hosted by
publicationslist.org
    

Bryan D Griffin


bdgriffin@eircom.net

Journal articles

2011
Michiel van Gent, Bryan D Griffin, Eufemia G Berkhoff, Daphne van Leeuwen, Ingrid G J Boer, Marlyse Buisson, Franca C Hartgers, Wim P Burmeister, Emmanuel J Wiertz, Maaike E Ressing (2011)  EBV lytic-phase protein BGLF5 contributes to TLR9 downregulation during productive infection.   J Immunol 186: 3. 1694-1702 Feb  
Abstract: Viruses use a wide range of strategies to modulate the host immune response. The human gammaherpesvirus EBV, causative agent of infectious mononucleosis and several malignant tumors, encodes proteins that subvert immune responses, notably those mediated by T cells. Less is known about EBV interference with innate immunity, more specifically at the level of TLR-mediated pathogen recognition. The viral dsDNA sensor TLR9 is expressed on B cells, a natural target of EBV infection. Here, we show that EBV particles trigger innate immune signaling pathways through TLR9. Furthermore, using an in vitro system for productive EBV infection, it has now been possible to compare the expression of TLRs by EBV(-) and EBV(+) human B cells during the latent and lytic phases of infection. Several TLRs were found to be differentially expressed either in latently EBV-infected cells or after induction of the lytic cycle. In particular, TLR9 expression was profoundly decreased at both the RNA and protein levels during productive EBV infection. We identified the EBV lytic-phase protein BGLF5 as a protein that contributes to downregulating TLR9 levels through RNA degradation. Reducing the levels of a pattern-recognition receptor capable of sensing the presence of EBV provides a mechanism by which the virus could obstruct host innate antiviral responses.
Notes:
2010
Bryan D Griffin, Marieke C Verweij, Emmanuel J H J Wiertz (2010)  Herpesviruses and immunity: the art of evasion.   Vet Microbiol 143: 1. 89-100 Jun  
Abstract: Herpesviruses have evolved several effective strategies to counter the host immune response. Chief among these is inhibition of the host MHC class I antigen processing and presentation pathway, thereby reducing the presentation of virus-derived epitopes on the surface of the infected cell. This review summarizes the mechanisms used by herpesviruses to achieve this goal, including shut-down of MHC class I molecule synthesis, blockage of proteasome-mediated peptide generation and prevention of TAP-mediated peptide transport. Furthermore, herpesvirus proteins can retain MHC class I molecules in the endoplasmic reticulum, or direct their retrograde translocation from the endoplasmic reticulum or endocytosis from the plasma membrane, with subsequent degradation. The resulting down-regulation of cell surface MHC class I peptide complexes thwarts the ability of cytotoxic T lymphocytes to recognize and eliminate virus-infected cells. The subversion of the natural killer cell response by herpesvirus proteins and microRNAs is also discussed.
Notes:
2009
Jianmin Zuo, Andrew Currin, Bryan D Griffin, Claire Shannon-Lowe, Wendy A Thomas, Maaike E Ressing, Emmanuel J H J Wiertz, Martin Rowe (2009)  The Epstein-Barr virus G-protein-coupled receptor contributes to immune evasion by targeting MHC class I molecules for degradation.   PLoS Pathog 5: 1. Jan  
Abstract: Epstein-Barr virus (EBV) is a human herpesvirus that persists as a largely subclinical infection in the vast majority of adults worldwide. Recent evidence indicates that an important component of the persistence strategy involves active interference with the MHC class I antigen processing pathway during the lytic replication cycle. We have now identified a novel role for the lytic cycle gene, BILF1, which encodes a glycoprotein with the properties of a constitutive signaling G-protein-coupled receptor (GPCR). BILF1 reduced the levels of MHC class I at the cell surface and inhibited CD8(+) T cell recognition of endogenous target antigens. The underlying mechanism involves physical association of BILF1 with MHC class I molecules, an increased turnover from the cell surface, and enhanced degradation via lysosomal proteases. The BILF1 protein of the closely related CeHV15 gamma(1)-herpesvirus of the Rhesus Old World primate (80% amino acid sequence identity) downregulated surface MHC class I similarly to EBV BILF1. Amongst the human herpesviruses, the GPCR encoded by the ORF74 of the KSHV gamma(2)-herpesvirus is most closely related to EBV BILF1 (15% amino acid sequence identity) but did not affect levels of surface MHC class I. An engineered mutant of BILF1 that was unable to activate G protein signaling pathways retained the ability to downregulate MHC class I, indicating that the immune-modulating and GPCR-signaling properties are two distinct functions of BILF1. These findings extend our understanding of the normal biology of an important human pathogen. The discovery of a third EBV lytic cycle gene that cooperates to interfere with MHC class I antigen processing underscores the importance of the need for EBV to be able to evade CD8(+) T cell responses during the lytic replication cycle, at a time when such a large number of potential viral targets are expressed.
Notes:
2008
Maaike E Ressing, DaniĆ«lle Horst, Bryan D Griffin, Judy Tellam, Jianmin Zuo, Rajiv Khanna, Martin Rowe, Emmanuel J H J Wiertz (2008)  Epstein-Barr virus evasion of CD8(+) and CD4(+) T cell immunity via concerted actions of multiple gene products.   Semin Cancer Biol 18: 6. 397-408 Dec  
Abstract: Upon primary infection, EBV establishes a latent infection in B cells, characterized by maintenance of the viral genome in the absence of viral replication. The Epstein-Barr Nuclear Antigen 1 (EBNA1) plays a crucial role in maintenance of the viral DNA episome and is consistently expressed in all EBV-associated malignancies. Compared to other EBV latent gene products, EBNA1 is poorly recognized by CD8(+) T lymphocytes. Recent studies are discussed that shed new light on the mechanisms that underlie this unusual lack of CD8(+) T cell activation. Whereas the latent phase is characterized by the expression of a limited subset of viral gene products, the full repertoire of over 80 EBV lytic gene products is expressed during the replicative phase. Despite this abundance of potential T cell antigens, which indeed give rise to a strong response of CD4(+) and CD8(+) T lymphocytes, the virus can replicate successfully. Evidence is accumulating that this paradoxical situation is the result of actions of multiple viral gene products, inhibiting discrete stages of the MHC class I and class II antigen presentation pathways. Immediately after initiation of the lytic cycle, BNLF2a prevents peptide-loading of MHC class I molecules through inhibition of the Transporter associated with Antigen Processing, TAP. This will reduce presentation of viral antigens by the large ER-resident pool of MHC class I molecules. Synthesis of new MHC class I molecules is blocked by BGLF5. Viral-IL10 causes a reduction in mRNA levels of TAP1 and bli/LMP2, a subunit of the immunoproteasome. MHC class I molecules present at the cell surface are downregulated by BILF1. Also the antigen presenting capacity of MHC class II molecules is severely compromised by multiple EBV lytic gene products, including gp42/gH/gL, BGLF5, and vIL-10. In this review, we discuss how concerted actions of these EBV lytic proteins result in highly effective interference with CD8(+) and CD4(+) T cell surveillance, thereby providing the virus with a window for undisturbed generation of viral progeny.
Notes:
2006
Bryan D Griffin, Paul N Moynagh (2006)  Persistent interleukin-1beta signaling causes long term activation of NFkappaB in a promoter-specific manner in human glial cells.   J Biol Chem 281: 15. 10316-10326 Apr  
Abstract: Nuclear factor-kappaB (NFkappaB) is an inducible transcription factor that plays a key role in regulating the expression of a wide range of immune and inflammatory response genes. The activity of NFkappaB is controlled at multiple levels, including cytoplasmic retention with inhibitor of kappaB (IkappaB) proteins in the basal state. Persistent activation of the transcription factor is seen in numerous chronic inflammatory disease states, and we have previously demonstrated sustained activation of NFkappaB in human glial cells upon stimulation with interleukin (IL)-1beta. In these cells, NFkappaB retains DNA binding activity for up to 72 h despite the presence of resynthesized IkappaBalpha and in the absence of IkappaBbeta. Here we characterized the apparent inability of newly synthesized IkappaBalpha to terminate activation of NFkappaB in glial cells. We showed unexpectedly that newly synthesized IkappaBalpha can enter the nucleus, interact with the NFkappaB subunit p65, and export it to the cytoplasm. However, in vitro analysis of enzyme activity demonstrates that IL-1beta causes the long term activation of the IkappaB kinase complex leading to chronic phosphorylation of the newly synthesized IkappaBalpha signal response domain and persistent activation of NFkappaB. Such sustained activation of NFkappaB is dependent on the continuous presence and activity of IL-1beta. Interestingly, the sustained nature of NFkappaB activity is promoter type-specific. Chromatin immunoprecipitation studies revealed that p65 is detected at the promoters of both intercellular adhesion molecule-1 and IL-8 1 h following IL-1beta stimulation but is only found at the latter at 24 h. The functional significance of this finding is indicated by the transient induction of intercellular adhesion molecule-1 mRNA, but more sustained induction of IL-8 expression, by IL-1beta. These studies thus demonstrated that persistent IL-1 signaling causes sustained activation of NFkappaB in a promoter-specific manner in human glial cells, leading to prolonged induction of selective pro-inflammatory genes. This is likely to make a key contribution to chronic inflammatory conditions of the brain.
Notes:
Bryan D Griffin, Paul N Moynagh (2006)  In vivo binding of NF-kappaB to the IkappaBbeta promoter is insufficient for transcriptional activation.   Biochem J 400: 1. 115-125 Nov  
Abstract: Despite certain structural and biochemical similarities, differences exist in the function of the NF-kappaB (nuclear factor kappaB) inhibitory proteins IkappaBalpha (inhibitory kappaBalpha) and IkappaBbeta. The functional disparity arises in part from variance at the level of gene regulation, and in particular from the substantial induction of IkappaBalpha, but not IkappaBbeta, gene expression post-NF-kappaB activation. In the present study, we probe the differential effects of IL (interleukin)-1beta on induction of IkappaBalpha and perform the first characterization of the human IkappaBbeta promoter. A consensus NF-kappaB-binding site, capable of binding NF-kappaB both in vitro and in vivo, is found in the IkappaBbeta gene 5' flanking region. However, the IkappaBbeta promoter was not substantially activated by pro-inflammatory cytokines, such as IL-1beta and tumour necrosis factor alpha, that are known to cause strong activation of NF-kappaB. Furthermore, in contrast with IkappaBalpha, NF-kappaB activation did not increase expression of endogenous IkappaBbeta as assessed by analysis of mRNA and protein levels. Unlike kappaB-responsive promoters, IkappaBbeta promoter-bound p65 inefficiently recruits RNA polymerase II, which stalls at the promoter. We present evidence that this stalling is likely due to the absence of transcription factor IIH engagement, a prerequisite for RNA polymerase II phosphorylation and transcriptional initiation. Differences in the conformation of promoter-bound NF-kappaB may underlie the variation in the ability to engage the basal transcriptional apparatus at the IkappaBbeta and kappaB-responsive promoters. This accounts for the differential expression of IkappaB family members in response to NF-kappaB activation and furthers our understanding of the mechanisms involved in transcription factor activity and IkappaBbeta gene regulation.
Notes:
2005
Niamh M Curran, Bryan D Griffin, Daniel O'Toole, Kevin J Brady, Stephen N Fitzgerald, Paul N Moynagh (2005)  The synthetic cannabinoid R(+)WIN 55,212-2 inhibits the interleukin-1 signaling pathway in human astrocytes in a cannabinoid receptor-independent manner.   J Biol Chem 280: 43. 35797-35806 Oct  
Abstract: R(+)WIN 55,212-2 is a synthetic cannabinoid that controls disease progression in models of multiple sclerosis. This is associated with its ability to reduce migration of leukocytes into the central nervous system. Because leukocyte migration is dependent on induction of adhesion molecules and chemokines by pro-inflammatory cytokines, we examined the effects of R(+)WIN 55,212-2 on their expression. Using 1321N1 astrocytoma and A-172 glioblastoma as cell models we show that R(+)WIN 55,212-2, but not its inactive chiral form S(-)WIN 55,212-2, strongly inhibits the interleukin-1 (IL-1) induction of the adhesion molecules intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) and the chemokine IL-8. This inhibition is not mediated via the CB1 or CB2 cannabinoid receptors, because their selective antagonists and pertussis toxin failed to affect the inhibitory effects of R(+)WIN 55,212-2. Furthermore reverse transcription-PCR analysis did not detect the expression of either receptor in 1321N1 cells. R(+)WIN 55,212-2 was shown to inhibit adhesion molecule and chemokine expression at the level of transcription, because it strongly inhibited the IL-1 induction of ICAM-1, VCAM-1, and IL-8 mRNAs and blocked the IL-1 activation of their promoters. The NFkappaB pathway was then assessed as a lead target for R(+)WIN 55,212-2. NFkappaB was measured by expression of a transfected NFkappaB-regulated reporter gene. Using this assay, R(+)WIN 55,212-2 strongly inhibited IL-1 activation of NFkappaB. Furthermore R(+)WIN 55,212-2 inhibited the ability of overexpressed Myd88, Tak-1, and IKK-2 to induce the reporter gene suggesting that R(+)WIN 55,212-2 acts at or downstream of IKK-2 in the IL-1 pathway. However R(+)WIN 55,212-2 failed to inhibit IL-1-induced degradation of IkappaBalpha, excluding IKK-2 as a direct target. In addition electrophoretic mobility shift and chromatin immunoprecipitation assays showed that R(+)WIN 55,212-2 does not regulate the IL-1-induced nuclear translocation of NFkappaB or the ability of the latter to bind to promoters regulating expression of ICAM-1 and IL-8. These data suggest that R(+)WIN 55,212-2 blocks IL-1 signaling by inhibiting the transactivation potential of NFkappaB.
Notes:
Powered by PublicationsList.org.