hosted by
publicationslist.org
    

Birgit Sattler


birgit.sattler@uibk.ac.at

Journal articles

2009
Michael C Storrie-Lombardi, Jan-Peter Muller, Martin R Fisk, Claire Cousins, Birgit Sattler, Andrew D Griffiths, Andrew J Coates (2009)  Laser-Induced Fluorescence Emission (L.I.F.E.): searching for Mars organics with a UV-enhanced PanCam.   Astrobiology 9: 10. 953-964 Dec  
Abstract: The European Space Agency will launch the ExoMars mission in 2016 with a primary goal of surveying the martian subsurface for evidence of organic material. We have recently investigated the utility of including either a 365 nm light-emitting diode or a 375 nm laser light source in the ExoMars rover panoramic camera (PanCam). Such a modification would make it feasible to monitor rover drill cuttings optically for the fluorescence signatures of aromatic organic molecules and map the distribution of polycyclic aromatic hydrocarbons (PAHs) as a function of depth to the 2 m limit of the ExoMars drill. The technique described requires no sample preparation, does not consume irreplaceable resources, and would allow mission control to prioritize deployment of organic detection experiments that require sample destruction, expenditure of non-replaceable consumables, or both. We report here for the first time laser-induced fluorescence emission (L.I.F.E.) imaging detection limits for anthracene, pyrene, and perylene targets doped onto a Mars analog granular peridotite with a 375 nm Nichia laser diode in optically uncorrected wide-angle mode. Data were collected via the Beagle 2 PanCam backup filter wheel fitted with original blue (440 nm), green (530 nm), and red (670 nm) filters. All three PAH species can be detected with the PanCam green (530 nm) filter. Detection limits in the green band for signal-to-noise ratios (S/N) > 10 are 49 parts per million (ppm) for anthracene, 145 ppm for pyrene, and 20 ppm for perylene. The anthracene detection limit improves to 7 ppm with use of the PanCam blue filter. We discuss soil-dependent detection limit constraints; use of UV excitation with other rover cameras, which provides higher spatial resolution; and the advantages of focused and wide-angle laser modes. Finally, we discuss application of L.I.F.E. techniques at multiple wavelengths for exploration of Mars analog extreme environments on Earth, including Icelandic hydrothermally altered basalts and the ice-covered lakes and glaciers of Dronning Maud Land, Antarctica.
Notes:
A Tieber, H Lettner, P Bossew, A Hubmer, B Sattler, W Hofmann (2009)  Accumulation of anthropogenic radionuclides in cryoconites on Alpine glaciers.   J Environ Radioact 100: 7. 590-598 Jul  
Abstract: Cryoconites are airborne sediments which accumulate on the surface of glaciers. In samples of cryoconites a temperate Austrian glacier high activity concentrations of anthropogenic radionuclides were found, which stem from global and Chernobyl fallouts. Radionuclides identified were (137)Cs, (134)Cs, (238)Pu, (239+240)Pu, (90)Sr, (241)Am, (60)Co, (154)Eu, (207)Bi, and (125)Sb. Given the approximately known isotopic ratios, Cs and Pu can be separated into the contributions of either source of origin. Published (137)Cs/(134)Cs and (239+240)Pu/(238)Pu ratios were used for the discrimination of the Dachstein-glacier cryoconites according to their origin from global or Chernobyl fallout. Two different groups of cryoconites were identified, an older population dominated by nuclear weapons fallout and a younger one with predominant Chernobyl fallout. With those data a simple model was formulated to demonstrate the transition and mixing of these two populations on the glacier surface.
Notes:
Michael C Storrie-Lombardi, Birgit Sattler (2009)  Laser-induced fluorescence emission (L.I.F.E.): in situ nondestructive detection of microbial life in the ice covers of Antarctic lakes.   Astrobiology 9: 7. 659-672 Sep  
Abstract: Laser-induced fluorescence emission (L.I.F.E.) images were obtained in situ following 532 nm excitation of cryoconite assemblages in the ice covers of annual and perennially frozen Antarctic lakes during the 2008 Tawani International Expedition to Schirmacher Oasis and Lake Untersee in Dronning Maud Land, Antarctica. Laser targeting of a single millimeter-scale cryoconite results in multiple neighboring excitation events secondary to ice/air interface reflection and refraction in the bubbles surrounding the primary target. Laser excitation at 532 nm of cyanobacteria-dominated assemblages produced red and infrared autofluorescence activity attributed to the presence of phycoerythrin photosynthetic pigments. The method avoids destruction of individual target organisms and does not require the disruption of either the structure of the microbial community or the surrounding ice matrix. L.I.F.E. survey strategies described may be of interest for orbital monitoring of photosynthetic primary productivity in polar and alpine glaciers, ice sheets, snow, and lake ice of Earth's cryosphere. The findings open up the possibility of searching from either a rover or from orbit for signs of life in the polar regions of Mars and the frozen regions of exoplanets in neighboring star systems.
Notes:
David A Pearce, Paul D Bridge, Kevin A Hughes, Birgit Sattler, Roland Psenner, Nick J Russell (2009)  Microorganisms in the atmosphere over Antarctica.   FEMS Microbiol Ecol 69: 2. 143-157 Aug  
Abstract: Antarctic microbial biodiversity is the result of a balance between evolution, extinction and colonization, and so it is not possible to gain a full understanding of the microbial biodiversity of a location, its biogeography, stability or evolutionary relationships without some understanding of the input of new biodiversity from the aerial environment. In addition, it is important to know whether the microorganisms already present are transient or resident - this is particularly true for the Antarctic environment, as selective pressures for survival in the air are similar to those that make microorganisms suitable for Antarctic colonization. The source of potential airborne colonists is widespread, as they may originate from plant surfaces, animals, water surfaces or soils and even from bacteria replicating within the clouds. On a global scale, transport of air masses from the well-mixed boundary layer to high-altitude sites has frequently been observed, particularly in the warm season, and these air masses contain microorganisms. Indeed, it has become evident that much of the microbial life within remote environments is transported by air currents. In this review, we examine the behaviour of microorganisms in the Antarctic aerial environment and the extent to which these microorganisms might influence Antarctic microbial biodiversity.
Notes:
2008
2007
Birgit Mindl, Alexandre M Anesio, Katrin Meirer, Andrew J Hodson, Johanna Laybourn-Parry, Ruben Sommaruga, Birgit Sattler (2007)  Factors influencing bacterial dynamics along a transect from supraglacial runoff to proglacial lakes of a high Arctic glacier [corrected]   FEMS Microbiol Ecol 59: 2. 307-317 Feb  
Abstract: Bacterial production in glacial runoff and aquatic habitats along a c. 500 m transect from the ablation area of a Svalbard glacier (Midre Lovénbreen, 79 degrees N, 12 degrees E) down to a series of proglacial lakes in its forefield were assessed. In addition, a series of in situ experiments were conducted to test how different nutrient sources (glacial flour and dissolved organic matter derived from goose faeces) and temperature affect bacterial abundance and production in these ecosystems. Bacterial abundance and production increased significantly along this transect and reached a maximum in the proglacial lakes. Bacterial diversity profiles as assessed by denaturing gradient gel electrophoresis indicated that communities in glacial runoff were different from those in proglacial lakes. Heterotrophic bacterial production was mainly controlled by temperature and phosphorus limitation. Addition of both glacial flour and dissolved organic matter derived from goose faeces stimulated bacterial production in those lakes. The results suggest that glacial runoff sustains an active bacterial community which is further stimulated in proglacial lakes by higher temperatures and nutrient inputs from bird faeces. Thus, as in maritime temperate and Antarctic settings, bacterial communities developing in the recently deglaciated terrain of Svalbard receive important inputs of nutrients via faunal transfers from adjacent ecosystems.
Notes:
2006
2001
1999
1998

Book chapters

2009
2003
1999

Conference papers

2009
2007
2004
2002
Powered by PublicationsList.org.