hosted by
publicationslist.org
    

vishnu kirthi arivarasan


bioviski@gmail.com

Journal articles

2011
Sampath Marimuthu, Abdul Abdul Rahuman, Govindasamy Rajakumar, Thirunavukkarasu Santhoshkumar, Arivarasan Vishnu Kirthi, Chidambaram Jayaseelan, Asokan Bagavan, Abdul Abduz Zahir, Gandhi Elango, Chinnaperumal Kamaraj (2011)  Evaluation of green synthesized silver nanoparticles against parasites.   Parasitol Res 108: 6. 1541-1549 Jun  
Abstract: Green nanoparticle synthesis has been achieved using environmentally acceptable plant extract and eco-friendly reducing and capping agents. The present study was based on assessments of the antiparasitic activities to determine the efficacies of synthesized silver nanoparticles (AgNPs) using aqueous leaf extract of Mimosa pudica Gaertn (Mimosaceae) against the larvae of malaria vector, Anopheles subpictus Grassi, filariasis vector Culex quinquefasciatus Say (Diptera: Culicidae), and Rhipicephalus (Boophilus) microplus Canestrini (Acari: Ixodidae). Parasite larvae were exposed to varying concentrations of aqueous extract of M. pudica and synthesized AgNPs for 24 h. AgNPs were rapidly synthesized using the leaf extract of M. pudica and the formation of nanoparticles was observed within 6 h. The results recorded from UV-vis spectrum, Fourier transform infrared, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy support the biosynthesis and characterization of AgNPs. The maximum efficacy was observed in synthesized AgNPs against the larvae of A. subpictus, C. quinquefasciatus, and R. microplus (LC(50) = 13.90, 11.73, and 8.98 mg/L, r (2) = 0.411, 0.286, and 0.479), respectively. This is the first report on antiparasitic activity of the plant extract and synthesized AgNPs.
Notes:
Chidambaram Jayaseelan, Abdul Abdul Rahuman, Govindasamy Rajakumar, Arivarasan Vishnu Kirthi, Thirunavukkarasu Santhoshkumar, Sampath Marimuthu, Asokan Bagavan, Chinnaperumal Kamaraj, Abdul Abduz Zahir, Gandhi Elango (2011)  Synthesis of pediculocidal and larvicidal silver nanoparticles by leaf extract from heartleaf moonseed plant, Tinospora cordifolia Miers.   Parasitol Res 109: 1. 185-194 Jul  
Abstract: Insecticide resistance and inadequate attention to the application instructions of topical pediculicides are common reasons for treatment failure. Essential oils or plant extracts are good and safe alternatives due to their low toxicity to mammals and easy biodegradability. The present study was carried out to establish the pediculocidal and larvicidal activity of synthesized silver nanoparticles (AgNPs) using leaf aqueous extract of Tinospora cordifolia Miers (Menispermaceae) against the head louse Pediculus humanus capitis De Geer (Phthiraptera: Pediculidae) and fourth instar larvae of malaria vector, Anopheles subpictus Grassi and filariasis vector, Culex quinquefasciatus Say (Diptera: Culicidae). We reported the aqueous plant extract and synthesized AgNPs against head lice and vectors. Direct contact method was conducted to determine the potential of pediculocidal activity. The synthesized AgNPs characterized by UV-vis spectrum, scanning electron microscopy, Fourier transform infrared, and X-ray diffraction. Head lice and mosquito larvae were exposed to varying concentrations of aqueous extracts and synthesized AgNPs for 24 h. The results suggest that the optimal times for measuring mortality effects of synthesized AgNPs were 33% at 5 min, 67% at 15 min, and 100% after 1 h. The maximum activity was observed in the synthesized AgNPs against lice, A. subpictus and C. quinquefasciatus (LC(50) = 12.46, 6.43 and 6.96 mg/L; r (2) = 0.978, 0.773 and 0.828), respectively. The findings revealed that synthesized AgNPs possess excellent anti-lice and mosquito larvicidal activity. These results suggest that the green synthesis of AgNPs have the potential to be used as an ideal ecofriendly approach for the control of head lice and vectors.
Notes:
Arivarasan Vishnu Kirthi, Abdul Abdul Rahuman, Govindasamy Rajakumar, Sampath Marimuthu, Thirunavukkarasu Santhoshkumar, Chidambaram Jayaseelan, Kanayairam Velayutham (2011)  Acaricidal, pediculocidal and larvicidal activity of synthesized ZnO nanoparticles using wet chemical route against blood feeding parasites.   Parasitol Res Feb  
Abstract: The present study was based on assessments of the anti-parasitic activities to determine the efficacies of synthesized zinc oxide nanoparticles (ZnO NPs) prepared by wet chemical method using zinc nitrate and sodium hydroxide as precursors and soluble starch as stabilizing agent against the larvae of cattle tick Rhipicephalus (Boophilus) microplus, Canestrini (Acari: Ixodidae); head louse Pediculus humanus capitis, De Geer (Phthiraptera: Pediculidae); larvae of malaria vector, Anopheles subpictus, Grassi; and filariasis vector, Culex quinquefasciatus, Say (Diptera: Culicidae). R. microplus larvae were exposed to filter paper envelopes impregnated with different ZnO NP concentrations. Direct contact method was conducted to determine the potential of pediculocidal activity. Parasite larvae were exposed to varying concentrations of synthesized ZnO NPs for 24 h. The results suggested that the mortality effects of synthesized ZnO NPs were 43% at 1 h, 64% at 3 h, 78% at 6 h, and 100% after 12 h against R. microplus activity. In pediculocidal activity, the results showed that the optimal times for measuring mortality effects of synthesized ZnO NPs were 38% at 10 min, 71% at 30 min, 83% at 1 h, and 100% after 6 h against P. humanus capitis. One hundred percent lice mortality was observed at 10 mg/L treated for 6 h. The mortality was confirmed after 24 h of observation period. The larval mortality effects of synthesized ZnO NPs were 37%, 72%, 100% and 43%, 78% and 100% at 6, 12, and 24 h against A. subpictus and C. quinquefasciatus, respectively. It is apparent that the small size and corresponding large specific surface area of small nanometer-scale ZnO particles impose several effects that govern its parasitic action, which are size dependent. ZnO NPs were synthesized by wet chemical process, and it was characterized with the UV showing peak at 361 nm. X-ray diffraction (XRD) spectra clearly shows that the diffraction peaks in the pattern indexed as the zinc oxide with lattice constants a = 3.249 and c = 5.206 Å. The FTIR spectrum showed the range of 400-4,000 cm(-1). The band at 899.56 cm(-1); 1,151.87 cm(-1); 1,396 cm(-1); and these bands showed the complete composition of ZnO NPs. SEM micrograph showed 60-120-nm size and aggregates of spherical shape nanoparticles. EDX showed the complete chemical composition of the synthesized nanoparticles of zinc oxide. The maximum efficacy was observed in zinc oxide against the R. microplus, P. humanus capitis, and the larvae of A. subpictus, C. quinquefasciatus with LC(50) values of 29.14, 11.80, 11.14, and 12.39 mg/L; r (2) = 0.805, 0.876, 0.894, and 0.904, respectively. The synthesized ZnO NPs showed the LC(50) and r (2) values against the R. microplus (13.41 mg/L; 0.982), P. humanus capitis (11.80 mg/L; 0.966), and the larvae of A. subpictus (3.19; 0.945 mg/L), against C. quinquefasciatus (4.87 mg/L; 0.970), respectively. The control (distilled water) showed nil mortality in the concurrent assay. This is the first report on anti-parasitic activity of the synthesized ZnO NPs.
Notes:
Chidambaram Jayaseelan, Abdul Abdul Rahuman, Govindasamy Rajakumar, Thirunavukkarasu Santhoshkumar, Arivarasan Vishnu Kirthi, Sampath Marimuthu, Asokan Bagavan, Chinnaperumal Kamaraj, Abdul Abduz Zahir, Gandhi Elango, Kanayairam Velayutham, Kokati Venkata Bhaskara Rao, Loganathan Karthik, Sankariah Raveendran (2011)  Efficacy of plant-mediated synthesized silver nanoparticles against hematophagous parasites.   Parasitol Res Jun  
Abstract: The purpose of the present study was to investigate the acaricidal and larvicidal activity against the larvae of Haemaphysalis bispinosa Neumann (Acarina: Ixodidae) and larvae of hematophagous fly Hippobosca maculata Leach (Diptera: Hippoboscidae) and against the fourth-instar larvae of malaria vector, Anopheles stephensi Liston, Japanese encephalitis vector, Culex tritaeniorhynchus Giles (Diptera: Culicidae) of synthesized silver nanoparticles (AgNPs) utilizing aqueous leaf extract from Musa paradisiaca L. (Musaceae). The color of the extract changed to light brown within an hour, and later it changed to dark brown during the 30-min incubation period. AgNPs results were recorded from UV-vis spectrum at 426 nm; Fourier transform infrared (FTIR) analysis confirmed that the bioreduction of Ag(+) ions to silver nanoparticles are due to the reduction by capping material of plant extract, X-ray diffraction (XRD) patterns clearly illustrates that the nanoparticles formed in the present synthesis are crystalline in nature and scanning electron microscopy (SEM) support the biosynthesis and characterization of AgNPs with rod in shape and size of 60-150 nm. After reaction, the XRD pattern of AgNPs showed diffraction peaks at 2θ = 34.37°, 38.01°, 44.17°, 66.34° and 77.29° assigned to the (100), (111), (102), (110) and (120) planes, respectively, of a faced centre cubic (fcc) lattice of silver were obtained. For electron microscopic studies, a 25 μl sample was sputter-coated on copper stub, and the images of nanoparticles were studied using scanning electron microscopy. The spot EDX analysis showed the complete chemical composition of the synthesized AgNPs. The parasite larvae were exposed to varying concentrations of aqueous extract of M. paradisiaca and synthesized AgNPs for 24 h. In the present study, the percent mortality of aqueous extract of M. paradisiaca were 82, 71, 46, 29, 11 and 78, 66, 38, 31and 16 observed in the concentrations of 50, 40, 30, 20, 10 mg/l for 24 h against the larvae of H. bispinosa and Hip. maculata, respectively. The maximum efficacy was observed in the aqueous extract of M. paradisiaca against the H. bispinosa, Hip. maculata, and the larvae of A. stephensi, C. tritaeniorhynchus with LC(50) values of 28.96, 31.02, 26.32, and 20.10 mg/lm, respectively (r (2) = 0.990, 0.968, 0.974, and 0.979, respectively). The synthesized AgNPs of M. paradisiaca showed the LC(50) and r (2) values against H. bispinosa, (1.87 mg/l; 0.963), Hip. maculata (2.02 mg/l; 0.976), and larvae of A. stephensi (1.39; 0.900 mg/l), against C. tritaeniorhynchus (1.63 mg/l; 0.951), respectively. The χ (2) values were significant at p < 0.05 level.
Notes:
Jeyaraman Ramyadevi, Kadarkaraithangam Jeyasubramanian, Arumugam Marikani, Govindasamy Rajakumar, Abdul Abdul Rahuman, Thirunavukkarasu Santhoshkumar, Arivarasan Vishnu Kirthi, Chidambaram Jayaseelan, Sampath Marimuthu (2011)  Copper nanoparticles synthesized by polyol process used to control hematophagous parasites.   Parasitol Res Apr  
Abstract: The present study was based on assessments of the anti-parasitic activities of the hematophagous (blood feeding) larvae of malaria vector, Anopheles subpictus Grassi, filariasis vector, Culex quinquefasciatus, Say (Diptera: Culicidae), and the larvae of cattle tick Rhipicephalus (Boophilus) microplus, Canestrini (Acari: Ixodidae). The metallic copper nanoparticles (Cu NPs) synthesized by polyol process from copper acetate as precursor and Tween 80 were used as both the medium and the stabilizing reagent. The efficacy of synthesized Cu NPs was tested against the larvae of blood-sucking parasites. UV-vis spectra characterization was performed, and peak was observed at 575 nm, which is the characteristic to the surface plasmon bond of Cu NPs. The strong surface plasmon absorption band observed at 575 nm may be due to the formation of non-oxidized Cu NPs. X-ray diffraction (XRD) spectral data showed concentric rings corresponding to the 26.79 (111), 34.52 (200), and 70.40 (220) reflections. XRD spectrum of the copper nanoparticles exhibited 2θ values corresponding to the copper nanocrystal. No peaks of impurities are observed in XRD data. The scanning electron micrograph (SEM) showed structures of irregular polygonal, cylindrical shape, and the size range was found to be 35-80 nm. The size of the Cu NPs was measured by atomic force microscope (AFM) in non-contact mode. For imaging by AFM, the sample was suspended in acetone and spins coated on a silicon wafer. The line profile image was drawn by the XEI software and the horizontal line at 6 μm on a 2D AFM image. Research has demonstrated that metallic nanoparticles produce toxicity in aquatic organisms that is due largely to effects of particulates as opposed to release of dissolved ions. Copper acetate solution tested against the parasite larvae exposed to varying concentrations and the larval mortality was observed for 24 h. The larval percent mortality observed in synthesized Cu NPs were 36, 49, 75, 93,100; 32, 53, 63, 73, and 100 and 36, 47, 69, 88, 100 at 0.5, 1.0, 2.0, 4.0, and 8.0 mg/L against A. subpictus, C. quinquefasciatus and R. microplus, respectively. The larval percent mortality shown in copper acetate solution were 16, 45, 57, 66 and 100, 37, 58, 83, 87, and 100 and 41, 59, 79, 100, and 100 at 10, 20, 30, 40, and 50 mg/L against A. subpictus, C. quinquefasciatus, and R. microplus, respectively. The maximum efficacy was observed in Cu NPs and copper acetate solution against the larvae of A. subpictus, C. quinquefasciatus, and R. microplus with LC(50) and r (2) values of 0.95 and 23.47, 1.01 and 15.24, and 1.06 and 14.14 mg/L with r (2) = 0.766; 0.957 and 0.908; 0.946; and 0.816 and 0.945, respectively. The control (distilled water) showed nil mortality in the concurrent assay. The chi-square value was significant at p ≤ 0.05 level. This is the first report on anti-parasitic activity of the synthesized Cu NPs and copper acetate solution.
Notes:
 
Abstract:
Notes:
Powered by PublicationsList.org.