hosted by
publicationslist.org
    

Anutosh Ganguly

Integrative Biology and Pharmacology, UT-Medical School, 6431 Fannin St, 4.401, Houston, Tx 77054 
anutosh@gmx.com

Journal articles

2012
Anutosh Ganguly, Hailing Yang, Ritu Sharma, Kamala D Patel, Fernando Cabral (2012)  The Role of Microtubules and Their Dynamics in Cell Migration.   J Biol Chem Nov  
Abstract: Although microtubules have long been implicated in cell locomotion, the mechanism of their involvement remains controversial. Most studies have concluded that microtubules play a positive role by regulating actin polymerization, transporting membrane vesicles to the leading edge, and/or facilitating the turnover of adhesion plaques. Here we used wild-type and mutant CHO cell lines with alterations in tubulin to demonstrate that microtubules can also act to restrain cell motility. Tubulin mutations or low concentrations of drugs that suppress microtubule dynamics without affecting the amount of microtubule polymer inhibited the rate of migration by preventing microtubule reorganization in the trailing portion of the cells where the more dynamic microtubules are normally found. Under these conditions, cells along the edge of a wound still extended lamellipodia and elongated toward the wound but were inhibited in their ability to retract their tails, thus retarding forward progress. The idea that microtubules normally act to restrain cell locomotion was confirmed by treating cells with high concentrations of nocodazole to depolymerize the microtubule network. In the absence of microtubules, wild-type CHO and HeLa cells could still move at near normal speeds but the movement became more random. We conclude that microtubules act both to restrain cell movement and establish directionality.
Notes:
Anutosh Ganguly, Hong Zhang, Ritu Sharma, Sean Parsons, Kamala D Patel (2012)  Isolation of human umbilical vein endothelial cells and their use in the study of neutrophil transmigration under flow conditions.   J Vis Exp 66. 08  
Abstract: Neutrophils are the most abundant type of white blood cell. They form an essential part of the innate immune system. During acute inflammation, neutrophils are the first inflammatory cells to migrate to the site of injury. Recruitment of neutrophils to an injury site is a stepwise process that includes first, dilation of blood vessels to increase blood flow; second, microvascular structural changes and escape of plasma proteins from the bloodstream; third, rolling, adhesion and transmigration of the neutrophil across the endothelium; and fourth accumulation of neutrophils at the site of injury. A wide array of in vivo and in vitro methods has evolved to enable the study of these processes. This method focuses on neutrophil transmigration across human endothelial cells. One popular method for examining the molecular processes involved in neutrophil transmigration utilizes human neutrophils interacting with primary human umbilical vein endothelial cells (HUVEC). Neutrophil isolation has been described visually elsewhere; thus this article will show the method for isolation of HUVEC. Once isolated and grown to confluence, endothelial cells are activated resulting in the upregulation of adhesion and activation molecules. For example, activation of endothelial cells with cytokines like TNF-α results in increased E-selectin and IL-8 expression. E-selectin mediates capture and rolling of neutrophils and IL-8 mediates activation and firm adhesion of neutrophils. After adhesion neutrophils transmigrate. Transmigration can occur paracellularly (through endothelial cell junctions) or transcellularly (through the endothelial cell itself). In most cases, these interactions occur under flow conditions found in the vasculature. The parallel plate flow chamber is a widely used system that mimics the hydrodynamic shear stresses found in vivo and enables the study of neutrophil recruitment under flow condition in vitro. Several companies produce parallel plate flow chambers and each have advantages and disadvantages. If fluorescent imaging is needed, glass or an optically similar polymer needs to be used. Endothelial cells do not grow well on glass. Here we present an easy and rapid method for phase-contrast, DIC and fluorescent imaging of neutrophil transmigration using a low volume ibidi channel slide made of a polymer that supports the rapid adhesion and growth of human endothelial cells and has optical qualities that are comparable to glass. In this method, endothelial cells were grown and stimulated in an ibidi μslide. Neutrophils were introduced under flow conditions and transmigration was assessed. Fluorescent imaging of the junctions enabled real-time determination of the extent of paracellular versus transcellular transmigration.
Notes:
Anutosh Ganguly, Rajat Bhattacharya, Fernando Cabral (2012)  Control of MCAK degradation and removal from centromeres.   Cytoskeleton (Hoboken) 69: 5. 303-311 May  
Abstract: Mitotic centromere associated kinesin (MCAK) is a kinesin related protein with the ability to stimulate microtubule depolymerization. It is found at spindle poles, where it may be involved in poleward microtubule flux, and at kinetochores and centromeres where it plays a role in correcting chromosome alignment errors. Its microtubule depolymerase activity and recruitment to centromeres is regulated by phosphorylation, but little is known about how MCAK is maintained at appropriate levels. We previously reported that MCAK accumulates during the cell cycle and is then degraded during mitosis. Using proteomic analysis, we have now identified a new phosphorylation site on MCAK that is responsible for its degradation. Mutation of the site to prevent phosphorylation prolonged the stability of the protein beyond the metaphase to anaphase transition and into the subsequent cell cycle whereas a phosphomimetic mutation accelerated degradation. Unexpectedly, the mutation that prevented phosphorylation also inhibited the removal of MCAK from centromeres causing it to remain attached throughout the cell cycle. Even low expression of phosphorylation-resistant MCAK delayed mitosis and interfered with cell division. Mitotic defects were also observed by overexpressing a green fluorescent protein-tagged version of wild-type MCAK that similarly escaped degradation and accumulated to toxic levels, but did not remain associated with kinetochores during interphase. The results demonstrate that degradation is an important mechanism for controlling the activity of MCAK.
Notes:
2011
Anutosh Ganguly, Fernando Cabral (2011)  New insights into mechanisms of resistance to microtubule inhibitors.   Biochim Biophys Acta 1816: 2. 164-171 Jun  
Abstract: Mechanisms to explain tumor cell resistance to drugs that target the microtubule cytoskeleton have relied on the assumption that the drugs act either to suppress microtubule dynamics or to perturb the balance between assembled and nonassembled tubulin. Recently, however, it was found that these drugs also alter the stability of microtubule attachment to centrosomes, and do so at the same concentrations that are needed to inhibit cell division. Based on this new information, a new model is presented that explains resistance resulting from a variety of molecular changes that have been reported in the literature. The improved understanding of drug action and resistance has important implications for chemotherapy with these agents.
Notes:
Anutosh Ganguly, Hailing Yang, Mesias Pedroza, Rajat Bhattacharya, Fernando Cabral (2011)  Mitotic Centromere-associated Kinesin (MCAK) Mediates Paclitaxel Resistance.   J Biol Chem 286: 42. 36378-36384 Oct  
Abstract: Paclitaxel has powerful anticancer activity, but some tumors are inherently resistant to the drug, whereas others are initially sensitive but acquire resistance during treatment. To deal with this problem, it will be necessary to understand the mechanisms of drug action and resistance. Recent studies indicate that paclitaxel blocks cell division by inhibiting the detachment of microtubules from centrosomes. Here, we demonstrate that mitotic centromere-associated kinesin (MCAK), a kinesin-related protein that destabilizes microtubules, plays an important role in microtubule detachment. Depletion of MCAK altered mitotic spindle morphology, increased the frequency of lagging chromosomes, and inhibited the proliferation of WT CHO cells, confirming that it is an essential protein for cell division. In contrast, MCAK depletion rescued the proliferation of mutant paclitaxel-dependent cell lines that are unable to divide because of defective spindle function resulting from altered α-tubulin or class III β-tubulin overexpression. In concert with the correction of mitotic defects, loss of MCAK reversed an aberrantly high frequency of microtubule detachment in the mutant cells and increased their sensitivity to paclitaxel. The results indicate that MCAK affects cell sensitivity to mitotic inhibitors by modulating the frequency of microtubule detachment, and they demonstrate that changes in a microtubule-interacting protein can reverse the effects of mutant tubulin expression.
Notes:
Hailing Yang, Anutosh Ganguly, Fernando Cabral (2011)  Megakaryocyte lineage specific class VI β‐tubulin suppresses microtubule dynamics, fragments microtubules, and blocks cell division   Cytoskeleton  
Abstract: Abstract Class VI β-tubulin (β6) is the most divergent tubulin produced in mammals and is found only in platelets and mature megakaryocytes. To determine how this unique tubulin isotype affects microtubule assembly and organization, we expressed the cDNA in tissue culture cells under the control of a tetracycline regulated promoter. The β6 coassembled with other endogenous β-tubulin isotypes into a normal microtubule array; but once the cells entered mitosis it caused extensive fragmentation of the microtubules, disrupted the formation of the spindle apparatus, and allowed entry into G1 phase without cytokinesis to produce large multinucleated cells. The microtubule fragments persisted into subsequent cell cycles and accumulated around the membrane in a marginal band-like appearance. The persistence of the fragments could be traced to a pronounced suppression of microtubule dynamic instability. Impairment of centrosomal nucleation also contributed to the loss of a normal microtubule cytoskeleton. Incorporation of β6 allowed microtubules to resist the effects of colcemid and maytansine, but not vinblastine or paclitaxel; however, cellular resistance to colcemid or maytansine did not occur because expression of β6 prevented cell division. The results indicate that many of the morphological features of megakaryocyte differentiation can be recapitulated in non-hematopoietic cells by β6 expression and they provide a mechanistic basis for understanding these changes.
Notes:
2010
Hailing Yang, Anutosh Ganguly, Fernando Cabral (2010)  Inhibition of cell migration and cell division correlates with distinct effects of microtubule inhibiting drugs.   J Biol Chem 285: 42. 32242-32250 Oct  
Abstract: Drugs that target microtubules are thought to inhibit cell division and cell migration by suppressing dynamic instability, a "search and capture" behavior that allows microtubules to probe their environment. Here, we report that subtoxic drug concentrations are sufficient to inhibit plus-end microtubule dynamic instability and cell migration without affecting cell division or microtubule assembly. The higher drug concentrations needed to inhibit cell division act through a novel mechanism that generates microtubule fragments by stimulating microtubule minus-end detachment from their organizing centers. The frequency of microtubule detachment in untreated cells increases at prophase suggesting that it is a regulated cellular process important for spindle assembly and function. We conclude that drugs produce differential dose-dependent effects at microtubule plus and minus-ends to inhibit different microtubule-mediated functions.
Notes:
Anutosh Ganguly, Hailing Yang, Fernando Cabral (2010)  Paclitaxel-dependent cell lines reveal a novel drug activity.   Mol Cancer Ther 9: 11. 2914-2923 Nov  
Abstract: We previously described the isolation of Tax 18 and Tax 11-6, two paclitaxel-dependent cell lines that assemble low amounts of microtubule polymer and require the drug for cell division. In the present studies, fluorescence time-lapse microscopy was used to measure microtubule dynamic instability behavior in these cells. The mutations were found to cause small decreases in microtubule growth and shortening, but the changes seemed unable to explain the defects in microtubule polymer levels or cell division. Moreover, paclitaxel further suppressed microtubule dynamics at low drug concentrations that were insufficient to rescue the mutant phenotype. Wild-type (WT) cells treated with similar low drug concentrations also had highly suppressed microtubules, yet experienced no problems with cell division. Thus, the effects of paclitaxel on microtubule dynamics seemed to be unrelated to cell division in both WT and mutant cell lines. The higher drug concentrations needed to rescue the mutant phenotype instead inhibited the formation of unstable microtubule fragments that appeared at high frequency in the drug-dependent, but not WT, cell lines. Live cell imaging revealed that the fragments were generated by microtubule detachment from centrosomes, a process that was reversed by paclitaxel. We conclude that paclitaxel rescues mutant cell division by inhibiting the detachment of microtubule minus ends from centrosomes rather than by altering plus-end microtubule dynamics. Mol Cancer Ther; 9(11); 2914-23. ©2010 AACR.
Notes:
2008
Anutosh Ganguly, Rajat Bhattacharya, Fernando Cabral (2008)  Cell cycle dependent degradation of MCAK: evidence against a role in anaphase chromosome movement.   Cell Cycle 7: 20. 3187-3193 Oct  
Abstract: MCAK, a kinesin related motor protein with microtubule depolymerizing activity, is known to play an important role in spindle assembly and correcting errors in mitotic chromosome alignment. Experiments to determine how cellular levels of the protein are regulated demonstrate that MCAK accumulates during cell cycle progression, reaches a maximum at G(2)/M phase, and is rapidly degraded by the proteasome during mitosis. Immunofluorescence microscopy further indicates that MCAK largely disappears from kinetochores and spindle poles at the metaphase to anaphase transition. A phosphorylated form of MCAK appears during mitosis and seems to be preferentially degraded, but degradation does not appear to depend on Aurora B, a kinase reported to be involved in regulating the error correcting activity of the protein. These studies indicate that MCAK activity is limited during the latter stages of mitosis by protein degradation, and argue against a role for the protein in anaphase chromosome movement.
Notes:
2006
Nagarajappa, Anutosh Ganguly, Usha Goswami (2006)  DNA damage in male gonad cells of Green mussel (Perna viridis) upon exposure to tobacco products.   Ecotoxicology 15: 4. 365-369 May  
Abstract: DNA damage (determined by the Comet Assay) and the occurrence of deformed nuclei were measured as endpoints of genotoxicity in male gonad cells of the marine mussel (Perna viridis). Upon exposure of the organism to varying concentrations of extracts of smoked and non-smoked cigar tobacco over a period of 16 days, DNA damage was found to be highest in marine mussels exposed to extracts of smoked cigar tobacco. Conversely, more deformed nuclei were detected in marine mussels exposed to extracts of non-smoked cigar tobacco. The level of DNA damage and the number of deformed nuclei reach a maximum at day 12 of exposure to both extracts but decrease thereafter. This phenomenon is attributed to the organism's capacity to maintain the integrity of its genetic material upon exposure to potential genotoxicants present in the tobacco extracts. A dose response in DNA damage and deformed nuclei was also detected in isolated gonad cells upon in vitro exposure to hydrogen peroxide a known DNA strand breaking agent. The results of this study indicate that the DNA in male gonad cells of the marine mussel is damaged upon exposure to genotoxicants, and suggests the suitability of the organism for future investigations into the effect of such agents on its reproductive capacities.
Notes:
Powered by PublicationsList.org.