hosted by
publicationslist.org
    
Britta Stordal

britta.stordal@dcu.ie

Journal articles

2009
 
DOI   
PMID 
Britta Stordal, Ross Davey (2009)  ERCC1 expression and RAD51B activity correlate with cell cycle response to platinum drug treatment not DNA repair.   Cancer Chemother Pharmacol 63: 4. 661-672 Mar  
Abstract: BACKGROUND: The H69CIS200 and H69OX400 cell lines are novel models of low-level platinum-drug resistance. Resistance was not associated with increased cellular glutathione or decreased accumulation of platinum, rather the resistant cell lines have a cell cycle alteration allowing them to rapidly proliferate post drug treatment. RESULTS: A decrease in ERCC1 protein expression and an increase in RAD51B foci activity was observed in association with the platinum induced cell cycle arrest but these changes did not correlate with resistance or altered DNA repair capacity. The H69 cells and resistant cell lines have a p53 mutation and consequently decrease expression of p21 in response to platinum drug treatment, promoting progression of the cell cycle instead of increasing p21 to maintain the arrest. CONCLUSION: Decreased ERCC1 protein and increased RAD51B foci may in part be mediating the maintenance of the cell cycle arrest in the sensitive cells. Resistance in the H69CIS200 and H69OX400 cells may therefore involve the regulation of ERCC1 and RAD51B independent of their roles in DNA repair. The novel mechanism of platinum resistance in the H69CIS200 and H69OX400 cells demonstrates the multifactorial nature of platinum resistance which can occur independently of alterations in DNA repair capacity and changes in ERCC1.
Notes:
2008
 
DOI   
PMID 
Britta Stordal, Ross Davey (2008)  A 39 kDa fragment of endogenous ASK1 suggests specific cleavage not degradation by the proteasome.   IUBMB Life 60: 3. 180-184 Mar  
Abstract: Transfected human apoptosis signal-regulating kinase 1 (ASK1) produces a 150 kDa protein. However, we have detected endogenous ASK1 predominantly as 39 and 50 kDa C-terminal and 75 and 110 kDa N-terminal fragments in a panel of nontransfected cancer cell lines and HUVEC endothelial cells. This suggests that in nonapoptotic cells, endogenous ASK1 protein is normally cleaved at a number of specific sites, some of which are in the kinase domain. Transfected ASK1 protein is known to be degraded by the proteasome. In contrast, the cleavage of endogenous ASK1 is independent of the proteasome as treatment with the proteasome inhibitor, lactacystin did not inhibit cleavage. Cisplatin treatment decreased the amount of 39 kDa C-terminal ASK1 fragments in mutant p53 cell lines suggesting a decrease in cleavage associated with apoptosis. Transfected ASK1 may, therefore, not accurately reflect the role of endogenous ASK1.
Notes:
2007
 
DOI   
PMID 
Britta Stordal, Mary Davey (2007)  Understanding cisplatin resistance using cellular models.   IUBMB Life 59: 11. 696-699 Nov  
Abstract: Many mechanisms of cisplatin resistance have been proposed from studies of cellular models of resistance including changes in cellular drug accumulation, detoxification of the drug, inhibition of apoptosis and repair of the DNA adducts. A series of resistant models were developed from CCRF-CEM leukaemia cells with increasing doses of cisplatin from 100 ng/ml. This produced increasing resistance up to 7-fold with a treatment dose of 1.6 microg/ml. Cisplatin resistance in these cells correlated with increases in the antioxidant glutathione, yet treatment with buthionine sulphoximine, an inhibitor of glutathione synthesis, had no effect on resistance, suggesting that the increase in glutathione was not directly involved in cisplatin resistance. Two models were developed from H69 SCLC cells, H69-CP and H69CIS200 using 100 ng/ml or 200 ng/ml cisplatin respectively. Both cell models were 2-4 fold resistant to cisplatin, and have decreased expression of p21 which may increase the cell's ability to progress through the cell cycle in the presence of DNA damage. Both the H69-CP and H69CIS200 cells showed no decrease in cellular cisplatin accumulation. However, the H69-CP cells have increased levels of cellular glutathione and are cross resistant to radiation whereas the H69CIS200 cells have neither of these changes. This suggests that increases in glutathione may contribute to cross-resistance to other drugs and radiation, but not directly to cisplatin resistance. There are multiple resistance mechanisms induced by cisplatin treatment, even in the same cell type. How then should cisplatin-resistant cancers be treated? Cisplatin-resistant cell lines are often more sensitive to another chemotherapeutic drug paclitaxel (H69CIS200), or are able to be sensitized to cisplatin with paclitaxel pre-treatment (H69-CP). The understanding of this sensitization by paclitaxel using cell models of cisplatin resistance will lead to improvements in the clinical treatment of cisplatin resistant tumours.
Notes:
 
DOI   
PMID 
Britta Stordal, Nick Pavlakis, Ross Davey (2007)  A systematic review of platinum and taxane resistance from bench to clinic: an inverse relationship.   Cancer Treat Rev 33: 8. 688-703 Dec  
Abstract: We undertook a systematic review of the pre-clinical and clinical literature for studies investigating the relationship between platinum and taxane resistance. Medline was searched for (1) cell models of acquired drug resistance reporting platinum and taxane sensitivities and (2) clinical trials of platinum or taxane salvage therapy in ovarian cancer. One hundred and thirty-seven models of acquired drug resistance were identified. 68.1% of cisplatin-resistant cells were sensitive to paclitaxel and 66.7% of paclitaxel-resistant cells were sensitive to cisplatin. A similar inverse pattern was observed for cisplatin vs. docetaxel, carboplatin vs. paclitaxel and carboplatin vs. docetaxel. These associations were independent of cancer type, agents used to develop resistance and reported mechanisms of resistance. Sixty-five eligible clinical trials of paclitaxel-based salvage after platinum therapy were identified. Studies of single agent paclitaxel in platinum-resistant ovarian cancer where patients had previously recieved paclitaxel had a pooled response rate of 35.3%, n=232, compared to 22% in paclitaxel naïve patients n=1918 (p<0.01, Chi-squared). Suggesting that pre-treatment with paclitaxel may improve the response of salvage paclitaxel therapy. The response rate to paclitaxel/platinum combination regimens in platinum-sensitive ovarian cancer was 79.5%, n=88 compared to 49.4%, n=85 for paclitaxel combined with other agents (p<0.001, Chi-squared), suggesting a positive interaction between taxanes and platinum. Therefore, the inverse relationship between platinum and taxanes resistance seen in cell models is mirrored in the clinical response to these agents in ovarian cancer. An understanding of the cellular and molecular mechanisms responsible would be valuable in predicting response to salvage chemotherapy and may identify new therapeutic targets.
Notes:
 
DOI   
PMID 
Britta Stordal, Nick Pavlakis, Ross Davey (2007)  Oxaliplatin for the treatment of cisplatin-resistant cancer: a systematic review.   Cancer Treat Rev 33: 4. 347-357 Jun  
Abstract: Oxaliplatin is widely regarded as being active in cisplatin-resistant cancer. We undertook a systematic review of the literature to identify, describe and critique the clinical and pre-clinical evidence for the use of oxaliplatin in patients with "cisplatin-resistant" cancer. We identified 25 pre-clinical cell models of platinum resistance and 24 clinical trials reporting oxaliplatin based salvage therapy for cisplatin-resistant cancer. The pre-clinical data suggests that there is cross-resistance between cisplatin and oxaliplatin in low-level resistance models. In models with high level resistance (>10-fold) there is less cross-resistance between cisplatin and oxaliplatin, which may be a reason why oxaliplatin is thought to be active in cisplatin-resistant cancer. In clinical trials where oxaliplatin has been used as part of salvage therapy for patients who have failed cisplatin or carboplatin combination chemotherapy, there was a much lower response rate in patients with platinum-refractory or resistant cancers compared to platinum-sensitive cancers. This suggests that there may be cross-resistance between cisplatin and oxaliplatin in the clinic. Oxaliplatin as a single agent had a poor response rate in cisplatin refractory and resistant cancer. Oxaliplatin performed better in combination with other agents for the treatment of platinum-resistant/refractory cancer suggesting that the benefit of oxaliplatin may lie in its more favourable toxicity and ability to be combined with other drugs rather than an underlying activity in cisplatin resistance. Oxaliplatin therefore should not be considered broadly active in cisplatin-resistant cancer.
Notes:
2006
 
DOI   
PMID 
Britta Stordal, Greg Peters, Ross Davey (2006)  Similar chromosomal changes in cisplatin and oxaliplatin-resistant sublines of the H69 SCLC cell line are not associated with platinum resistance.   Genes Chromosomes Cancer 45: 12. 1094-1105 Dec  
Abstract: Small cell lung cancer (SCLC) initially responds well to DNA damaging drugs such as cisplatin, however this is transitory as resistance normally develops. To investigate whether changes in chromosomal copy number caused by platinum drug treatment contributes to platinum resistance, we have analyzed H69 SCLC cells and two low-level platinum-resistant sublines, H69CIS200 and H69OX400, derived by cisplatin and oxaliplatin treatment, respectively. Affymetrix 10K SNP array showed that cisplatin and oxaliplatin have independently caused similar changes including loss of segments 6q21-qter and 13pter-13q.14.11 and duplication of chromosome 21. Interestingly, despite using equally cytotoxic doses of drug in the development of the cell lines, oxaliplatin caused three times more chromosomal changes than cisplatin. The resistant cell lines lose their resistant phenotype after 3 months of drug-free culture. The revertant cell lines, denoted H69CIS200-S and H69OX400-S, were also analyzed by Affymetrix array to determine if chromosomal changes associated with resistance remain after the resistant phenotype is lost. In the H69OX400-S many of the changes observed in the resistant cells were absent suggesting that they contributed to the resistant phenotype including: loss of 1q23.3-qter, 10q11.23, and 19q13.12-q13.2 and duplication of segments 6p21.2-p12.3, 16q12.1-16q13, 16q21-q23.1, and 19q12. However, out of the similar changes induced by cisplatin and oxaliplatin, both the loss of 6q21-qter and gain of 21 were still present in the H69CIS200-S and H69OX400-S cells. This suggests that cisplatin and oxaliplatin induced similar changes due to inherent vulnerabilities in the H69 cells rather than changes associated with platinum resistance.
Notes:
 
DOI   
PMID 
Britta K Stordal, Mary W Davey, Ross A Davey (2006)  Oxaliplatin induces drug resistance more rapidly than cisplatin in H69 small cell lung cancer cells.   Cancer Chemother Pharmacol 58: 2. 256-265 Aug  
Abstract: Cisplatin produces good responses in solid tumours including small cell lung cancer (SCLC) but this is limited by the development of resistance. Oxaliplatin is reported to show activity against some cisplatin-resistant cancers but there is little known about oxaliplatin in SCLC and there are no reports of oxaliplatin resistant SCLC cell lines. Studies of drug resistance mainly focus on the cellular resistance mechanisms rather than how the cells develop resistance. This study examines the development of cisplatin and oxaliplatin resistance in H69 human SCLC cells in response to repeated treatment with clinically relevant doses of cisplatin or oxaliplatin for either 4 days or 2 h. Treatments with 200 ng/ml cisplatin or 400 ng/ml oxaliplatin for 4 days produced sublines (H69CIS200 and H69OX400, respectively) that showed low level (approximately two-fold) resistance after eight treatments. Treatments with 1,000 ng/ml cisplatin or 2,000 ng/ml oxaliplatin for 2 h also produced sublines, however, these were not stably resistant suggesting shorter treatment pulses of drug may be more effective. Cells survived the first five treatments without any increase in resistance, by arresting their growth for a period and then regrowing. The period of growth arrest was reduced after the sixth treatment and the H69CIS200 and H69OX400 sublines showed a reduced growth arrest in response to cisplatin and oxaliplatin treatment suggesting that 'regrowth resistance' initially protected against drug treatment and this was further upregulated and became part of the resistance phenotype of these sublines. Oxaliplatin dose escalation produced more surviving sublines than cisplatin dose escalation but neither set of sublines were associated with increased resistance as determined by 5-day cytotoxicity assays, also suggesting the involvement of regrowth resistance. The resistant sublines showed no change in platinum accumulation or glutathione levels even though the H69OX400 subline was more sensitive to buthionine sulphoximine treatment. The H69CIS200 cells were cross-resistant to oxaliplatin demonstrating that oxaliplatin does not have activity against low level cisplatin resistance. Relative to the H69 cells, the H69CIS200 and H69OX400 sublines were more sensitive to paclitaxel and taxotere suggesting that the taxanes may be useful in the treatment of platinum-resistant SCLC. These novel cellular models of cisplatin and oxaliplatin resistant SCLC will be useful in developing strategies to treat platinum-resistant SCLC.
Notes:
Powered by publicationslist.org.