period of energy deprivation induces LTP in specific subsets of neurons; this synaptic plasticity might contribute to the delayed effects of brain ischaemia. In this review, we discuss the similarities and differences between LTP induced by energy deprivation and "physiological" LTP. On the basis of recent studies, we propose that pathological plasticity induced by energy deprivation can play a part in delayed neuronal death in the hippocampus and the striatum after global ischaemia and in the conversion of ischaemic penumbra to infarct core after focal ischaemia. We discuss evidence that ischaemia could also induce protective and reparative forms of neuronal plasticity that may play a part in ischaemic tolerance and poststroke recovery.
Notes:
Diego Centonze, Paolo Gubellini, Antonio Pisani, Giorgio Bernardi, Paolo Calabresi (2003)  Dopamine, acetylcholine and nitric oxide systems interact to induce corticostriatal synaptic plasticity.   Rev Neurosci 14: 3. 207-216  
Abstract: Two distinct forms of synaptic plasticity have been described at corticostriatal synapses: long-term depression (LTD) and long-term potentiation (LTP). Both these enduring changes in the efficacy of excitatory neurotransmission in the striatum have a major impact on the physiological activity of the basal ganglia and are triggered by the stimulation of complex and independent cascades of intracellular second messenger systems. Along with the massive glutamatergic inputs originating from the cortex, striatal neurons receive a myriad of other synaptic contacts arising from different sources. In particular, while the nigrostriatal pathway provides this brain area with dopamine (DA), intrinsic circuits are the main source of acetylcholine (ACh) and nitric oxide (NO). The three neurotransmitter systems interact with each other to determine whether corticostriatal LTP or LTD is triggered in response to repetitive synaptic stimulation. Two distinct subtypes of striatal interneurons produce ACh and NO in the striatum. These interneurons are activated by the cortex during the induction phase of striatal plasticity, and stimulate, in turn, the intracellular changes in projection neurons required for LTD or LTP. Interneurons, therefore, exert a feedforward control of the excitability of striatal projection neurons by ensuring the coordinate expression of two alternative forms of synaptic plasticity at the same type of excitatory synapse. The integrative action exerted by striatal projection neurons on the converging information arising from the cortex, nigral DA neurons, and from ACh- and NO-producing interneurons dictates the final output of the striatum to the other structures of the basal ganglia.
Notes:
Diego Centonze, Cristina Grande, Emilia Saulle, Ana B Martin, Paolo Gubellini, Nancy Pavón, Antonio Pisani, Giorgio Bernardi, Rosario Moratalla, Paolo Calabresi (2003)  Distinct roles of D1 and D5 dopamine receptors in motor activity and striatal synaptic plasticity.   J Neurosci 23: 24. 8506-8512 Sep  
Abstract: Stimulation of dopamine (DA) receptors in the striatum is essential for voluntary motor activity and for the generation of plasticity at corticostriatal synapses. In the present study, mice lacking DA D1 receptors have been used to investigate the involvement of the D1-like class (D1 and D5) of DA receptors in locomotion and corticostriatal long-term depression (LTD) and long-term potentiation (LTP). Our results suggest that D1 and D5 receptors exert distinct actions on both activity-dependent synaptic plasticity and spontaneous motor activity. Accordingly, the ablation of D1 receptors disrupted corticostriatal LTP, whereas pharmacological blockade of D5 receptors prevented LTD. On the other side, genetic ablation of D1 receptors increased locomotor activity, whereas the D1/D5 receptor antagonist SCH 23390 decreased motor activity in both control mice and mice lacking D1 receptors. Endogenous DA stimulated D1 and D5 receptors in distinct subtypes of striatal neurons to induce, respectively, LTP and LTD. In control mice, in fact, LTP was blocked by inhibiting the D1-protein kinase A pathway in the recorded spiny neuron, whereas the striatal nitric oxide-producing interneuron was presumably the neuronal subtype stimulated by D5 receptors during the induction phase of LTD. Understanding the role of DA receptors in striatal function is essential to gain insights into the neural bases of critical brain functions and of dramatic pathological conditions such as Parkinson's disease, schizophrenia, and drug addiction.
Notes:
2002
A Pisani, P Bonsi, G Bernardi, P Calabresi (2002)  Impairment of mitochondrial metabolism differentially affects striatal neuronal subtypes.   Neuroreport 13: 5. 641-644 Apr  
Abstract: Electrophysiological and microfluorometric measurements were combined to analyse the responses of rat striatal medium spiny (MS) and large aspiny (LA) interneurons to the mitochondrial uncoupler carbonyl cyanide p-trifluoromethoxyphenylidrazone (FCCP). FCCP produced a membrane depolarisation coupled to an irreversible increase in intracellular calcium [Ca2+]i in MS. Conversely, LA interneurons hyperpolarised and a moderate [Ca2+]i rise was observed. Cyclosporin A, inhibitor of the mitochondrial membrane transition pore, prevented the FCCP-induced changes in LA interneurons, whereas only a partial reduction was observed in MS cells. The present results indicate that mitochondrial Ca2+ released into the cytosol may contribute to the selective vulnerability to metabolic impairment in striatal neuronal subtypes.
Notes:
Diego Centonze, Emilia Saulle, Antonio Pisani, Paola Bonsi, Domenicantonio Tropepi, Giorgio Bernardi, Paolo Calabresi (2002)  Tissue plasminogen activator is required for striatal post-ischemic synaptic potentiation.   Neuroreport 13: 1. 115-118 Jan  
Abstract: Recent experimental observations indicate that tPA plays a key role in the development of neuronal damage that follows cerebral ischemia and excitotoxicity. In an attempt to clarify how tPA favors ischemia-induced neuronal damage, we performed in vitro electrophysiological experiments in striatal slices by using mice selectively lacking this serine protease.We found that tPA ablation did not affect the membrane depolarization of striatal neurons exposed to combined oxygen and glucose deprivation but fully prevented the induction of NMDA-dependent post-ischemic long-term synaptic potentiation. The absence of striatal post-ischemic pote ntiat ion observed in tPA-lacking mice may account for the significant neuroprotection observed in these animals after the occlusion of middle cerebral artery.
Notes:
Diego Centonze, Enrico Bracci, Antonio Pisani, Paolo Gubellini, Giorgio Bernardi, Paolo Calabresi (2002)  Activation of dopamine D1-like receptors excites LTS interneurons of the striatum.   Eur J Neurosci 15: 12. 2049-2052 Jun  
Abstract: Dopamine (DA) has a crucial role in the modulation of striatal neuron activity. Along with projection cells, striatal interneurons receive dense dopaminergic innervation from midbrain neurons, thus, also suggesting that these intrinsic cells represent a synaptic target for DA action in the striatum. In the present study, we investigated the effects of DA on low-threshold spike (LTS) interneurons of the rat striatum, by means of in vitro whole-cell patch-clamp electrophysiological recordings. Dopamine depolarized LTS cells, a pharmacological effect prevented by D1- but not D2-like DA receptor antagonists. The membrane depolarization produced by DA was sufficient to trigger action potential discharge in the recorded cells and was insensitive to tetrodotoxin and glutamate receptor antagonists. In addition, this pharmacological effect was mimicked by D1- but not D2-like DA receptor agonists, implying the selective involvement of D1-like receptors in this action.
Notes:
Diego Centonze, Barbara Picconi, Christelle Baunez, Emiliana Borrelli, Antonio Pisani, Giorgio Bernardi, Paolo Calabresi (2002)  Cocaine and amphetamine depress striatal GABAergic synaptic transmission through D2 dopamine receptors.   Neuropsychopharmacology 26: 2. 164-175 Feb  
Abstract: The striatum is a brain area implicated in the pharmacological action of drugs of abuse. To test the possible involvement of both cocaine and amphetamine in the modulation of synaptic transmission in this nucleus, we coupled whole-cell patch clamp recordings from striatal spiny neurons to the focal stimulation of glutamatergic or GABAergic nerve terminals. We found that neither cocaine (1-600 microM) nor amphetamine (0.3-300 microM) significantly affected the glutamate-mediated EPSCs recorded from these cells. Conversely, both pharmacological agents depressed GABA-mediated IPSCs in a dose-dependent manner. This effect was mediated by the stimulation of dopamine (DA) D2 receptors since it was prevented by 3 microM L-sulpiride (a DA D2-like receptor antagonist), mimicked by the DA D2-like receptor agonist quinpirole (0.3-30 microM), and absent in mice lacking DA D2 receptors. A presynaptic mechanism was likely involved in this action since both cocaine and amphetamine depress GABAergic transmission by increasing paired-pulse facilitation. Cocaine and amphetamine failed to affect GABAergic IPSCs after 6-OHDA-induced nigral lesion, indicating that both drugs cause their effects through the release of endogenous DA. The modulation of GABAergic synaptic transmission in the striatum might underlie some motor and cognitive effects of psychostimulants in mammalians.
Notes:
Paolo Calabresi, Emilia Saulle, Diego Centonze, Antonio Pisani, Girolama A Marfia, Giorgio Bernardi (2002)  Post-ischaemic long-term synaptic potentiation in the striatum: a putative mechanism for cell type-specific vulnerability.   Brain 125: Pt 4. 844-860 Apr  
Abstract: In the present in vitro study of rat brain, we report that transient oxygen and glucose deprivation (in vitro ischaemia) induced a post-ischaemic long-term synaptic potentiation (i-LTP) at corticostriatal synapses. We compared the physiological and pharmacological characteristics of this pathological form of synaptic plasticity with those of LTP induced by tetanic stimulation of corticostriatal fibres (t-LTP), which is thought to represent a cellular substrate of learning and memory. Activation of N-methyl-D-aspartate (NMDA) receptors was required for the induction of both forms of synaptic plasticity. The intraneuronal injection of the calcium chelator BAPTA [bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetate] and inhibitors of the mitogen-activated protein kinase pathway blocked both forms of synaptic plasticity. However, while t-LTP showed input specificity, i-LTP occurred also at synaptic pathways inactive during the ischaemic period. In addition, scopolamine, a muscarinic receptor antagonist, prevented the induction of t-LTP but not of i-LTP, indicating that endogenous acetylcholine is required for physiological but not for pathological synaptic potentiation. Finally, we found that striatal cholinergic interneurones, which are resistant to in vivo ischaemia, do not express i-LTP while they express t-LTP. We suggest that i-LTP represents a pathological form of synaptic plasticity that may account for the cell type-specific vulnerability observed in striatal spiny neurones following ischaemia and energy deprivation.
Notes:
Antonio Pisani, Paola Bonsi, Maria Vincenza Catania, Raffaella Giuffrida, Michele Morari, Matteo Marti, Diego Centonze, Giorgio Bernardi, Ann E Kingston, Paolo Calabresi (2002)  Metabotropic glutamate 2 receptors modulate synaptic inputs and calcium signals in striatal cholinergic interneurons.   J Neurosci 22: 14. 6176-6185 Jul  
Abstract: Striatal cholinergic interneurons were recorded from a rat slice preparation. Synaptic potentials evoked by intrastriatal stimulation revealed three distinct components: a glutamatergic EPSP, a GABA(A)-mediated depolarizing potential, and an acetylcholine (ACh)-mediated IPSP. The responses to group II metabotropic glutamate (mGlu) receptor activation were investigated on the isolated components of the synaptic potentials. Each pharmacologically isolated component was reversibly reduced by bath-applied LY379268 and ((2S,1'R,2'R,3'R)-2-(2,3-dicarboxylcyclopropyl)-glycine, group II agonists. In an attempt to define the relevance of group II mGlu receptor activation on cholinergic transmission, we focused on the inhibitory effect on the IPSP, which was mimicked and occluded by omega-agatoxin IVA (omega-Aga-IVA), suggesting a modulation on P-type high-voltage-activated calcium channels. Spontaneous calcium-dependent plateau-potentials (PPs) were recorded with cesium-filled electrodes plus tetraethylammonium and TTX in the perfusing solution, and measurements of intracellular calcium [Ca2+]i changes were obtained simultaneously. PPs and the concomitant [Ca2+]i elevations were significantly reduced in amplitude and duration by LY379268. The mGlu-mediated inhibitory effect on PPs was mimicked by omega-Aga-IVA, suggesting an involvement of P-type channels. Moreover, electrically induced ACh release from striatal slices was reduced by mGlu2 receptor agonists and occluded by omega-Aga-IVA in a dose-dependent manner. Finally, double-labeling experiments combining mGlu2 receptor in situ hybridization and choline acetyltransferase immunocytochemistry revealed a strong mGlu2 receptor labeling on cholinergic interneurons, whereas single-label isotopic in situ hybridization for mGlu3 receptors did not show any labeling in these large striatal interneurons. These results suggest that the mGlu2 receptor-mediated modulatory action on cell excitability would tune striatal ACh release, representing an interesting target for pharmacological intervention in basal ganglia disorders.
Notes:
Barbara Picconi, Antonio Pisani, Diego Centonze, Giuseppe Battaglia, Marianna Storto, Ferdinando Nicoletti, Giorgio Bernardi, Paolo Calabresi (2002)  Striatal metabotropic glutamate receptor function following experimental parkinsonism and chronic levodopa treatment.   Brain 125: Pt 12. 2635-2645 Dec  
Abstract: Excessive activation of ionotropic glutamate receptors in the striatum contributes to the pathophysiology of motor symptoms in Parkinson's disease. Metabotropic glutamate (mGlu) receptors regulate striatal excitatory synaptic transmission, and adaptive changes in their function might occur following dopaminergic denervation and chronic levodopa-treatment (L-DOPA). Corticostriatal glutamatergic transmission was examined in striatal slices obtained from rats unilaterally denervated with the dopaminergic neurotoxin, 6-hydroxy dopamine (6-OHDA), and from denervated rats chronically treated with L-DOPA plus benserazide (25 + 6.25 mg/kg, intraperitoneally, twice daily for 21 days). Selective agonists of mGlu2 and -3 receptor subtypes [compounds LY379268 and (2S,2'R,3'R)-2-(2',3'-[(3)H]-dicarboxycyclopropyl)glycine ([(3)H]DCG-IV)] exhibited a much greater potency in depressing excitatory transmission and corticostriatal synapses in slices prepared from 6-OHDA-lesioned animals. Dopaminergic denervation affected neither the ability of L-(+)-2-amino-4-phosphonobutyric acid (L-AP4; a selective agonist of mGlu4, -6, -7 and -8 receptors) to inhibit corticostriatal transmission, nor the ability of (S)-3,5-dihydroxyphenylglycine (3,5-DHPG; a selective agonist of mGlu1 and -5 receptors) to potentiate responses mediated by N-methyl-D-aspartate (NMDA) receptor activation in striatal neurones. The increased responsiveness to mGlu2/3 receptor agonists was no longer detected in slices from 6-OHDA-lesioned animals chronically treated with L-DOPA. 6-OHDA-induced denervation also led to an increased expression of striatal mGlu2/3 receptor proteins and to a >2-fold increase in the maximal density (B(max)) of [(3)H]DCG-IV binding sites. These increases were again reversed by chronic treatment with L-DOPA. No changes in the expression of mGlu4 receptors or the alpha(i1) and alpha(i2) subunits of the G(i) proteins were induced by any of the treatments. We suggest that an enhanced sensitivity of pre-synaptic inhibitory mGlu2/3 receptors might represent an adaptive change triggered by dopaminergic denervation, which can be reversed by L-DOPA treatment.
Notes:
Diego Centonze, Alessandro Usiello, Paolo Gubellini, Antonio Pisani, Emiliana Borrelli, Giorgio Bernardi, Paolo Calabresi (2002)  Dopamine D2 receptor-mediated inhibition of dopaminergic neurons in mice lacking D2L receptors.   Neuropsychopharmacology 27: 5. 723-726 Nov  
Abstract: Two isoforms of the dopamine (DA) D2 receptor are generated from the same gene by alternative splicing, D2L and D2S. To identify which isoform is involved in the autoregulation of midbrain DA neuron activity, intracellular electrophysiological recordings were performed from substantia nigra and ventral tegmental area neurons of mice lacking either D2L(D2L-/-) or both D2L and D2S receptors (D2-/-). In midbrain DA neurons from wild-type mice, DA and quinpirole, a DA D2-like receptor agonist, produced a significant somatic membrane hyperpolarization, which led to a reversible inhibition of firing activity. Interestingly, this effect was fully abolished in D2-/- neurons but still present in D2L-/- DA neurons. These data clearly show that D2S receptors are the main somatodendritic autoreceptors of central DA neurons. Thus, pharmacological compounds able to interfere selectively with presynaptic D2S receptors might constitute effective therapeutic strategies in neuropsychiatric disorders, by causing negligible side-effects.
Notes:
Diego Centonze, Maddalena Napolitano, Emilia Saulle, Paolo Gubellini, Barbara Picconi, Alessandro Martorana, Antonio Pisani, Alberto Gulino, Giorgio Bernardi, Paolo Calabresi (2002)  Tissue plasminogen activator is required for corticostriatal long-term potentiation.   Eur J Neurosci 16: 4. 713-721 Aug  
Abstract: Several experimental data indicate that tissue plasminogen activator (tPA) is involved in memory formation and synaptic plasticity in different brain areas. In the attempt to highlight the role of this serine protease in striatal neuron activity, mice lacking tPA have been used for electrophysiological, immunohistochemical and Western blot experiments. Disruption of tPA gene prevented corticostriatal long-term potentiation, an NMDA-dependent form of synaptic plasticity requiring the stimulation of both dopamine and acetylcholine receptors. Spontaneous and evoked glutamatergic transmission was intact in the striatum of tPA-deficient mice, as was the nigrostriatal dopamine innervation and the expression of dopamine D1 receptors. Conversely, the sensitivity of striatal cholinergic interneurons to dopamine D1 receptor stimulation was lost in these mutants, suggesting that tPA facilitates long-term potentiation (LTP) induction in the striatum by favouring the D1 receptor-mediated excitation of acetylcholine-producing interneurons. The demonstration that tPA ablation interferes with the induction of corticostriatal LTP and with the dopamine receptor-mediated control of cholinergic interneurons might help to explain the altered striatum-dependent learning deficits observed in tPA-deficient mice and provides new insights into the molecular mechanisms underlying synaptic plasticity in the striatum.
Notes:
2001
A Pisani, P Bonsi, B Picconi, M Tolu, P Giacomini, E Scarnati (2001)  Role of tonically-active neurons in the control of striatal function: cellular mechanisms and behavioral correlates.   Prog Neuropsychopharmacol Biol Psychiatry 25: 1. 211-230 Jan  
Abstract: 1. The striatum is primarily involved in motor planning and motor learning. Human diseases involving its complex circuitry lead to movement disorders such as Parkinson's disease (PD) and Huntington's disease (HD). Moreover the striatum has been involved in processes linked to reward, cognition and drug addiction. 2. The high content of acetylcholine (ACh) found in the striatum is due to the presence of cholinergic interneurons. The intrinsic electrical and synaptic properties of these interneurons have been recently characterized. However, their functional significance is far from being fully elucidated. 3. In vivo electrophysiological experiments from behaving monkeys have identified these cholinergic interneurons as "Tonically Active Neurons" (TANs). They are activated by presentation of sensory stimuli of behavioral significance or linked to reward. 4. Experimental evidence showed that integrity of the nigrostriatal dopaminergic system is essential for TANs to express learned activity. 5. PD is known to be due to the loss of the nigrostriatal dopaminergic pathway and the ensuing imbalance between the content of dopamine and acetylcholine in the striatum. This evidence supports the hypothesis that cholinergic interneurons, or TANs, play a key role in the modulation of striatal function.
Notes:
A Pisani, P Bonsi, D Centonze, G Bernardi, P Calabresi (2001)  Functional coexpression of excitatory mGluR1 and mGluR5 on striatal cholinergic interneurons.   Neuropharmacology 40: 3. 460-463 Mar  
Abstract: The group I mGluR agonist (S)-3,5-dihydroxyphenylglycine (3,5-DHPG) and the mGluR5 agonist 2-chloro-5-hydroxyphenylglycine both induced a membrane depolarisation of striatal cholinergic interneurons. The response to 3,5-DHPG was blocked only by the coadministration of mGluR1 and mGluR5 antagonists, suggesting that both mGluRs are involved in this excitatory effect in striatal cholinergic interneurons.
Notes:
D Centonze, A Pisani, P Bonsi, P Giacomini, G Bernardi, P Calabresi (2001)  Stimulation of nitric oxide-cGMP pathway excites striatal cholinergic interneurons via protein kinase G activation.   J Neurosci 21: 4. 1393-1400 Feb  
Abstract: Conflicting data have been collected so far on the action of nitric oxide (NO) on cholinergic interneurons of the striatum. In the present in vitro electrophysiological study, we reported that intracellularly recorded striatal cholinergic interneurons are excited by both hydroxylamine and S-nitroso-N-acetylpenicillamine, two NO donors. This excitation persisted unchanged in the presence of glutamate, dopamine, and substance P receptor antagonists as well as after blockade of tetrodotoxin (TTX)- and calcium channel-sensitive transmitter release, suggesting that NO produces its effects by modulating directly resting ion conductances in the somatodendritic region of striatal cholinergic cells. The depolarizing effect of hydroxylamine was greatly reduced by lowering external concentrations of sodium ions (from 126 to 38 mm) and did not reverse polarity in the voltage range from -120 to -40 mV. The sodium transporter blockers bepridil and 3',4'-dichlorobenzamil were conversely ineffective in preventing NO-induced membrane depolarization. Intracellular cGMP elevation is required for the action of hydroxylamine on striatal cholinergic cells, as demonstrated by the findings that the membrane depolarization produced by this pharmacological agent was prevented by bath and intracellular application of two inhibitors of soluble guanylyl cyclase and was mimicked and occluded by zaprinast, a cGMP phosphodiesterase inhibitor. Finally, intracellular Rp-8-Br-cGMPS, a protein kinase G (PKG) inhibitor, blocked the hydroxylamine-induced membrane depolarization of cholinergic interneurons, whereas both okadaic acid and calyculin A, two protein phosphatase inhibitors, enhanced it, indicating that intracellular PKG and phosphatases oppositely regulate the sensitivity of striatal cholinergic interneurons to NO. The characterization of the cellular mechanisms involved in the regulation of striatal interneuron activity is a key step for the understanding of the role of these cells in striatal microcircuitry.
Notes:
P Gubellini, E Saulle, D Centonze, P Bonsi, A Pisani, G Bernardi, F Conquet, P Calabresi (2001)  Selective involvement of mGlu1 receptors in corticostriatal LTD.   Neuropharmacology 40: 7. 839-846 Jun  
Abstract: Although metabotropic glutamate receptors (mGluRs) have been proposed to play a role in corticostriatal long-term depression (LTD), the specific receptor subtype required for this form of synaptic plasticity has not been characterized yet. Thus, we utilized a corticostriatal brain slice preparation and intracellular recordings from striatal spiny neurons to address this issue. We observed that both AIDA (100 microM) and LY 367385 (30 microM), two blockers of mGluR1s, were able to fully prevent the induction of this form of synaptic plasticity, whereas MPEP (30 microM), a selective antagonist of the mGluR5 subtype, did not significantly affect the amplitude and time-course of corticostriatal LTD. Both AIDA and LY 367385 were ineffective on LTD when applied after its induction. The critical role of mGluR1s in the formation of corticostriatal LTD was confirmed in experiments performed on mice lacking mGluR1s. In these mice, in fact, a significant reduction of the LTD amplitude was observed in comparison to the normal LTD measured in their wild-type counterparts. We found that neither acute pharmacological blockade of mGluR1s nor the genetic disruption of these receptors affected the presynaptic modulation of corticostriatal excitatory postsynapic potentials (EPSPs) exerted by DCG-IV and L-SOP, selective agonists of group II and III mGluRs, respectively. Our data show that the induction of corticostriatal LTD requires the activation of mGluR1 but not mGluR5. mGluR1-mediated control of this form of synaptic plasticity may play a role in the modulatory effect exerted by mGluRs in the basal ganglia-related motor activity.
Notes:
D Centonze, G A Marfia, A Pisani, B Picconi, P Giacomini, G Bernardi, P Calabresi (2001)  Ionic mechanisms underlying differential vulnerability to ischemia in striatal neurons.   Prog Neurobiol 63: 6. 687-696 Apr  
Abstract: Brain cells express extremely different sensitivity to ischemic insults. The reason for this differential vulnerability is still largely unknown. Here we discuss the ionic bases underlying the physiological responses to in vitro ischemia in two neostriatal neuronal subtypes exhibiting respectively high sensitivity and high resistance to energy deprivation. Vulnerable neostriatal neurons respond to ischemia with a membrane depolarization. This membrane depolarization mainly depends on the increased permeability to Na+ ions. In contrast, resistant neostriatal neurons respond to ischemia with a membrane hyperpolarization due to the opening of K+ channels. Interestingly, in both neuronal subtypes the ischemia-dependent membrane potential changes can be significantly enhanced or attenuated by a variety of pharmacological agents interfering with intracellular Ca2+ entry, ATP-dependent K+ channels opening, and Na+/Ca2+ exchanger functioning. The understanding of the ionic mechanisms underlying the differential membrane responses to ischemia represents the basis for the development of rational neuroprotective treatments during acute cerebrovascular insults.
Notes:
P Calabresi, P Gubellini, B Picconi, D Centonze, A Pisani, P Bonsi, P Greengard, R A Hipskind, E Borrelli, G Bernardi (2001)  Inhibition of mitochondrial complex II induces a long-term potentiation of NMDA-mediated synaptic excitation in the striatum requiring endogenous dopamine.   J Neurosci 21: 14. 5110-5120 Jul  
Abstract: Abnormal involuntary movements and cognitive impairment represent the classical clinical symptoms of Huntington's disease (HD). This genetic disorder involves degeneration of striatal spiny neurons, but not striatal large cholinergic interneurons, and corresponds to a marked decrease in the activity of mitochondrial complex II [succinate dehydrogenase (SD)] in the brains of HD patients. Here we have examined the possibility that SD inhibitors exert their toxic action by increasing glutamatergic transmission. We report that SD inhibitors such as 3-nitroproprionic acid (3-NP), but not an inhibitor of mitochondrial complex I, produce a long-term potentiation of the NMDA-mediated synaptic excitation (3-NP-LTP) in striatal spiny neurons. In contrast, these inhibitors had no effect on excitatory synaptic transmission in striatal cholinergic interneurons and pyramidal cortical neurons. 3-NP-LTP involves increased intracellular calcium and activation of the mitogen-activated protein kinase extracellular signal-regulated kinase and is critically dependent on endogenous dopamine acting via D2 receptors, whereas it is negatively regulated by D1 receptors. Thus 3-NP-LTP might play a key role in the regional and cell type-specific neuronal death observed in HD.
Notes:
A Pisani, P Gubellini, P Bonsi, F Conquet, B Picconi, D Centonze, G Bernardi, P Calabresi (2001)  Metabotropic glutamate receptor 5 mediates the potentiation of N-methyl-D-aspartate responses in medium spiny striatal neurons.   Neuroscience 106: 3. 579-587  
Abstract: Medium spiny neurons were recorded from striatal slices obtained from mice lacking the group I metabotropic glutamate receptor (mGluR) subtype 1 or subtype 5. In wild-type animals, N-methyl-D-aspartate (NMDA)-induced membrane depolarization/inward currents were potentiated in the presence of both the group I mGluR agonist 3,5-dihydroxyphenylglycine (3,5-DHPG) and the mGluR5 selective agonist (RS)-2-chloro-5-hydroxyphenylglycine (CHPG). Likewise, in mGluR1 knockout mice, both 3,5-DHPG and CHPG were able to potentiate NMDA responses. Conversely, in neurons recorded from mGluR5-deficient mice, the enhancement of NMDA responses by both 3,5-DHPG and CHPG was absent. Pharmacological analysis performed from rat slices confirmed the data obtained with mice. In the presence of the competitive mGluR1 antagonist LY367385, the NMDA responses were potentiated in the presence of CHPG, whereas the CHPG-induced enhancement was not observed in slices treated with the non-competitive mGluR5 antagonist 2-methyl-6-(phenylethynyl)-pyridine. As in wild-type mice, in neither of the mGluR1- and mGluR5-deficient mice did (2S,1'R,2'R,3'R)-2-(2,3-dicarboxylcyclopropyl)-glycine (1 microM), nor L-serine-O-phosphate (30 microM) (agonists for group II and III mGluRs, respectively) affect the NMDA-evoked responses. In striatal medium spiny neurons, NMDA responses are potentiated by endogenous acetylcholine via M1-like muscarinic receptors. Since the enhancement of NMDA responses by 3,5-DHPG and by M1-like muscarinic agonists was shown to share common post-receptor mechanisms, we verified whether the muscarinic potentiation of NMDA responses was affected in these group I mGluR-deficient mice. Both in mGluR1 and mGluR5 knockout animals, in the presence of either muscarine or the M1-like muscarinic receptor agonist McN-A-343, the positive modulation of the NMDA-induced membrane depolarization persisted.These results confirm the permissive role of group I mGluRs on NMDA responses in striatal neurons and reveal that this functional interplay occurs exclusively through the mGluR5 subtype. The NMDA-mGluR5 interaction might play an important modulatory role in the final excitatory drive from corticostriatal afferents and suggests that drugs acting at mGluR5 might prove useful for the treatment of movement disorders involving the striatum.
Notes:
M C Miniaci, P Bonsi, F Tempia, P Strata, A Pisani (2001)  Presynaptic modulation by group III metabotropic glutamate receptors (mGluRs) of the excitatory postsynaptic potential mediated by mGluR1 in rat cerebellar Purkinje cells.   Neurosci Lett 310: 1. 61-65 Sep  
Abstract: Purkinje neurons were recorded from rat cerebellar slices. Parallel fibres stimulation elicited a fast excitatory postsynaptic potential (EPSP) mediated by ionotropic glutamate (iGluR) -amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors followed by the inhibitory gamma-aminobutyric acidA (GABAA)-dependent postsynaptic potential. In the presence of antagonists for iGluRs and for GABAA receptors, brief tetanic activation evoked a slow metabotropic glutamate receptor (mGluR)-dependent EPSP (mGluR-EPSP). This mGluR-EPSP was blocked by the selective mGluR1 antagonists LY367385 and CPCCOEt, but not by the mGluR5 antagonist MPEP. Group II agonists affected neither iGluR-EPSP nor mGluR-EPSP. Conversely, L-AP4 and L-SOP, group III mGluR agonists, inhibited both iGluR- and mGluR-EPSPs. The depolarisations evoked by both AMPA and group I agonists were unaffected, indicating a presynaptic action of group III mGluRs. These data suggest that glutamate released by parallel fibres activates group III mGluR autoreceptors, depressing both iGluR- and mGluR1-mediated EPSPs.
Notes:
D Centonze, E Saulle, A Pisani, G Bernardi, P Calabresi (2001)  Adenosine-mediated inhibition of striatal GABAergic synaptic transmission during in vitro ischaemia.   Brain 124: Pt 9. 1855-1865 Sep  
Abstract: Several reports have shown that energy deprivation, as a result of hypoxia, hypoglycaemia or ischaemia, depresses excitatory synaptic transmission in virtually all brain areas. How this pathological condition affects inhibitory synaptic transmission is still unclear. In the present in vitro study, we coupled whole-cell patch clamp recordings from striatal neurones with focal stimulation of GABAergic nerve terminals in order to characterize the electrophysiological effects of combined oxygen and glucose deprivation (in vitro ischaemia) on inhibitory postsynaptic currents (IPSCs) in this brain area. We found that brief periods (2-5 min) of in vitro ischaemia invariably caused a marked depression of IPSC amplitude. This inhibitory effect was fully reversible on removal of the ischaemic challenge. It was coupled with an increased paired-pulse facilitation, suggesting the involvement of presynaptic mechanisms. Accordingly, the ischaemic inhibition of striatal GABAergic IPSCs was not caused by a shift in the reversal potential of GABA(A)-receptor mediated synaptic currents, and was independ- ent of postsynaptic ATP concentrations. Endogenous adenosine, acting on A1 receptors, appeared responsible for this presynaptic action as the ischaemic depression of IPSCs was prevented by CPT [8-(4-chlorophenylthio) adenosine] and DPCPX, two adenosine A1 receptor antagonists, and mimicked by the application of adenosine in the bathing solution. Conversely, ATP-sensitive potassium channels were not involved in the inhibition of IPSCs by ischaemia, as demonstrated by the fact that tolbutamide and glipizide, two blockers of these channels, were ineffective in preventing this electrophysiological effect. The early depression of GABA-mediated synaptic transmission might play a role in the development of irreversible neuronal injury in the course of brain ischaemia.
Notes:
G Battaglia, V Bruno, A Pisani, D Centonze, M V Catania, P Calabresi, F Nicoletti (2001)  Selective blockade of type-1 metabotropic glutamate receptors induces neuroprotection by enhancing gabaergic transmission.   Mol Cell Neurosci 17: 6. 1071-1083 Jun  
Abstract: Selective antagonists of mGlu1 (LY367385 and CPCCOEt) and mGlu5 (MPEP) metabotropic glutamate receptors were neuroprotective against NMDA toxicity when either applied to mixed cortical cultures or locally infused into the caudate nucleus. Neuroprotection produced by LY367385 or CPCCOEt was occluded by GABA and was abolished by a cocktail of GABA(A) and GABA(B) receptor antagonists. In contrast, GABAergic drugs did not influence the action of MPEP. In microdialysis studies, LY367385 and CPCCOEt substantially enhanced GABA release in the corpus striatum of freely moving animals, whereas MPEP had no effect on GABA but abolished the stimulation of glutamate release induced by NMDA. A role for mGlu1 receptors in modulating GABAergic transmission was supported by electrophysiological studies carried out in cortico-striatal slices. In this particular model, the mixed mGlu1/5 receptor agonist, DHPG, reduced bicuculline-sensitive inhibitory postsynaptic currents presumably via a presynaptic mechanism. The action of DHPG was antagonized by LY367385, but not by MPEP. Taken together, these results indicate that selective blockade of mGlu1 receptors produces neuroprotection by enhancing GABAergic transmission.
Notes:
2000
P Calabresi, D Centonze, P Gubellini, A Pisani, G Bernardi (2000)  Acetylcholine-mediated modulation of striatal function.   Trends Neurosci 23: 3. 120-126 Mar  
Abstract: Striatal spiny neurones serve as a major anatomical locus for the relay of cortical information flow through the basal ganglia. these projection neurones also represent the main synaptic target of cholinergic interneurones, whose physiological role in striatal activity still remains largely enigmatic. The striatal cholinergic system has been implicated in the pathophysiology of movement disorders such as Parkinson's disease, but the cellular mechanisms underlying cholinergic-neurone function are still unknown. On the basis of in vitro electrophysiological evidence, obtained from a rat corticostriatal-slice preparation, we propose that endogenous ACh exerts a complex modulation of striatal synaptic transmission, which produces both short-term and long-term effects. ACh-mediated mechanisms might be of crucial importance in processing the cortical inputs to the striatum.
Notes:
P Calabresi, D Centonze, P Gubellini, G A Marfia, A Pisani, G Sancesario, G Bernardi (2000)  Synaptic transmission in the striatum: from plasticity to neurodegeneration.   Prog Neurobiol 61: 3. 231-265 Jun  
Abstract: Striatal neurones receive myriad of synaptic inputs originating from different sources. Massive afferents from all areas of the cortex and the thalamus represent the most important source of excitatory amino acids, whereas the nigrostriatal pathway and intrinsic circuits provide the striatum with dopamine, acetylcholine, GABA, nitric oxide and adenosine. All these neurotransmitter systems interact each other and with voltage-dependent conductances to regulate the efficacy of the synaptic transmission within this nucleus. The integrative action exerted by striatal projection neurones on this converging information dictates the final output of the striatum to the other basal ganglia structures. Recent morphological, immunohistochemical and electrophysiological findings demonstrated that the striatum also contains different interneurones, whose role in physiological and pathological conditions represents an intriguing challenge in these years. The use of the in vitro brain slice preparation has allowed not only the detailed investigation of the direct pre- and postsynaptic electrophysiological actions of several neurotransmitters in striatal neurones, but also the understanding of their role in two different forms of corticostriatal synaptic plasticity, long-term depression and long-term potentiation. These long-lasting changes in the efficacy of excitatory transmission have been proposed to represent the cellular basis of some forms of motor learning and are altered in animal models of human basal ganglia disorders, such as Parkinson's disease. The striatum also expresses high sensitivity to hypoxic-aglycemic insults. During these pathological conditions, striatal synaptic transmission is altered depending on presynaptic inhibition of transmitter release and opposite membrane potential changes occur in projection neurones and in cholinergic interneurones. These ionic mechanisms might partially explain the selective neuronal vulnerability observed in the striatum during global ischemia and Huntington's disease.
Notes:
A Pisani, G Bernardi, P Bonsi, D Centonze, P Giacomini, P Calabresi (2000)  Cell-type specificity of mGluR activation in striatal neuronal subtypes.   Amino Acids 19: 1. 119-129  
Abstract: The effects of metabotropic glutamate receptor (mGluR) activation were studied in medium spiny neurons and large aspiny (LA) interneurons by means of electrophysiological and optical recordings. DCG-IV and L-SOP, agonists for group II and III mGluRs, respectively, produced a presynaptic inhibitory effect on corticostriatal glutamatergic excitatory postsynaptic potentials (EPSPs) in both spiny and LA cells. Activation of group I mGluRs by the selective agonist 3,5-DHPG produced no effect on membrane properties and glutamatergic transmission in spiny neurons, whereas it did cause a membrane depolarization in LA interneurons coupled to increased input resistance. In combined optical and electrophysiological experiments, in spiny neurons 3,5-DHPG enhanced membrane depolarization and intracellular calcium (Ca2+) levels induced by NMDA applications, but not in LA interneurons. These data suggest the existence of a positive interaction between NMDA and group I mGlu receptors only in medium spiny cells which might, at least partially, account for the differential vulnerability to excitotoxic damage observed in striatal neuronal subtypes.
Notes:
A Pisani, P Bonsi, D Centonze, P Calabresi, G Bernardi (2000)  Activation of D2-like dopamine receptors reduces synaptic inputs to striatal cholinergic interneurons.   J Neurosci 20: 7. Apr  
Abstract: Dopamine (DA) plays a crucial role in the modulation of striatal function. Striatal cholinergic interneurons represent an important synaptic target of dopaminergic fibers arising from the substantia nigra and cortical glutamatergic inputs. By means of an electrophysiological approach from corticostriatal slices, we isolated three distinct synaptic inputs to cholinergic interneurons: glutamate-mediated EPSPs, GABAA-mediated potentials, and Acetylcholine (ACh)-mediated IPSPs. We therefore explored whether DA controls the striatal cholinergic activity through the modulation of these synaptic potentials. We found that SKF38393, a D1-like receptor agonist, induced a membrane depolarization (also see Aosaki et al., 1998) but had no effects on glutamatergic, GABAergic, and cholinergic synaptic potentials. Conversely, D2-like DA receptor activation by quinpirole inhibited both GABAA and cholinergic synaptic potentials. These effects of quinpirole were mimicked by omega-conotoxin GVIA, blocker of N-type calcium channels. The lack of effect both on the intrinsic membrane properties and on exogenously applied GABA and ACh by quinpirole supports a presynaptic site of action for the D2-like receptor-mediated inhibition. Moreover, the quinpirole-induced decrease in amplitude was accompanied by an increase in paired pulse facilitation ratio (EPSP2/EPSP1), an index of a decrease in transmitter release. Our findings demonstrate that DA modulates the excitability of cholinergic interneurons through either an excitatory D1-like-mediated postsynaptic mechanism or a presynaptic inhibition of the GABAergic and cholinergic inhibitory synaptic potentials.
Notes:
A Pisani, P Bonsi, D Centonze, P Giacomini, P Calabresi (2000)  Involvement of intracellular calcium stores during oxygen/glucose deprivation in striatal large aspiny interneurons.   J Cereb Blood Flow Metab 20: 5. 839-846 May  
Abstract: Striatal large aspiny interneurons were recorded from a slice preparation using a combined electrophysiologic and microfluorometric approach. The role of intracellular Ca2+ stores was analyzed during combined oxygen/glucose deprivation (OGD). Before addressing the role of the stores during energy deprivation, the authors investigated their function under physiologic conditions. Trains of depolarizing current pulses caused bursts of action potentials coupled to transient increases in intracellular calcium concentration ([Ca2+]i). In the presence of cyclopiazonic acid (30 micromol/L), a selective inhibitor of the sarcoendoplasmic reticulum Ca2+ pumps, or when ryanodine receptors were directly blocked with ryanodine (20 [micromol/L), the [Ca2+]i transients were progressively smaller in amplitude, suggesting that [Ca2+]i released from intracellular stores helps to maintain a critical level of [Ca2+]i during physiologic firing activity. As the authors have recently reported, brief exposure to combined OGD induced a membrane hyperpolarization coupled to an increase in [Ca2+]i. In the presence of cyclopiazonic acid or ryanodine, the hyperpolarization and the rise in [Ca2+]i induced by OGD were consistently reduced. These data support the hypothesis that Ca2+ release from ryanodine-sensitive Ca2+ pools is involved not only in the potentiation of the Ca2+ signals resulting from cell depolarization, but also in the amplification of the [Ca2+]i rise and of the concurrent membrane hyperpolarization observed in course of OGD in striatal large aspiny interneurons.
Notes:
1999
P Calabresi, P Gubellini, D Centonze, G Sancesario, M Morello, M Giorgi, A Pisani, G Bernardi (1999)  A critical role of the nitric oxide/cGMP pathway in corticostriatal long-term depression.   J Neurosci 19: 7. 2489-2499 Apr  
Abstract: High-frequency stimulation (HFS) of corticostriatal glutamatergic fibers induces long-term depression (LTD) of excitatory synaptic potentials recorded from striatal spiny neurons. This form of LTD can be mimicked by zaprinast, a selective inhibitor of cGMP phosphodiesterases (PDEs). Biochemical analysis shows that most of the striatal cGMP PDE activity is calmodulin-dependent and inhibited by zaprinast. The zaprinast-induced LTD occludes further depression by tetanic stimulation and vice versa. Both forms of synaptic plasticity are blocked by intracellular 1H-[1,2,4]oxadiazolo[4, 3-a]quinoxalin-1-one (ODQ), a selective inhibitor of soluble guanylyl cyclase, indicating that an increased cGMP production in the spiny neuron is a key step. Accordingly, intracellular cGMP, activating protein kinase G (PKG), also induces LTD. Nitric oxide synthase (NOS) inhibitors N(G)-nitro-L-arginine methyl ester hydrochloride (L-NAME) and 7-nitroindazole monosodium salt (7-NINA) block LTD induced by either HFS or zaprinast, but not that induced by cGMP. LTD is also induced by the NO donors S-nitroso-N-acetylpenicillamine (SNAP) and hydroxylamine. SNAP-induced LTD occludes further depression by HFS or zaprinast, and it is blocked by intracellular ODQ but not by L-NAME. Intracellular application of PKG inhibitors blocks LTD induced by HFS, zaprinast, and SNAP. Electron microscopy immunocytochemistry shows the presence of NOS-positive terminals of striatal interneurons forming synaptic contacts with dendrites of spiny neurons. These findings represent the first demonstration that the NO/cGMP pathway exerts a feed-forward control on the corticostriatal synaptic plasticity.
Notes:
P Calabresi, G A Marfia, D Centonze, A Pisani, G Bernardi (1999)  Sodium influx plays a major role in the membrane depolarization induced by oxygen and glucose deprivation in rat striatal spiny neurons.   Stroke 30: 1. 171-179 Jan  
Abstract: BACKGROUND AND PURPOSE--Striatal spiny neurons are selectively vulnerable to ischemia, but the ionic mechanisms underlying this selective vulnerability are unclear. Although a possible involvement of sodium and calcium ions has been postulated in the ischemia-induced damage of rat striatal neurons, the ischemia-induced ionic changes have never been analyzed in this neuronal subtype. METHODS--We studied the effects of in vitro ischemia (oxygen and glucose deprivation) at the cellular level using intracellular recordings and microfluorometric measurements in a slice preparation. We also used various channel blockers and pharmacological compounds to characterize the ischemia-induced ionic conductances. RESULTS--Spiny neurons responded to ischemia with a membrane depolarization/inward current that reversed at approximately -40 mV. This event was coupled with an increased membrane conductance. The simultaneous analysis of membrane potential changes and of variations in [Na+]i and [Ca2+]i levels showed that the ischemia-induced membrane depolarization was associated with an increase of [Na+]i and [Ca2+]i. The ischemia-induced membrane depolarization was not affected by tetrodotoxin or by glutamate receptor antagonists. Neither intracellular BAPTA, a Ca2+ chelator, nor incubation of the slices in low-Ca2+-containing solutions affected the ischemia-induced depolarization, whereas it was reduced by lowering the external Na+ concentration. High doses of blockers of ATP-dependent K+ channels increased the membrane depolarization observed in spiny neurons during ischemia. CONCLUSIONS--Our findings show that, although the ischemia-induced membrane depolarization is coupled with a rise of [Na+]i and [Ca2+]i, only the Na+ influx plays a prominent role in this early electrophysiological event, whereas the increase of [Ca2+]i might be relevant for the delayed neuronal death. We also suggest that the activation of ATP-dependent K+ channels might counteract the ischemia-induced membrane depolarization.
Notes:
A Pisani, P Calabresi, D Centonze, G A Marfia, G Bernardi (1999)  Electrophysiological recordings and calcium measurements in striatal large aspiny interneurons in response to combined O2/glucose deprivation.   J Neurophysiol 81: 5. 2508-2516 May  
Abstract: Electrophysiological recordings and calcium measurements in striatal large aspiny interneurons in response to combined O2/glucose deprivation. The effects of combined O2/glucose deprivation were investigated on large aspiny (LA) interneurons recorded from a striatal slice preparation by means of simultaneous electrophysiological and optical recordings. LA interneurons were visually identified and impaled with sharp microelectrodes loaded with the calcium (Ca2+)-sensitive dye bis-fura-2. These cells showed the morphological, electrophysiological, and pharmacological features of large striatal cholinergic interneurons. O2/glucose deprivation induced a membrane hyperpolarization coupled to a concomitant increase in intracellular Ca2+ concentration ([Ca2+]i). Interestingly, this [Ca2+]i elevation was more pronounced in dendritic branches rather than in the somatic region. The O2/glucose-deprivation-induced membrane hyperpolarization reversed its polarity at the potassium (K+) equilibrium potential. Both membrane hyperpolarization and [Ca2+]i rise were unaffected by TTX or by a combination of ionotropic glutamate receptors antagonists, D-2-amino-5-phosphonovaleric acid and 6cyano-7-nitroquinoxaline-2, 3-dione. Sulfonylurea glibenclamide, a blocker of ATP-sensitive K+ channels, markedly reduced the O2/glucose-deprivation-induced membrane hyperpolarization but failed to prevent the rise in [Ca2+]i. Likewise, charybdotoxin, a large K+-channel (BK) inhibitor, abolished the membrane hyperpolarization but did not produce detectable changes of [Ca2+]i elevation. A combination of high-voltage-activated Ca2+ channel blockers significantly reduced both the membrane hyperpolarization and the rise in [Ca2+]i. In a set of experiments performed without dye in the recording electrode, either intracellular bis-(o-aminophenoxy)-N,N,N',N'-tetraacetic acid or external barium abolished the membrane hyperpolarization induced by O2/glucose deprivation. The hyperpolarizing effect on membrane potential was mimicked by oxotremorine, an M2-like muscarinic receptor agonist, and by baclofen, a GABAB receptor agonist. However, this membrane hyperpolarization was not coupled to an increase but rather to a decrease of the basal [Ca2+]i. Furthermore glibenclamide did not reduce the oxotremorine- and baclofen-induced membrane hyperpolarization. In conclusion, the present results suggest that in striatal LA cells, O2/glucose deprivation activates a membrane hyperpolarization that does not involve ligand-gated K+ conductances but is sensitive to barium, glibenclamide, and charybdotoxin. The increase in [Ca2+]i is partially due to influx through voltage-gated high-voltage-activated Ca2+ channels.
Notes:
P Calabresi, D Centonze, G A Marfia, A Pisani, G Bernardi (1999)  An in vitro electrophysiological study on the effects of phenytoin, lamotrigine and gabapentin on striatal neurons.   Br J Pharmacol 126: 3. 689-696 Feb  
Abstract: We performed intracellular recordings from a rat corticostriatal slice preparation in order to compare the electrophysiological effects of the classical antiepileptic drug (AED) phenytoin (PHT) and the new AEDs lamotrigine (LTG) and gabapentin (GBP) on striatal neurons. PHT, LTG and GBP affected neither the resting membrane potential nor the input resistance/membrane conductance of the recorded cells. In contrast, these agents depressed in a dose-dependent and reversible manner the current-evoked repetitive firing discharge. These AEDs also reduced the amplitude of glutamatergic excitatory postsynaptic potentials (EPSPs) evoked by cortical stimulation. However, substantial pharmacological differences between these drugs were found. PHT was the most effective and potent agent in reducing sustained repetitive firing of action potentials, whereas LTG and GBP preferentially inhibited corticostriatal excitatory transmission. Concentrations of LTG and GBP effective in reducing EPSPs, in fact, produced only a slight inhibition of the firing activity of these cells. LTG, but not PHT and GBP, depressed cortically-evoked EPSPs increasing paired-pulse facilitation (PPF) of synaptic transmission, suggesting that a presynaptic site of action was implicated in the effect of this drug. Accordingly, PHT and GBP, but not LTG reduced the membrane depolarizations induced by exogenously-applied glutamate, suggesting that these drugs preferentially reduce postsynaptic sensitivity to glutamate released from corticostriatal terminals. These data indicate that in the striatum PHT, LTG and GBP decrease neuronal excitability by modulating multiple sites of action. The preferential modulation of excitatory synaptic transmission may represent the cellular substrate for the therapeutic effects of new AEDs whose use may be potentially extended to the therapy of neurodegenerative diseases involving the basal ganglia.
Notes:
A Pisani, W N Ross (1999)  Weak effect of neuromodulators on climbing fiber-activated [Ca(2+)](i) increases in rat cerebellar Purkinje neurons.   Brain Res 831: 1-2. 113-118 Jun  
Abstract: The effect of several neuromodulators (carbachol (CCh), serotonin (5-HT), noradrenaline (NE), and dopamine (DA)) on the climbing fiber (CF)-induced [Ca(2+)](i) increase in the dendrites of cerebellar Purkinje cells was examined in slices from the rat cerebellum. Purkinje cells were filled with the Ca(2+) indicator bis-fura-2 with patch electrodes on the soma. [Ca(2+)](i) changes were measured from regions of interest in the dendrites with a high speed camera. Changes evoked by one or three responses were measured in control conditions and with neuromodulators added to the bath. None of these four classic modulators caused a significant change in the CF-induced [Ca(2+)](i) amplitude. Buspirone, a partial 5-HT(1A) agonist and a weak DA receptor antagonist caused a small (10-15%) reduction in the response.
Notes:
P Calabresi, D Centonze, A Pisani, G Bernardi (1999)  Metabotropic glutamate receptors and cell-type-specific vulnerability in the striatum: implication for ischemia and Huntington's disease.   Exp Neurol 158: 1. 97-108 Jul  
Abstract: Differential sensitivity to glutamate has been proposed to contribute to the cell-type-specific vulnerability observed in neurological disorders affecting the striatum such as Huntington's disease (HD) and global ischemia. Under these pathological conditions striatal spiny neurons are selectively lost while large aspiny (LA) cholinergic interneurons are spared. We studied the electrophysiological effects of metabotropic glutamate receptor (mGluR) activation in striatal spiny neurons and LA interneurons in order to define the role of these receptors in the pathophysiology of the striatum. DCG-IV and L-SOP, agonists for group II and III mGluRs respectively, produced a presynaptic inhibitory effect on corticostriatal glutamatergic excitatory synaptic potentials in both spiny neurons and LA interneurons. Activation of group I mGluRs by the selective agonist 3,5-DHPG produced no detectable effects on membrane properties and glutamatergic synaptic transmission in spiny neurons while it caused a slow membrane depolarization in LA interneurons coupled to increased input resistance. In combined electrophysiological and microfluorometric recordings, 3,5-DHPG strongly enhanced membrane depolarizations and intracellular Ca2+ accumulation induced by NMDA applications in spiny neurons but not in LA interneurons. Activation of protein kinase C (PKC) by phorbol 12,13-diacetate mimicked this latter action of 3,5-DHPG while the facilitatory effect of 3,5-DHPG was prevented by calphostin C, an inhibitor of PKC. These data indicate that a positive interaction between NMDA receptors and group I mGluRs, via PKC activation, is differently expressed in these two neuronal subtypes. Our data also suggest that differential effects of the activation of group I mGluRs, but not of group II and III mGluRs, might partially account for the selective vulnerability to excitotoxic damage observed within the striatum.
Notes:
P Calabresi, G A Marfia, S Amoroso, A Pisani, G Bernardi (1999)  Pharmacological inhibition of the Na(+)/Ca(2+) exchanger enhances depolarizations induced by oxygen/glucose deprivation but not responses to excitatory amino acids in rat striatal neurons.   Stroke 30: 8. 1687-1694 Aug  
Abstract: BACKGROUND AND PURPOSE: Neuronal Na(+)/Ca(2+) exchanger plays a relevant role in maintaining intracellular Ca(2+) and Na(+) levels under physiological and pathological conditions. However, the role of this exchanger in excitotoxicity and ischemia-induced neuronal injury is still controversial and has never been studied in the same neuronal subtypes. METHODS: We investigated the effects of bepridil and 3',4'-dichlorobenzamil (DCB), 2 blockers of the Na(+)/Ca(2+) exchanger, in rat striatal spiny neurons by utilizing intracellular recordings in brain slice preparations to compare the action of these drugs on the membrane potential changes induced either by oxygen and glucose deprivation (OGD) or by excitatory amino acids (EAAs). RESULTS: Bepridil (3 to 100 micromol/L) and DCB (3 to 100 micromol/L) caused a dose-dependent enhancement of the OGD-induced depolarization measured in striatal neurons. The EC(50) values for these effects were 31 micromol/L and 29 micromol/L, respectively. At these concentrations neither bepridil nor DCB altered the resting membrane properties of the recorded cells (membrane potential, input resistance, and current-voltage relationship). The effects of bepridil and DCB on the OGD-induced membrane depolarization persisted in the presence of D-2-amino-5-phosphonovalerate (50 micromol/L) plus 6-cyano-7-nitroquinoxaline-2,3-dione (20 micromol/L), which suggests that they were not mediated by an enhanced release of EAAs. Neither tetrodotoxin (1 micromol/L) nor nifedipine (10 micromol/L) affect the actions of these 2 blockers of the Na(+)/Ca(2+) exchanger, which indicates that voltage-dependent Na(+) channels and L-type Ca(2+) channels were not involved in the enhancement of the OGD-induced depolarization. Conversely, the OGD-induced membrane depolarization was not altered by 5-(N, N-hexamethylene) amiloride (1 to 3 micromol/L), an inhibitor of the Na(+)/H(+) exchanger, which suggests that this antiporter did not play a prominent role in the OGD-induced membrane depolarization recorded from striatal neurons. Bepridil (3 to 100 micromol/L) and DCB (3 to 100 micromol/L) did not modify the amplitude of the excitatory postsynaptic potentials evoked by cortical stimulation. Moreover, these blockers did not affect membrane depolarizations caused by brief applications of glutamate (0.3 to 1 mmol/L), AMPA (0. 3 to 1 micromol/L), and NMDA (10 to 30 micromol/L). CONCLUSIONS: These results provide pharmacological evidence that the activation of the Na(+)/Ca(2+) exchanger exerts a protective role during the early phase of OGD in striatal neurons, although it does not shape the amplitude and the duration of the electrophysiological responses of these cells to EAA.
Notes:
1998
J Z Pedersen, G Bernardi, D Centonze, A Pisani, L Rossi, G Rotilio, P Calabresi (1998)  Hypoglycemia, hypoxia, and ischemia in a corticostriatal slice preparation: electrophysiologic changes and ascorbyl radical formation.   J Cereb Blood Flow Metab 18: 8. 868-875 Aug  
Abstract: Experimental and clinical data suggest that oxygen and/or glucose deprivation alters electrical transmission in the brain and generates free radicals, which may mediate neuronal death. We have analyzed the effects of oxygen and/or glucose deprivation on both excitatory transmission, by measuring field potential amplitude, and free radical production, by using electron spin resonance (ESR) spectroscopy, in a corticostriatal slice preparation. Combined oxygen and/or glucose deprivation (ischemia) lasting 10 to 20 minutes induced a long-term depression of field potential amplitude. The ascorbyl radical could only be detected in brain slices during the reperfusion-phase after 30 minutes of ischemia. It appeared in the early minutes after the washout of ischemic medium and remained stable throughout the reperfusion phase. This radical was never detected in the external medium. Ischemia induced only a slight, but progressive, release of lactate dehydrogenase (LDH) into the external medium during the reperfusion phase. In contrast, exposure of slices to hypoxia or hypoglycemia alone resulted in transient depression of field potential amplitude, and no generation of ascorbyl radicals was observed on reperfusion. We propose that the long-lasting loss of electrical signals is the early sign of neuronal damage during ischemia. On the other hand, ascorbyl radical formation may be considered an indicator of neuronal injury after prolonged energy deprivation.
Notes:
P Calabresi, D Centonze, A Pisani, G Sancesario, R A North, G Bernardi (1998)  Muscarinic IPSPs in rat striatal cholinergic interneurones.   J Physiol 510 ( Pt 2): 421-427 Jul  
Abstract: 1. Intracellular recordings were made from neurones in slice of rat striatum in vitro. 2. The forty-nine neurones studied were immunoreactive for choline acetyltransferase and had the electrophysiological characteristics typical of large aspiny interneurones. 3. Focal stimulation of the slice elicited a hyperpolarizing inhibitory postsynaptic potential in thirty-five neurones. This IPSP lasted 0.5-1 s and reversed polarity at a membrane potential which was dependent on the logarithm of the extracellular potassium concentration. 4. The IPSP was reversibly blocked by scopolamine and methoctramine, which has some selectivity for M2 subtype of muscarinic receptor. It was unaffected by 6-cyano-7-nitroquinoxaline-2,3-dione (10 microM), DL-2-amino-phosphonovaleric acid (30 microM) and bicuculline (30 microM). 5. Exogenous acetylcholine and muscarine also hyperpolarized the neurones, and this was blocked by methoctramine by not by pirenzepine, which is an M1 receptor-selective antagonist. 6. The findings demonstrate that muscarinic IPSPs occur in the central nervous system. The IPSP may mediate an 'autoinhibition' of striatal cholinergic neurone activity.
Notes:
A Pisani, P Calabresi, A Tozzi, V D'Angelo, G Bernardi (1998)  L-type Ca2+ channel blockers attenuate electrical changes and Ca2+ rise induced by oxygen/glucose deprivation in cortical neurons.   Stroke 29: 1. 196-201; discussion 202 Jan  
Abstract: BACKGROUND AND PURPOSE: Experimental evidence supports a major role of increased intracellular calcium [Ca2+]i levels in the induction of neuronal damage during cerebral ischemia. However, the source of Ca2+ rise has not been fully elucidated. To clarify further the role and the origin of Ca2+ in cerebral ischemia, we have studied the effects of various pharmacological agents in an in vitro model of oxygen (O2)/glucose deprivation. METHODS: Pyramidal cortical neurons were intracellularly recorded from a slice preparation. Electrophysiological recordings and microfluorometric measurements of [Ca2+]i were performed simultaneously in slices perfused with a glucose-free physiological medium equilibrated with a 95% N2/5% CO2 gas mixture. RESULTS: Eight to twelve minutes of O2/glucose deprivation induced an initial membrane hyperpolarization, followed by a delayed, large but reversible membrane depolarization. The depolarization phase was accompanied by a transient increase in [Ca2+]i levels. When O2/glucose deprivation exceeded 13 to 15 minutes, both membrane depolarization and [Ca2+]i rise became irreversible. The dihydropyridines nifedipine and nimodipine significantly reduced either the membrane depolarization or the [Ca2+]i elevation. In contrast, tetrodotoxin had no effect on either of these parameters. Likewise, antagonists of ionotropic and group I and II metabotropic glutamate receptors failed to reduce the depolarization of the cell membrane and the [Ca2+]i accumulation. Finally, dantrolene, blocker of intracellular Ca2+ release, did not reduce both electrical and [Ca2+]i changes caused by O2/glucose depletion. CONCLUSIONS: This work supports a role of L-type Ca2+ channels both in the electrical and ionic changes occurring during the early phases of O2/glucose deprivation.
Notes:
P Calabresi, D Centonze, A Pisani, G Sancesario, P Gubellini, G A Marfia, G Bernardi (1998)  Striatal spiny neurons and cholinergic interneurons express differential ionotropic glutamatergic responses and vulnerability: implications for ischemia and Huntington's disease.   Ann Neurol 43: 5. 586-597 May  
Abstract: Striatal spiny neurons are selectively vulnerable in Huntington's disease (HD) and ischemia, whereas large aspiny (LA) cholinergic interneurons of the striatum are spared in these pathological conditions. We have investigated whether a different sensitivity to ionotropic glutamatergic agonists might account for this differential vulnerability. Intracellular recordings were obtained from morphologically identified striatal spiny neurons and LA cholinergic interneurons by using a rat brain slice preparation. The two striatal neuronal subtypes had strikingly different intrinsic membrane properties. Both subtypes responded to cortical stimulation with excitatory postsynaptic potentials: these potentials, however, had a different time course and pharmacology in the two classes of cells. Interestingly, membrane depolarizations and inward currents produced by exogenous glutamate receptor agonists (AMPA, kainate, and NMDA) were remarkably larger in spiny neurons than in LA interneurons. Moreover, concentrations of agonists producing reversible membrane changes in LA interneurons caused irreversible depolarizations in spiny cells. Our data suggest that the different physiological responses induced by the activation of ionotropic glutamate receptors may account for the cell type-specific vulnerability of striatal neurons in ischemia and HD.
Notes:
T Knöpfel, A Tozzi, A Pisani, P Calabresi, G Bernardi (1998)  Hypoxic and hypoglycaemic changes of intracellular pH in cerebral cortical pyramidal neurones.   Neuroreport 9: 7. 1447-1450 May  
Abstract: Intracellular pH and membrane potential were measured during hypoxia and/or hypoglycaemia in cortical pyramidal neurones of a rat cortical slice preparation. Intracellular pH (pHi) was calculated from ratiometric microfluorometry of the pH-sensitive dye BCECF injected via sharp recording microelectrodes into the neurones. Transient (5 min) hypoxia induced a fall of pHi (7.12 +/- 0.03) of -0.72 +/- 0.11 pH units while transient (10 min) hypoglycaemia induced an increase of 0.37 +/- 0.09 pH units. Hypoglycaemia did not prevent the hypoxic acidification. Lowering extracellular Na+ induced a membrane hyperpolarization and alkalinization by 0.29 +/- 0.12 pH units but did not affect the development or recovery of the hypoxic acidification. The alkalinization during hypoglycaemia suggested that there is some anaerobic glycolysis under normoglycemic conditions. The hypoxic acidification, however, is unlikely to result from anaerobic glycolysis or reversal of Na(+)-dependent H+ extrusion.
Notes:
P Calabresi, D Centonze, P Gubellini, A Pisani, G Bernardi (1998)  Endogenous ACh enhances striatal NMDA-responses via M1-like muscarinic receptors and PKC activation.   Eur J Neurosci 10: 9. 2887-2895 Sep  
Abstract: Cortical glutamatergic fibres and cholinergic inputs arising from large aspiny interneurons converge on striatal spiny neurons and play a major role in the control of motor activity. We have investigated the interaction between excitatory amino acids and acetylcholine (ACh) on striatal spiny neurons by utilizing intracellular recordings, both in current- and in voltage-clamp mode in rat brain slices. Muscarine (0.3-10 microM) produced a reversible and dose-dependent increase in the membrane depolarizations/inward currents induced by brief applications of N-methyl-D-aspartate (NMDA), while it did not affect the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA)-induced responses. These concentrations of muscarine did not alter the membrane potential and the current-voltage relationship of the recorded cells. Neostigmine (0.3-10 microM), an ACh-esterase inhibitor, mimicked this facilitatory effect. The facilitatory effects of muscarine and neostigmine were antagonized either by scopolamine (3 microM) or by pirenzepine (10-100 nM), an antagonist of M1-like muscarinic receptors, but not by methoctramine (300 nM), an antagonist of M2-like muscarinic receptor. Accordingly, these facilitatory effects were mimicked by McN-A-343 (1-10 microM), an agonist of M1-like muscarinic receptors, but not by oxotremorine (300 nM), an agonist of M2-like receptors. Tetrodotoxin (TTX) did not block the facilitatory effect produced by the activation of muscarinic receptors suggesting that this effect is postsynaptically mediated. The action of neostigmine was prevented either by the intracellular calcium (Ca2+) chelator BAPTA (200 mM) or by preincubating the slices with inhibitors of protein kinase C (PKC) (staurosporine 100 nM or calphostin C 1 microM). McN-A-343 did not alter the excitatory post synaptic potentials (EPSPs) evoked by corticostriatal stimulation in the presence of physiological concentration of magnesium (Mg2+ 1.2 mM), while it enhanced the duration of these EPSPs recorded in the absence of external magnesium. Our data show that endogenous striatal ACh exerts a positive modulatory action on NMDA responses via M1-like muscarinic receptors and PKC activation.
Notes:
D Centonze, P Calabresi, A Pisani, S Marinelli, G A Marfia, G Bernardi (1998)  Electrophysiology of the neuroprotective agent riluzole on striatal spiny neurons.   Neuropharmacology 37: 8. 1063-1070 Aug  
Abstract: Striatal spiny neurons are selectively vulnerable in Huntington's disease (HD). No effective treatment is available to limit neuronal death in this pathological condition. In an experimental model of HD, a beneficial effect has recently been reported by the neuroprotective agent riluzole. We performed intracellular recordings in order to characterize the electrophysiological effects of this compound on striatal spiny neurons. Riluzole (0.1-100 microM) affected neither the resting membrane potential nor the input resistance/membrane conductance of the recorded cells. Bath application of this pharmacological agent produced a dose-dependent reduction of the number of spikes evoked by long-lasting depolarizing pulses. The EC50 value for this effect was 0.5 microM. Low doses of riluzole selectively reduced the firing frequency in the last part of the depolarizing pulse suggesting a use-dependent action at low concentrations of this compound. Riluzole produced a dose-dependent reduction of the amplitude of the corticostriatal glutamatergic excitatory post-synaptic potentials (EPSPs) with an extrapolated EC50 value of 6 microM. This effect was reversible and maximal at a concentration of 100 microM. Paired-pulse facilitation (PPF) was not affected by riluzole suggesting that the reduction of excitatory transmission was not only caused by a decrease of presynaptic release. Accordingly, riluzole also reduced the amplitude of membrane depolarization induced by exogenous glutamate. The modulatory action of riluzole on the activity of striatal spiny neurons might support the use of this drug in experimental models of excitotoxicity and in the neurodegenerative disorders involving the striatum.
Notes:
G Sancesario, A Pisani, V D'Angelo, P Calabresi, G Bernardi (1998)  Morphological and functional study of dwarf neurons in the rat striatum.   Eur J Neurosci 10: 12. 3575-3583 Dec  
Abstract: Combination of morphological and electrophysiological techniques provided data, suggesting existence in the young rat striatum of a peculiar class of neurons, the neurogliaform or dwarf neurons. Striatal neurons (n = 92), intracellularly recorded from rat brain slices, were filled (one in each slice) with the intracellular marker biocytin, to compare physiological and morphological properties in the same cell. Moreover, some neurons (n = 7) were filled with biocytin plus the fluorescent calcium indicator fura-2, identifying cells during electrophysiological recording. Electrophysiological recording showed that striatal neurons had different firing patterns, suggestive in most cases (n = 80) of spiny neuron class and in others (n = 12) of interneuron class. Fura-2 injection clearly identified the body of six medium-sized cells and of one distinctive tiny cell. This small cell, however, showed a resting membrane potential and spontaneous and evoked firing pattern characteristic of striatal interneurons. Moreover, the fura-2 injected in such small neuron also completely filled the cell body of a near large neuron; the fura-2 fluorescence changed synchronously in the two paired neurons after electrical stimulation of the impaled small one. Accordingly, the biocytin staining identified the morphology of the small recorded neuron as a neurogliaform-like cell apposed to a dendrite of an aspiny neuron, suggesting that the dye injected in one neuron had diffused to the other of a different type. Furthermore, such heterologous dye coupling unexpectedly involved seven pairs of cells detected with biocytin staining (7.6% of the recorded neurons), invariably represented by a medium or large neuron on one side, and on the other side by a small (5.44 +/- 0.15 x 9.14 +/- 0.7 microns, mean +/- SD; n = 7) neurogliaform cell, roundish in shape with few slender and short processes, usually apposed to a dendrite of the companion neurons (six out of seven). In the other cases, the biocytin staining revealed in each slice either the morphology of single spiny or aspiny neurons (80.4% of recorded neurons), or of two-three medium-sized spiny neurons detected near to each other, suggesting that dye coupling had occurred typically between similar neurons (11.9% of the recorded neurons). These data suggest that some neurogliaform cells in the striatum of young rat can be identified as dwarf interneurons, that may be dye-coupled with neurons of different classes.
Notes:
A Pisani, P Calabresi, A Tozzi, G Bernardi, T Knöpfel (1998)  Early sodium elevations induced by combined oxygen and glucose deprivation in pyramidal cortical neurons.   Eur J Neurosci 10: 11. 3572-3574 Nov  
Abstract: We investigated the effects of oxygen (O2)/glucose deprivation on intracellular sodium concentration ([Na+]i) of cortical pyramidal cells in a slice preparation of rat frontal cortex. Intracellular recordings were combined with microfluorometric measurements of [Na+]i using the Na+-sensitive dye sodium-binding benzofuran isophthalate (SBFI). Deprivation of O2/glucose caused an initial membrane hyperpolarization that was followed by a slowly developing large depolarization. Levels of [Na+]i started to increase significantly during the phase of membrane hyperpolarization. Neither tetrodotoxin, a combination of ionotropic and metabotropic glutamate receptor antagonists (D-amino-phosphonovalerate, 6-cyano-7-nitroquinoxaline-2,3-dione plus S-methyl-4-carboxyphenylglycine) nor bepridil, an inhibitor of the Na+/Ca2+-exchanger, affected these responses to O2/ glucose. The present results demonstrate that, in cortical neurons, O2/glucose deprivation induces an early rise in [Na+]i which cannot be ascribed to the activity of voltage gated Na+-channels, glutamate receptors or of the Na+/Ca2+-exchanger.
Notes:
P Calabresi, D Centonze, P Gubellini, A Pisani, G Bernardi (1998)  Blockade of M2-like muscarinic receptors enhances long-term potentiation at corticostriatal synapses.   Eur J Neurosci 10: 9. 3020-3023 Sep  
Abstract: Acetylcholine (ACh) exerts a crucial role in learning and memory. The striatum contains the highest concentration of this transmitter in the brain. This structure expresses two different forms of synaptic plasticity, long-term depression (LTD) and long-term potentiation (LTP), which might contribute to the storage of motor skills and some cognitive processes. We have investigated the role of M2-like muscarinic receptors in striatal LTP by utilizing intracellular recordings in vitro from a rat corticostriatal slice preparation. Methoctramine (250 nM), an antagonist of M2-like muscarinic receptors, enhanced striatal LTP induced in the absence of external magnesium (Mg2+) by high-frequency stimulation (HFS) of corticostriatal fibres. Methoctramine did not affect the amplitude of excitatory postsynaptic potentials (EPSPs) when bath applied either before or after the conditioning tetanus suggesting that a critical increase of ACh concentrations is produced only during HFS. Methoctramine per se failed to enhance the NMDA-mediated EPSPs recorded in the absence of external Mg2+ and in the presence of 10 microM CNQX. Methoctramine antagonized the presynaptic inhibitory action of neostigmine, an inhibitor of ACh-esterase, and oxotremorine, an agonist of M2-like muscarinic receptors. These data indicate that the activation of M2-like muscarinic receptors exerts a negative influence on striatal LTP, probably by reducing the release of glutamate from corticostriatal fibres and they suggest a complex modulatory effect of ACh in striatal synaptic plasticity.
Notes:
1997
P Calabresi, A Pisani, D Centonze, G Bernardi (1997)  Role of dopamine receptors in the short- and long-term regulation of corticostriatal transmission.   Nihon Shinkei Seishin Yakurigaku Zasshi 17: 2. 101-104 Apr  
Abstract: Several studies have tried to clarify the role of different dopamine (DA) receptors in the control of membrane excitability of striatal neurons. Activation of DA receptors influences both synaptic and intrinsic membrane properties of striatal neurons. More recently it has been reported that endogenous DA plays an important role in the expression of striatal synaptic plasticity. In this review we will try to summarize and discuss the available data concerning the possible impact of the functional role of D1 and D2 receptor activation on the short- and long-term modulation of the excitatory glutamatergic corticostriatal transmission. Moreover, we will also describe the function of the striatum in the integration of glutamatergic and DAergic inputs to produce long-term changes of synaptic efficacy: long-term depression (LTD) and long-term potentiation (LTP).
Notes:
P Calabresi, C M Ascone, D Centonze, A Pisani, G Sancesario, V D'Angelo, G Bernardi (1997)  Opposite membrane potential changes induced by glucose deprivation in striatal spiny neurons and in large aspiny interneurons.   J Neurosci 17: 6. 1940-1949 Mar  
Abstract: We have studied the electrophysiological effects of glucose deprivation on morphologically identified striatal neurons recorded from a corticostriatal slice preparation. The large majority of the recorded cells were spiny neurons and responded to aglycemia with a slow membrane depolarization coupled with a reduction of the input resistance. In voltage-clamp experiments aglycemia caused an inward current. This current was associated with a conductance increase and reversed at -40 mV. The aglycemia-induced membrane depolarization was not affected by tetrodotoxin (TTX) or 6-cyano-7-nitroquinoxaline-2,3-dione plus aminophosphonovalerate, antagonists acting respectively on AMPA and NMDA glutamate receptors. Also, the intracellular injection of bis(2-aminophenoxy)ethane-N,N, N',N'-tetra-acetic acid, a calcium (Ca2+) chelator, and low Ca2+/high Mg2+-containing solutions failed to reduce this phenomenon. Conversely, it was reduced by lowering external sodium (Na+) concentration. A minority of the recorded cells had the morphological characteristics of large aspiny interneurons and the electrophysiological properties of "long-lasting afterhyperpolarization (LA) cells." These cells responded to aglycemia with a membrane hyperpolarization/outward current that was coupled with an increased conductance. This current was not altered by TTX, blockers of ATP-dependent potassium (K+) channels, and adenosine A1 receptor antagonists, whereas it was reduced by solutions containing low Ca2+/high Mg2+. This current reversed at -105 mV and was blocked by barium, suggesting the involvement of a K+ conductance. We suggest that the opposite membrane responses of striatal neuronal subtypes to glucose deprivation might account for their differential neuronal vulnerability to aglycemia and ischemia.
Notes:
A Pisani, P Calabresi, D Centonze, G Bernardi (1997)  Enhancement of NMDA responses by group I metabotropic glutamate receptor activation in striatal neurones.   Br J Pharmacol 120: 6. 1007-1014 Mar  
Abstract: 1. The interactions between N-methyl-D-aspartate (NMDA) and metabotropic glutamate receptors (mGluRs) were investigated in striatal slices, by utilizing intracellular recordings, both in current- and voltage-clamp mode. 2. Bath-application (50 microM) or focal application of NMDA induced a transient membrane depolarization, while in the voltage-clamp mode, NMDA (50 microM) caused a transient inward current. Following bath-application of the non-selective mGluR agonist 1S,3R-aminocyclopentane-1,3-dicarboxylic acid (1S,3R-ACPD, 10 microM), NMDA responses were reversibly potentiated both in current (197 +/- 15% of control) and voltage-clamp experiments (200 +/- 18% of control). 3. Bath-application of the group I mGluR agonist (RS)-3,5-dihydroxyphenylglycine (3,5-DHPG, 10-300 microM) resulted in a dose-dependent potentiation of NMDA-induced membrane depolarization (up to 400 +/- 33% of control). This potentiation was either prevented by preincubation with (RS)-alpha-methyl-4-carboxyphenylglycine (RS-alpha-MCPG, 300 microM), or blocked when applied immediately after 3,5-DHPG wash-out. 4. Neither (2S,1'S,2'S)2-(2'-carboxycyclopropyl)glycine (L-CCG I, up to 100 microM) nor (2S,1'R,2'R,3'R)-2-(2,3-dicarboxycyclopropyl)-glycine (DCG-IV, 1 microM), agonists for group II mGluRs caused any change in NMDA responses. Likewise, L-serine-O-phosphate (L-SOP, 30 microM), agonist for group III mGluRs, did not affect the NMDA-induced depolarization. 5. The enhancement of the NMDA responses was mimicked by phorbol-12,13-diacetate (PDAc, 1 microM) which activates protein kinase C (PKC). The 3,5-DHPG-mediated potentiation of the NMDA-induced depolarization was prevented by preincubation with staurosporine (100 nM) or calphostin C (1 microM), antagonists of PKC. 6. Electrophysiological responses to alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor activation were not affected by agonists for the three-classes of mGluRs. 7. The present data suggest that group I mGluRs exert a positive modulatory action on NMDA responses, probably through activation of PKC. This functional interaction in the striatum appears of crucial importance in the understanding of physiological and pathological events, such as synaptic plasticity and neuronal death, respectively.
Notes:
A Pisani, P Calabresi, D Centonze, G Bernardi (1997)  Activation of group III metabotropic glutamate receptors depresses glutamatergic transmission at corticostriatal synapse.   Neuropharmacology 36: 6. 845-851 Jun  
Abstract: Intracellular recordings were performed from a rat corticostriatal slice preparation in order to characterize the effects of group III metabotropic glutamate receptor (mGluR) agonists on excitatory transmission at corticostriatal synapses. The amplitude of excitatory postsynaptic potentials (EPSPs), evoked by cortical stimulation, was significantly decreased by agonists acting at group III metabotropic glutamate receptors. Both L-2-amino-4-phosphonobutanoate (L-AP4) and L-serine-O-phosphate (L-SOP) were effective in reducing the amplitude of cortically evoked EPSPs, in a dose-dependent manner. The EC50 value for the effect of L-SOP and L-AP4 was 0.89 microM and 9.95 microM, respectively. Both L-AP4 and L-SOP had negligible effects on the intrinsic membrane properties of the recorded neurons and did not alter the postsynaptic response to focal application of glutamate, suggesting a presynaptic site of action. The presynaptic inhibition of both L-SOP and L-AP4 was fully antagonized by 250 microM (s)-2-methyl-2-amino-4-phosphonobutanoate (MAP4), whilst it was unaffected by 500 microM RS-methyl-4-carboxyphenylglycine (MCPG). Conversely, the presynaptic inhibitory effect on the EPSP amplitude exerted by 10 microM 1S,3R-1-aminocyclopentane-1,3-dicarboxylic acid (1S,3R-ACPD) was antagonized by 500 microM MCPG, whilst it was not blocked by 250 microM MAP4. Finally, the reduction of the EPSP amplitude produced by a saturating dose of L-SOP was further increased by 10 microM 1S,3R-ACPD, suggesting an additive effect of these compounds. The present results are consistent with the idea that group III mGluRs exert a presynaptic inhibitory modulation of the excitatory glutamatergic transmission at corticostriatal synapses.
Notes:
A Pisani, P Calabresi, G Bernardi (1997)  Hypoxia in striatal and cortical neurones: membrane potential and Ca2+ measurements.   Neuroreport 8: 5. 1143-1147 Mar  
Abstract: Simultaneous measurements of membrane potential and intracellular Ca2+ were used to study the effects of hypoxia on striatal and cortical neurones. Striatal neurones responded to hypoxia with a reversible membrane depolarization coupled with a transient increase in intracellular Ca2+. Thirty minutes of hypoxia caused an irreversible membrane depolarization associated with a massive raise in Ca2+ levels, leading to cell death. Conversely, cortical neurones were more resistant to O2 deprivation. Hypoxia (4-10 min) induced minimal changes in both membrane potential and Ca2+ signals. Longer periods (20-30 min) caused an initial membrane hyperpolarization followed by a large but reversible depolarization coupled with a transient increase in Ca2+ signals. These results support the hypothesis of a differential sensitivity of central neurones to hypoxia, suggesting that striatal neurones are more vulnerable than cortical cells.
Notes:
P Calabresi, A Pisani, D Centonze, G Bernardi (1997)  Synaptic plasticity and physiological interactions between dopamine and glutamate in the striatum.   Neurosci Biobehav Rev 21: 4. 519-523 Jul  
Abstract: Several electrophysiological studies have addressed the interaction between glutamate and dopamine within the striatum. Although the results obtained from these studies were often conflicting, more recently the characterization of new forms of synaptic plasticity in the basal ganglia provided a possible integrative explanation of the different electrophysiological data regarding the interaction between these transmitters. In this review we will try to summarize and discuss the available data concerning the possible impact of the functional role of D1 and D2 receptor activation on the modulation of the glutamatergic corticostriatal pathway. Moreover, we will also describe the function of the striatum in the integration of glutamatergic and dopaminergic inputs to produce long-term changes of synaptic efficacy (long-term depression, long-term potentiation). Finally, we will consider the implication of the interaction between dopamine and glutamate in the regulation of energetic metabolism whose failure is responsible for neuronal death.
Notes:
P Calabresi, D Centonze, A Pisani, G Bernardi (1997)  Endogenous adenosine mediates the presynaptic inhibition induced by aglycemia at corticostriatal synapses.   J Neurosci 17: 12. 4509-4516 Jun  
Abstract: Energy deprivation, as a result of aglycemia, leads to depression of the central synaptic transmission. Endogenous adenosine has been implicated in this depressant effect. We have studied the possible involvement of endogenous adenosine in the depression of corticostriatal excitatory transmission induced by glucose deprivation by using intracellular recordings in brain slices. After stimulation of corticostriatal fibers, EPSPs were recorded from striatal spiny neurons. Adenosine (3-300 microM) or brief periods (5-10 min) of aglycemia reduced the EPSP amplitude but did not alter the membrane potential and the resistance of the recorded cells. These inhibitory effects were not associated with an alteration of the postsynaptic sensitivity to exogenous glutamate but were coupled with an increased paired-pulse facilitation, suggesting the involvement of presynaptic mechanisms. A delayed postsynaptic membrane depolarization/inward current was detected after 15-20 min of glucose deprivation. The presynaptic inhibitory effects induced by adenosine and aglycemia were both antagonized either by the nonselective adenosine receptor antagonist caffeine (2.5 mM) or by the A1 receptor antagonists 8-cyclopentyl-1,3-dimethylxanthine (CPT, 1 microM) and 1,3-dipropyl-8-cyclopentylxanthine (CPX, 300 nM). Conversely, these antagonists affected neither the delayed membrane depolarization/inward current nor the underlying conductance increase produced by glucose deprivation. The ATP-sensitive potassium channel blockers tolbutamide (1 mM) and glipizide (100 nM) had no effect on the aglycemia-induced decrease of EPSP amplitude. Our data demonstrate that endogenous adenosine acting on A1 receptors mediates the presynaptic inhibition induced by aglycemia at corticostriatal synapses, whereas ATP-dependent potassium channels do not play a significant role in this presynaptic inhibition.
Notes:
P Calabresi, A Saiardi, A Pisani, J H Baik, D Centonze, N B Mercuri, G Bernardi, E Borrelli (1997)  Abnormal synaptic plasticity in the striatum of mice lacking dopamine D2 receptors.   J Neurosci 17: 12. 4536-4544 Jun  
Abstract: Dopamine D2 receptors (D2Rs) are of crucial importance in the striatal processing of motor information received from the cortex. Disruption of the D2R gene function in mice results in a severe locomotor impairment. This phenotype has analogies with Parkinson's disease symptoms. D2R-null mice were used to investigate the role of this receptor in the generation of striatal synaptic plasticity. Tetanic stimulation of corticostriatal fibers produced long-term depression (LTD) of EPSPs in slices from wild-type (WT) mice. Strikingly, recordings from D2R-null mice showed the converse: long-term potentiation (LTP). This LTP, unlike LTD, was blocked by an NMDA receptor antagonist. In magnesium-free medium, LTP was also revealed in WT mice and found to be enhanced by L-sulpiride, a D2R antagonist, whereas it was reversed into LTD by LY 17555, a D2R agonist. In D2R-null mice this modulation was lost. Thus, our study indicates that D2Rs play a key role in mechanisms underlying the direction of long-term changes in synaptic efficacy in the striatum. It also shows that an imbalance between D2R and NMDA receptor activity induces altered synaptic plasticity at corticostriatal synapses. This abnormal synaptic plasticity might cause the movement disorders observed in Parkinson's disease.
Notes:
P Calabresi, D Centonze, A Pisani, G Bernardi (1997)  A possible mechanism for the aglycemia-induced depression of glutamatergic excitation in the striatum.   J Cereb Blood Flow Metab 17: 10. 1121-1126 Oct  
Abstract: We have studied the possible mechanisms underlying the decrease of excitatory transmission induced by glucose deprivation by using electrophysiological recordings in corticostriatal slices. Extracellular field potentials were recorded in the striatum after cortical stimulation; these potentials were progressively reduced by glucose deprivation. The reduction started 5 minutes after the onset of aglycemia. The field potential was fully suppressed after 40 minutes of glucose deprivation. After the washout of the aglycemic solution only a partial recovery was observed. Aglycemia also induced a delayed inward current during single-microelectrode voltage-clamp recordings from spiny neurons. This inward current was coupled with an increased membrane conductance. The A1 adenosine receptor antagonists, 8-cyclopentyl-1,3-dimethylxanthine (CPT, 1 micromol/L) and 1,3-dipropyl-8-cyclopentylxanthine (CPX, 300 nmol/L), significantly reduced the aglycemia-induced decrease of field potential amplitude. Moreover, in the presence of CPT and CPX, a full recovery of the field potential amplitude after the interruption of the aglycemic solution was observed. Conversely, these antagonists affected neither the inward current nor the underlying conductance increase produced by glucose deprivation. The ATP-sensitive potassium channel blockers glibenclamide (10 micromol/L) and glipizide (100 nmol/L) had no effect on the aglycemia-induced decrease of the field potential amplitude. We suggest that endogenous adenosine, but not ATP-dependent potassium channels, plays a significant role in the aglycemia-induced depression of excitatory transmission at corticostriatal synapses probably through a presynaptic mechanism. Moreover, adenosine is not involved in the postsynaptic changes induced by glucose deprivation in spiny striatal neurons.
Notes:
1996
P Calabresi, A Pisani, N B Mercuri, G Bernardi (1996)  The corticostriatal projection: from synaptic plasticity to dysfunctions of the basal ganglia.   Trends Neurosci 19: 1. 19-24 Jan  
Abstract: Corticostriatal transmission has an important function in the regulation of the neuronal activity of the basal ganglia. The firing activity of corticostriatal neurones excites striatal cells via the release of glutamate. Presynaptic receptors that are located on corticostriatal terminals and that regulate the release of glutamate in the striatum have been postulated for dopamine and glutamate. Activation of these receptors may exert a negative feed-back on the striatal release of glutamate. High-frequency activation of corticostriatal fibres causes either long-term depression or long-term potentiation of excitatory transmission depending on the subclass of glutamate receptor that is activated. These forms of synaptic plasticity could be involved in motor learning. Alterations in striatal synaptic plasticity might be implicated in Parkinson's disease and Huntington's disease.
Notes:
A Stefani, P Calabresi, A Pisani, N B Mercuri, A Siniscalchi, G Bernardi (1996)  Felbamate inhibits dihydropyridine-sensitive calcium channels in central neurons.   J Pharmacol Exp Ther 277: 1. 121-127 Apr  
Abstract: The effect of the antiepileptic drug felbamate (FBM) on high-voltage-activated Ca++ currents was studied in cortical and neostriatal neurons acutely isolated from adult rats. Patch-clamp recordings in the whole-cell configuration were performed. Ba++ ions as the charge carrier for Ca++ channels were used. In pyramidal cortical cells, FBM dose-dependently reduced high-voltage-activated Ca++ currents in all the tested neurons. At concentrations of 30 to 100 nM, FBM already produced a significant inhibition of high-voltage-activated Ca++ currents (-6/-15%). At saturating concentrations (1-3 microM), FBM-mediated inhibition averaged 44%. The responses were fully reversible. The dose-response curves revealed IC50 of 504 nM. In striatal neurons, FBM decreased the same conductances by about 28%; the threshold dose was 1 to 2 microM, with an IC50 of 18.7 microM. In both structures, the observed inhibitions were unaffected by omega-conotoxin GVIA and omega-agatoxin IVA, suggesting that N-like channels and P-Like channels were not involved in the FBM-mediated responses. In addition, when omega-conotoxin GVIA and omega-agatoxin IVA (100 nM) were coapplied, the FBM-mediated inhibition on the remaining Ca++ currents averaged 87%. The FBM responses were occluded by micromolar concentrations of nifedipine, supporting a direct interference with dihydropyridine-sensitive channels. It is concluded that the described effect of FBM might represent an efficacious mechanism for either controlling spike discharge from epileptic foci or protecting neurons from excessive Ca++ loading. In both cases, FBM would act as a broad spectrum neuroprotective agent.
Notes:
P Calabresi, A Siniscalchi, A Pisani, A Stefani, N B Mercuri, G Bernardi (1996)  A field potential analysis on the effects of lamotrigine, GP 47779, and felbamate in neocortical slices.   Neurology 47: 2. 557-562 Aug  
Abstract: We studied the action of the new antiepileptic drugs lamotrigine (LTG), GP 47779 (the active metabolite of oxcarbazepine), and felbamate (FBM) on stimulus-evoked field potentials recorded from rat prefrontal and frontal cortical slices. In the presence of physiologic concentrations of extracellular magnesium (1.2 mM) the field potential amplitude was not affected by the N-methyl-D-aspartate (NMDA) glutamate receptor antagonist, 2-amino-5-phosphonovalerate (APV), while it was blocked by the non-NMDA glutamate receptor antagonist, 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). When magnesium was removed from the bathing medium, there was a significant NMDA-mediated component of the field potential. LTG and GP 47779 decreased, in a dose-dependent manner, the field potential amplitude under both experimental conditions. FBM caused a dose-related decrease of the field potential amplitude only in the absence of external magnesium, suggesting a selective interaction with an NMDA-mediated component of this potential. These findings indicate that the reduction of cortical excitatory transmission might represent a common target for new antiepileptic drugs.
Notes:
A Stefani, A Pisani, N B Mercuri, P Calabresi (1996)  The modulation of calcium currents by the activation of mGluRs. Functional implications.   Mol Neurobiol 13: 1. 81-95 Aug  
Abstract: Glutamatergic transmission in the central nervous system (CNS) is mediated by ionotropic, ligand-gated receptors (iGluRs), and metabotropic receptors (mGluRs). mGluRs are coupled to GTP-binding regulatory proteins (G-proteins) and modulate different second messenger pathways. Multiple effects have been described following their activation; among others, regulation of fast synaptic transmission, changes in synaptic plasticity, and modification of the threshold for seizure generation. Some of the major roles played by the activation of mGluRs might depend on the modulation of high-voltage-activated (HVA) calcium (Ca2+) currents. Some HVA Ca2+ channels (N-, P-, and Q-type channels) are signaling components at most presynaptic active zones. Their mGluR-mediated inhibition reduces synaptic transmission. The interference, by agonists at mGluRs, on L-type channels might affect the repetitive neuronal firing behavior and the integration of complex events at the somatic level. In addition, the mGluR-mediated effects on voltage-gated Ca2+ signals have been suggested to strongly influence neurotoxicity. Rather different coupling mechanisms underlie the relation between mGluRs and Ca2+ currents: Together with a fast, membrane-delimited mechanism of action, much slower responses, involving intracellular second messengers, have also been postulated. In the recent past, the relative paucity of selective agonists and antagonists for the different subclasses of mGluRs had hampered the clear definition of the roles of mGluRs in brain function. However, the recent availability of new pharmacological tools is promising to provide a better understanding of the neuronal functions related to different mGluR subtypes. The analysis of the mGluR-mediated modulation of Ca2+ conductances will probably offer new insights into the characterization of synaptic transmission and the development of neuroprotective agents.
Notes:
1995
P Calabresi, M De Murtas, A Pisani, A Stefani, G Sancesario, N B Mercuri, G Bernardi (1995)  Vulnerability of medium spiny striatal neurons to glutamate: role of Na+/K+ ATPase.   Eur J Neurosci 7: 8. 1674-1683 Aug  
Abstract: In Huntington's disease neuronal degeneration mainly involves medium-sized spiny neurons. It has been postulated that both excitotoxic mechanisms and energy metabolism failure are implicated in the neuronal degeneration observed in Huntington's disease. In central neurons, > 40% of the energy released by respiration is used by Na+/K+ ATPase to maintain ionic gradients. Considering that impairment of Na+/K+ ATPase activity might alter postsynaptic responsivity to excitatory amino acids (EAAs), we investigated the effects of the Na+/K+ ATPase inhibitors, ouabain and strophanthidin, on the responses to different agonists of EAA receptors in identified medium-sized spiny neurons electrophysiologically recorded in the current- and voltage-clamp modes. In most of the cells both ouabain and strophanthidin (1-3 microM) did not cause significant change in the membrane properties of the recorded neurons. Higher doses of either ouabain (30 microM) or strophanthidin (30 microM) induced, per se, an irreversible inward current coupled to an increase in conductance, leading to cell deterioration. Moreover, both ouabain (1-10 microM) and strophanthidin (1-10 microM) dramatically increased the membrane depolarization and the inward current produced by subcritical concentrations of glutamate, AMPA and NMDA. These concentrations of Na+/K+ ATPase inhibitors also increased the membrane responses induced by repetitive cortical activation. In addition, since it had previously been proposed that dopamine mimics the effects of Na+/K+ ATPase inhibitors and that dopamine agonists differentially regulate the postsynaptic responses to EAAs, we tested the possible modulation of EAA-induced membrane depolarization and inward current by dopamine agonists. Neither dopamine nor selective dopamine agonists or antagonists affected the postsynaptic responses to EAAs. Our experiments show that impairment of the activity of Na+/K+ ATPase may render striatal neurons more sensitive to the action of glutamate, lowering the threshold for the excitotoxic events. Our data support neither the role of dopamine as an ouabain-like agent nor the differential modulatory action of dopamine receptors on the EAA-induced responses in the striatum.
Notes:
P Calabresi, A Pisani, N B Mercuri, G Bernardi (1995)  On the mechanisms underlying hypoxia-induced membrane depolarization in striatal neurons.   Brain 118 ( Pt 4): 1027-1038 Aug  
Abstract: Clinical and experimental evidence has shown that the striatal neurons are particularly vulnerable to hypoxia and ischaemia. An excessive excitatory action of glutamate, released by the corticostriatal terminals, has been implicated in this peculiar vulnerability of striatal neurons. We have studied the effects of hypoxia on the membrane properties of striatal neurons intracellularly recorded from a corticostriatal slice preparation. Brief (2-10 min) periods of hypoxia produced reversible membrane depolarizations. During the initial phase of the hypoxia-induced depolarization the frequency of action potential discharge was transiently increased; 2-3 min after the onset of hypoxia the firing activity was fully abolished. Brief periods of hypoxia also caused a reversible reduction of the amplitude of the excitatory postsynaptic potentials (EPSPs) evoked by cortical stimulation. Longer period of hypoxia (12-20 min) produced irreversible membrane depolarizations. In voltage-clamp experiments hypoxia caused an inward current coupled with an increased membrane conductance. Tetrodotoxin (TTX) or low calcium (Ca2+)-high magnesium containing solutions blocked synaptic transmission, but they did not reduce the hypoxia-induced electrical changes. Antagonists of excitatory amino acid receptors failed to affect the electrical effects caused by oxygen deprivation. Hypoxia-induced inward currents were reduced either by the potassium (K+) channel blockers, barium and tetraethyl ammonium (TEA) cations, or by lowering external sodium (Na+) concentration. Blockade of ATP-dependent Na(+)-K+ pump by both ouabain and strophanthidin enhanced hypoxia-induced membrane depolarization/inward current. Our findings indicate that the release of excitatory amino acids does not seem to be required for the acute hypoxia-induced electrical changes in striatal neurons. Moreover, TTX-resistant Na+ influx and K+ currents seem to play an important role in the generation of hypoxia-induced electrical changes. These data also suggest that the selective vulnerability of striatal neurons to oxygen deprivation may be caused by their peculiar sensitivity to energy metabolism failure.
Notes:
A Stefani, A Pisani, A Bonci, F Stratta, G Bernardi (1995)  Outward potassium currents activated by depolarization in rat globus pallidus.   Synapse 20: 2. 131-136 Jun  
Abstract: Voltage-dependent potassium currents play a key role in shaping the firing pattern of central neurons. Their pharmacological and physiological identification is rather important in the structures which are involved in the filtering of input/output messages. In this regard, globus pallidus external segment (GPe) is indicated as a crucial station in the well-known indirect pathway of the basal ganglia. Among the potassium conductances which have been indicated to condition the firing behavior and the neuronal integrative properties in many central neurons, we analysed the depolarization-activated ones by means of patch-clamp recordings in the whole-cell configuration. Two main families of calcium-independent outward potassium currents are activated by depolarization in GPe neurons acutely isolated from the adult rat. From depolarized holding potentials (-50/-45 mV), a slowly-activating, sustained current is evoked; it manifests very little inactivation and it is available at rather depolarized potentials (-30 mV/-20 mV). This current is relatively resistant to 4-aminopyridine (4-AP) but it is blocked by tetraethilammonium ions (TEA) and consequently it resembles delayed rectifier current (Ik). From negative holding potentials (-80/-100 mV), on the other hand, A-like conductances are activated. Together with a fast-inactivating transient current, another component is observed in a significant proportion of recordings (45%). This current shows half-inactivation voltage around -90 mV, peculiar sensitivity to micromolar doses of 4-AP and a slow rate of recovery from inactivation. The presence and the modulation of these A-like currents may be a very critical aspect in the membrane physiology of pallidal neurons.
Notes:
F Stratta, A Bonci, P Calabresi, A Stefani, A Pisani, G Bernardi, N B Mercuri (1995)  Basic research in substantia nigra and ventral tegmental area: clinical implications.   J Neural Transm Suppl 45: 47-55  
Abstract: In this review we will briefly examine some physiological and pharmacological aspects of the dopaminergic and non-dopaminergic cells of the midbrain in relationship to pathological conditions such as extrapyramidal disorders, mental illness, drug seeking behaviour and epilepsy.
Notes:
P Calabresi, E Fedele, A Pisani, G Fontana, N B Mercuri, G Bernardi, M Raiteri (1995)  Transmitter release associated with long-term synaptic depression in rat corticostriatal slices.   Eur J Neurosci 7: 9. 1889-1894 Sep  
Abstract: Using a corticostriatal slice preparation, we have recently shown that tetanic stimulation of the corticostriatal pathway produces long-term depression (LTD) of striatal excitatory synaptic transmission. In the present study we have analysed the relationship between LTD and the striatal release of different endogenous transmitters. Samples of perfusate were collected via a small cannula placed just above the surface of the striatal slice close to the recording electrode, and were analysed by HPLC. The high-frequency stimulation (100 Hz, three trains, 3 s duration, 20 s interval) used to induce LTd caused a significant but transient increase in the release of both excitatory (aspartate and glutamate) and inhibitory (glycine and GABA) amino acid transmitters. Tetanic stimulation also produced a significant, but transient increase in the release of endogenous dopamine. We conclude that the tetanic stimulation of the corticostriatal pathway is able to induce a large but transient release of excitatory amino acids and of dopamine, whose participation in the induction of striatal LTD has been demonstrated previously. Moreover, the maintenance of this form of synaptic plasticity does not seem to require a sustained change in transmitter release.
Notes:
A Stefani, A Pisani, G Bernardi, A Bonci, N B Mercuri, F Stratta, P Calabresi (1995)  The modulation of dopamine receptors in rat striatum.   J Neural Transm Suppl 45: 61-66  
Abstract: In the last decades, the contribution given by basic electrophysiology to the understanding of the nigrostriatal pathway in mammals has been rather important. The main results obtained by our group will be revised in this short review. The most common responses produced by dopamine (DA) on the principal striatal cells (the medium spiny neurons) are the modulation of the corticostriatal synaptic transmission and the decrease of voltage-dependent inward conductances. After blockade of DA transmission, both spontaneous and cortically driven glutamatergic postsynaptic potentials were inhibited by the selective activation of DA D2 receptors. In naive animals, the DA-mediated inhibition of postsynaptic firing activity was mediated by D1 receptor activation. Nevertheless, the two main subclasses of DA receptors seemed to cooperate in the formation of the long-term depression (LTD) of excitatory synaptic transmission in the striatum. The excitotoxic hypothesis of neurodegeneration has further stimulated our interest towards the study of the interactions between DA and other neurotransmitters into the basal ganglia.
Notes:
N B Mercuri, A Bonci, A Pisani, P Calabresi, G Bernardi (1995)  Actions of glycine on non-dopaminergic neurons of the rat substantia nigra.   Eur J Neurosci 7: 11. 2351-2354 Nov  
Abstract: The effects of glycine on non-dopaminergic cells in rat substantia nigra pars compacta and pars reticulata maintained in vitro were investigated using intracellular recording techniques. Glycine, superfused at a concentration between 30 microM and 1 mM, reversibly blocked the spontaneous firing of these neurons. The inhibition of firing discharge was associated with a hyperpolarization of the membrane (potassium acetate-filled electrodes) and an increase in conductance. Under voltage-clamp experiments (holding potential between -57 and -65 mV), glycine produced an outward response which reversed polarity at about -74 mV. However, when the recording electrodes were filled with KCl, the glycinergic response was mainly depolarizing/inward and reversed at about -43 mV. Thus, it appeared to be due to an increase in chloride permeability. Furthermore, the effects of glycine were reversibly antagonized by strychnine (between 300 nM and 1 microM). Our findings demonstrate that glycine is a potent inhibitory agent on non-dopaminergic cells of the substantia pars compacta and par reticulata that acts by activating strychnine-sensitive receptors.
Notes:
P Calabresi, A Pisani, N B Mercuri, G Bernardi (1995)  Hypoxia-induced electrical changes in striatal neurons.   J Cereb Blood Flow Metab 15: 6. 1141-1145 Nov  
Abstract: We have studied the effects of hypoxia on the membrane properties of striatal neurons intracellularly recorded from a corticostriatal slice preparation. Brief (2-10 min) periods of hypoxia produced reversible membrane depolarizations. Longer periods of hypoxia (12-20 min) produced irreversible membrane depolarizations. In voltage-clamp experiments, hypoxia caused an inward current coupled with an increased membrane conductance. Tetrodotoxin or low calcium (Ca2+)-high magnesium-containing solutions blocked synaptic transmission, but they did not reduce the hypoxia-induced electrical changes. Antagonists of excitatory amino acid (EAA) receptors failed to affect the electrical effects caused by oxygen (O2) deprivation. In low sodium (Na+)-containing solutions the hypoxia-induced inward current was largely reduced. Blockade of ATP-dependent Na(+)-potassium (K+) pump by ouabain enhanced hypoxia-induced membrane depolarizations and/or inward currents. Our findings indicate that, at least for in vitro experiments, the release of EAAs is not required for the acute hypoxia-induced electrical changes in striatal neurons.
Notes:
A Stefani, M De Murtas, A Pisani, F Stratta, A Bonci, N B Mercuri, P Calabresi (1995)  Electrophysiology of dopamine D-1 receptors in the basal ganglia: old facts and new perspectives.   Prog Neuropsychopharmacol Biol Psychiatry 19: 5. 779-793 Sep  
Abstract: 1. The dopamine (DA) D1-receptor family is highly represented in the mammalian brain and particularly in the nigrostriatal system, whose integrity is crucial for the execution of motor performances. 2. In the last decade, our understanding of the electrophysiology of D1 receptors on caudate-putamen neurons has greatly improved. The effects of the activation of striatal D1 receptors were studied by extracellular single unit recordings in the intact animal as well as by intracellular recordings in rat brain slice preparation. More recently, whole-cell recordings on isolated striatal neurons have further addressed this issue and confirmed the inhibitory modulatory role of D1 receptor on the electrical activity of striatal neurons. 3. Several important questions, however, concerning the functional effects of D1 receptor activation in the basal ganglia are still debated: the cellular segregation of the distribution of D1-D2-like receptors, their synergistic or opposite functional roles at the second messenger level, the effects of D1 receptor activation on the transmitter release and the modifications of D1 receptor pharmacology in dopamine-denervated striata. 4. A different perspective will also be discussed: the involvement of D1 receptors in long-term changes of synaptic efficacy in the striatum as a possible correlate of motor learning.
Notes:
A Pisani, A Stefani, A Siniscalchi, N B Mercuri, G Bernardi, P Calabresi (1995)  Electrophysiological actions of felbamate on rat striatal neurones.   Br J Pharmacol 116: 3. 2053-2061 Oct  
Abstract: 1. We have investigated the effects of the anticonvulsant drug, felbamate (FBM), on striatal neurones, recorded in vitro by using both intracellular and extracellular conventional recordings in slices and whole-cell recordings in acutely isolated neurones. 2. FBM, at therapeutically relevant concentrations (30-300 microM) showed multiple mechanisms of action. Like other antiepileptic drugs, FBM (30-300 microM) showed a direct inhibitory action on current-evoked firing discharge of striatal neurones. A patch-clamp analysis of this effect revealed a dose-related reduction of voltage-dependent sodium (Na+) currents (10-100 microM), with a half inhibiton dose (IC50) value of 28 microM. 3. We also tested whether FBM affected corticostriatal glutamate transmission. In control medium (1.2 mM external magnesium), both extracellularly recorded field potentials and intracellularly recorded excitatory postsynaptic potentials (e.p.s.ps) evoked by cortical stimulation were no affected by bath application of 30-300 microM FBM. 4. When magnesium was removed from the perfusing solution, a procedure which reveals a N-methyl-D-aspartate (NMDA)-mediated component in the corticostriatal synaptic potential, FBM (30-300 microM) produced a dose-dependent reduction of the amplitude of both the field potential and the e.p.s.p. 5. FBM reduced the inward currents produced either by bath or by focal applications of 30 microM NMDA, finding consistent with the hypothesis that the observed reduction of the NMDA-mediated component of the synaptic potentials may be caused at postsynaptic level. 6. The reduction of the NMDA-mediated component of the synaptic transmission by FBM and its depressant effect on the voltage-dependent Na+ channels, may account for the antiepileptic action of this drug. Moreover, the pharmacological properties of FBM might render this drug interesting as a neuroprotectant agent.
Notes:
A Stefani, A Pisani, M De Murtas, N B Mercuri, M G Marciani, P Calabresi (1995)  Action of GP 47779, the active metabolite of oxcarbazepine, on the corticostriatal system. II. Modulation of high-voltage-activated calcium currents.   Epilepsia 36: 10. 997-1002 Oct  
Abstract: GP 47779, the active metabolite of oxcarbazepine (OCBZ) inhibits glutamatergic excitatory postsynaptic potentials (EPSPs) in rat striatum (described in the accompanying article). This effect was presumed to involve the modulation of the calcium (Ca2+) signals at either pre- or postsynaptic level. Therefore, we directly tested whether GP 47779 could modulate Ca2+ conductances in cortical as well as in striatal neurons. GP 47779 produced a reversible dose-dependent decrease in high-voltage-activated (HVA) Ca2+ currents evoked by membrane depolarization in isolated cortical pyramidal cells. GP 47779-mediated reduction in HVA Ca2+ currents, if occurring also at corticostriatal axon terminals, might explain the reduction of glutamate release in the striatum. An inhibitory action of GP 47779 on HVA Ca2+ currents was also observed in isolated striatal neurons. The effect of HVA Ca2+ currents in cortical and striatal neurons persisted in the presence of nifedipine, suggesting that dihydropyridine-sensitive channels were not involved in the GP 47779-mediated responses. We propose that the modulation of HVA Ca2+ channels by this carbamazepine (CBZ) analogue may account for its inhibitory action on transmitter release.
Notes:
P Calabresi, M De Murtas, A Stefani, A Pisani, G Sancesario, N B Mercuri, G Bernardi (1995)  Action of GP 47779, the active metabolite of oxcarbazepine, on the corticostriatal system. I. Modulation of corticostriatal synaptic transmission.   Epilepsia 36: 10. 990-996 Oct  
Abstract: Oxcarbazepine (OCBZ) is the keto-analogue of carbamazepine (CBZ). In humans, OCBZ is rapidly and almost completely metabolized to 10, 11-dihydro-10-hydroxy-CBZ (GP 47779), the main metabolite responsible for the drug's antiepileptic activity. The corticostriatal pathway is involved in the propagation of epileptic discharges. We characterized the electrophysiological effects of GP 47779 on striatal neurons by making intracellular recordings from corticostriatal slices. GP 47779 (3-100 microM) produced a dose-dependent inhibition of glutamatergic excitatory postsynaptic potentials (EPSPs). This effect was not coupled either with changes of the membrane potential of these cells or with alterations of their postsynaptic sensitivity to excitatory amino acids (EAA) suggesting a presynaptic site of action. GP 47779 reduced the current-evoked firing discharge only at concentrations > 100 microM. GP 47779 did not affect the presynaptic inhibitory action of adenosine, showing that presynaptic adenosine receptors were not implicated in the GP 47779-mediated reduction of corticostriatal EPSPs. Our data indicate that GP 47779 apparently acts directly on corticostriatal terminals to reduce the release of EAA, probably by inhibiting high-voltage-activated (HVA) calcium (Ca2+) currents (described in the accompanying article). The inhibitory action of GP 47779 on corticostriatal transmission may contribute to the antiepileptic effects of this drug.
Notes:
1994
P Calabresi, A Pisani, N B Mercuri, G Bernardi (1994)  Post-receptor mechanisms underlying striatal long-term depression.   J Neurosci 14: 8. 4871-4881 Aug  
Abstract: Extracellular and intracellular recordings were obtained from striatal neurons in a brain slice preparation in order to characterize the post-receptor mechanisms underlying striatal posttetanic long-term depression (LTD). Striatal LTD was blocked in neurons intracellularly recorded either with 1,2-bis (o-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid (BAPTA) or with EGTA, calcium (Ca2+) chelators. Intracellular injection of QX-314, a lidocaine derivative that has been shown to block voltage-dependent sodium channels, abolished action potential discharge and blocked striatal LTD. However, under this condition, striatal LTD was restored when, immediately before the delivery of the tetanus, the cell was depolarized at a membrane potential ranging between -30 mV and -20 mV by injecting continuous positive current. Nifedipine (10 microM), a blocker of voltage-dependent L-type Ca2+ channels, blocked striatal LTD. Nifedipine by itself altered neither cortically evoked EPSPs nor input resistance and firing properties of most of the recorded cells. Striatal LTD was also reduced or blocked by incubation of the slices in the presence of the following inhibitors of Ca(2+)-dependent protein kinases: staurosporine (10-50 nM), 1-(5-isoquinolinesulfonyl)-2- methylpiperazine (H-7; 10-50 microM), and calphostin C (1 microM). Our findings suggest that generation of striatal LTD requires a Ca2+ influx through voltage-dependent nifedipine-sensitive Ca2+ channels and a sufficient intracellular free Ca2+ concentration. Furthermore, this form of synaptic plasticity seems to involve the activation of Ca(2+)-dependent protein kinases. Different drugs, acting at receptor and/or post-receptor level, may affect this form of synaptic plasticity and might alter the formation of motor memory.
Notes:
A Stefani, A Pisani, N B Mercuri, G Bernardi, P Calabresi (1994)  Activation of metabotropic glutamate receptors inhibits calcium currents and GABA-mediated synaptic potentials in striatal neurons.   J Neurosci 14: 11 Pt 1. 6734-6743 Nov  
Abstract: The transmitter release from GABAergic synapses is thought to be calcium (Ca2+) dependent. The pharmacological modulation of Ca2+ currents in central GABAergic neurons may strongly affect GABA release from synaptic sites. The source of striatal GABA-containing synapses is intrinsic to the striatum and mainly originates from axon collaterals of projecting medium-spiny neurons. In order to characterize the role of metabotropic glutamate receptors (mGluRs) in the modulation of central GABA release, we have combined the study of high-voltage-activated (HVA) Ca2+ currents in isolated striatal neurons with the analysis of GABA-mediated synaptic potentials evoked by local stimulation in striatal slices. The mGluR agonists t-ACPD and 1S,3R-ACPD produced a reversible and dose-dependent decrease of both HVA Ca2+ currents and GABA-mediated synaptic potentials. The mGluR-mediated inhibition of GABA-mediated synaptic potentials was not coupled with changes of the membrane responses to exogenously applied GABA, suggesting an effect on the transmitter release rather than on the GABA receptor sensitivity. The reduction of Ca2+ currents persisted in nifedipine, but not in omega-conotoxin, supporting the involvement of an N-type Ca2+ channel in this pharmacological effect. The GABA-mediated synaptic potentials were greatly reduced by omega-conotoxin. The inhibitory action of 1S,3R-ACPD on residual GABA-mediated potentials was fully occluded in the presence of omega-conotoxin. In neurons dialyzed with GTP-gamma-S, the reduction of HVA currents was irreversible, suggesting an involvement of a G-protein-mediated mechanism. Preincubation in staurosporine blocked neither the reduction of Ca2+ currents nor the inhibition of synaptic potentials induced by mGluR activation, suggesting that staurosporine-sensitive kinases are not involved in these actions. L-AP3, a noncompetitive antagonist of mGluR-mediated alteration of phosphoinositide (PI) hydrolysis, failed to block both the mGluR-mediated reduction of Ca2+ current and the inhibition of GABA-mediated synaptic potentials. We conclude that activation of mGluRs depresses intrastriatal GA-BAergic transmission and Ca2+ currents recorded from putative GABAergic striatal cells. We suggest that a reduction of Ca2+ influx in the striatal GABAergic terminal may account for the mGluR-mediated inhibition of synaptic GABA release in this structure. The modulation of GABA release by mGluRs may have a profound implication in the physiopathology of basal ganglia activity.
Notes:
1993
P Calabresi, A Pisani, N B Mercuri, G Bernardi (1993)  Heterogeneity of metabotropic glutamate receptors in the striatum: electrophysiological evidence.   Eur J Neurosci 5: 10. 1370-1377 Oct  
Abstract: In order to investigate the functional role of metabotropic glutamate receptors (mGluRs) in the striatum we performed extracellular and intracellular recordings from a corticostriatal brain slice preparation. The effects of L-2-amino-3-phosphopropionic acid (L-AP3), an antagonist of mGluRs, were studied both on long-term synaptic depression (LTD) and on presynaptic inhibition of excitatory postsynaptic potentials (EPSPs) induced by different agonists of mGluRs. L-AP3 produced a dose-dependent (3-30 microM) reduction of the LTD evoked in the striatum by the tetanic stimulation of the corticostriatal pathway. In contrast to this action, L-AP3 (10-100 microM) did not significantly affect the presynaptic inhibitory effect of 1-amino-cyclopentyl-trans-dicarboxylic acid (t-ACPD), an agonist of mGluRs, on corticostriatal transmission. Higher concentrations of L-AP3 (0.3-1 mM) reduced by themselves the EPSP amplitude. The inhibitory effect of t-ACPD on the cortically evoked EPSPs was mimicked either by the active stereoisomer 1S,3R-ACPD or by amino-4-phosphonobutyric acid (L-AP4), a glutamate autoreceptor agonist. In some neurons, these inhibitory actions were coupled with membrane depolarizations. The depression of synaptic transmission caused by t-ACPD, 1S,3R-ACPD and L-AP4 was not altered following the induction of LTD. Chronic lithium treatment of the animals (60-120 mg/kg i.p. for 10 days) blocked striatal LTD but not presynaptic inhibition mediated by mGluR agonists. The present findings show that the mechanisms underlying LTD and the presynaptic inhibition induced by different agonists of mGluRs exhibit functional and pharmacological differences. These data suggest heterogeneity of mGluRs in the striatum.
Notes:
P Calabresi, A Pisani, N B Mercuri, G Bernardi (1993)  Lithium treatment blocks long-term synaptic depression in the striatum.   Neuron 10: 5. 955-962 May  
Abstract: We have studied the effect of acute and chronic lithium treatment on the activity of striatal neurons recorded from corticostriatal slices. Under control conditions, tetanic stimulation of glutamatergic corticostriatal terminals caused long-term depression (LTD) of excitatory synaptic potentials. Acute lithium treatment did not affect the peak of the induction phase, but it reduced the following phases of LTD. LTD was completely blocked in slices obtained from rats chronically injected with LiCl. Lithium treatment failed to affect the intrinsic membrane properties of striatal neurons and the presynaptic inhibitory effects of carbachol and t-ACPD. We suggest that the lithium-induced blockade of LTD may contribute to the therapeutic action of lithium salts in mania and depression.
Notes:
1992
P Calabresi, R Maj, A Pisani, N B Mercuri, G Bernardi (1992)  Long-term synaptic depression in the striatum: physiological and pharmacological characterization.   J Neurosci 12: 11. 4224-4233 Nov  
Abstract: The effect of tetanic activation of corticostriatal glutamatergic fibers was studied in striatal slices by utilizing extracellular and intracellular recording techniques. Tetanic stimulation produced a long-term synaptic depression (LTD) (> 2 h) of both extracellularly recorded field potentials and intracellularly recorded EPSPs. LTD was not coupled with changes of intrinsic membrane properties of the recorded neurons. In some neurons, repetitive cortical activation produced a short-term posttetanic potentiation (1-3 min). Subthreshold tetanic stimulation, which under control condition did not cause LTD, induced LTD when associated with membrane depolarization. Moreover, LTD was not expressed in cells in which the conditioning tetanus was coupled with hyperpolarization of the membrane. Bath application of aminophosphonovalerate (30-50 microM), an antagonist of NMDA receptors, did not affect the amplitude of the synaptic potentials and the expression of LTD. Striatal LTD was significantly reduced by the pretreatment of the slices with 30 microM 2-amino-3-phosphonopropionic acid, an antagonist of glutamate metabotropic receptors. LTD was not blocked by bicuculline (30 microM), a GABA(A) receptor antagonist. Scopolamine (3 microM), an antagonist of muscarinic receptors, induced a slight, but significant, increase of the amplitude of LTD. Both SCH 23390 (3 microM), an antagonist of D1 dopamine (DA) receptors, and I-sulpiride (1 microM), an antagonist of D2 DA receptors, blocked LTD. LTD was also absent in slices obtained from rats in which the nigrostriatal DA system was lesioned by unilateral nigral injection of 6-hydroxydopamine. In DA-depleted slices, LTD could be restored by applying exogenous DA (30 microM) before the conditioning tetanus. In DA-depleted slices, LTD could also be restored by coadministration of SKF 38393 (3-10 microM), a D1 receptor agonist, and of LY 171555 (1-3 microM), a D2 receptor agonist. Application of a single class of DA receptor agonists failed to restore LTD. These data show that striatal LTD requires three main physiological and pharmacological conditions: (1) membrane depolarization and action potential discharge of the postsynaptic cell during the conditioning tetanus, (2) activation of glutamate metabotropic receptors, and (3) coactivation of D1 and D2 DA receptors. Striatal LTD may alter the output signals from the striatum to the other structures of the basal ganglia. This form of synaptic plasticity can influence the striatal control of motor activity.
Notes:
P Calabresi, A Pisani, N B Mercuri, G Bernardi (1992)  Long-term Potentiation in the Striatum is Unmasked by Removing the Voltage-dependent Magnesium Block of NMDA Receptor Channels.   Eur J Neurosci 4: 10. 929-935  
Abstract: We have studied the effects of tetanic stimulation of the corticostriatal pathway on the amplitude of striatal excitatory synaptic potentials. Recordings were obtained from a corticostriatal slice preparation by utilizing both extracellular and intracellular techniques. Under the control condition (1.2 mM external Mg2+), excitatory postsynaptic potentials (EPSPs) evoked by cortical stimulation were reversibly blocked by 10 microM 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), an antagonist of dl-alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) ionotropic glutamate receptors, while they were not affected by 30 - 50 microM 2-amino-5-phosphonovalerate (APV), an antagonist of N-methyl-d-aspartate (NMDA) glutamate receptors. In the presence of 1.2 mM external Mg2+, tetanic activation of cortical inputs produced long-term depression (LTD) of both extracellularly and intracellularly recorded synaptic potentials. When Mg2+ was removed from the external medium, EPSP amplitude and duration increased. In Mg2+-free medium, cortically evoked EPSPs revealed an APV-sensitive component; in this condition tetanic stimulation produced long-term potentiation (LTP) of synaptic transmission. Incubation of the slices in 30 - 50 microM APV blocked striatal LTP, while it did not affect LTD. In Mg2+-free medium, incubation of the slices in 10 microM CNQX did not block the expression of striatal LTP. Intrinsic membrane properties (membrane potential, input resistance and firing pattern) of striatal neurons were altered neither by tetanic stimuli inducing LTD and LTP, nor by removal of Mg2+ from the external medium. These findings show that repetitive activation of cortical inputs can induce long-term changes of synaptic transmission in the striatum. Under control conditions NMDA receptor channels are inactivated by the voltage-dependent Mg2+ block and repetitive cortical stimulation induces LTD which does not require activation of NMDA channels. Removal of external Mg2+ deinactivates these channels and reveals a component of the EPSP which is potentiated by repetitive activation. Since the striatum has been involved in memory and in the storage of motor skills, LTD and LTP of synaptic transmission in this structure may provide the cellular substrate for motor learning and underlie the physiopathology of some movement disorders.
Notes:
Powered by PublicationsList.org.