hosted by
publicationslist.org
    

Euan R Brown


euan.r.brown@hw.ac.uk

Journal articles

2013
Remo Sanges, Yavor Hadzhiev, Marion Gueroult-Bellone, Agnes Roure, Marco Ferg, Nicola Meola, Gabriele Amore, Swaraj Basu, Euan R Brown, Marco De Simone, Francesca Petrera, Danilo Licastro, Uwe Strähle, Sandro Banfi, Patrick Lemaire, Ewan Birney, Ferenc Müller, Elia Stupka (2013)  Highly conserved elements discovered in vertebrates are present in non-syntenic loci of tunicates, act as enhancers and can be transcribed during development.   Nucleic Acids Res Feb  
Abstract: Co-option of cis-regulatory modules has been suggested as a mechanism for the evolution of expression sites during development. However, the extent and mechanisms involved in mobilization of cis-regulatory modules remains elusive. To trace the history of non-coding elements, which may represent candidate ancestral cis-regulatory modules affirmed during chordate evolution, we have searched for conserved elements in tunicate and vertebrate (Olfactores) genomes. We identified, for the first time, 183 non-coding sequences that are highly conserved between the two groups. Our results show that all but one element are conserved in non-syntenic regions between vertebrate and tunicate genomes, while being syntenic among vertebrates. Nevertheless, in all the groups, they are significantly associated with transcription factors showing specific functions fundamental to animal development, such as multicellular organism development and sequence-specific DNA binding. The majority of these regions map onto ultraconserved elements and we demonstrate that they can act as functional enhancers within the organism of origin, as well as in cross-transgenesis experiments, and that they are transcribed in extant species of Olfactores. We refer to the elements as 'Olfactores conserved non-coding elements'.
Notes:
2012
Florian Razy-Krajka, Euan R Brown, Takeo Horie, Jacques Callebert, Yasunori Sasakura, Jean-Stéphane Joly, Takehiro G Kusakabe, Philippe Vernier (2012)  Monoaminergic modulation of photoreception in ascidian: evidence for a proto-hypothalamo-retinal territory.   BMC Biol 10: 05  
Abstract: The retina of craniates/vertebrates has been proposed to derive from a photoreceptor prosencephalic territory in ancestral chordates, but the evolutionary origin of the different cell types making the retina is disputed. Except for photoreceptors, the existence of homologs of retinal cells remains uncertain outside vertebrates.
Notes:
2011
Euan R Brown, Stefania Piscopo (2011)  Ion channels in key marine invertebrates; their diversity and potential for applications in biotechnology.   Biotechnol Adv 29: 5. 457-467 Sep/Oct  
Abstract: Of the intra-membrane proteins, the class that comprises voltage and ligand-gated ion channels represents the major substrate whereby signals pass between and within cells in all organisms. It has been presumed that vertebrate and particularly mammalian ion channels represent the apex of evolutionary complexity and diversity and much effort has been focused on understanding their function. However, the recent availability of cheap high throughput genome sequencing has massively broadened and deepened the quality of information across phylogeny and is radically changing this view. Here we review current knowledge on such channels in key marine invertebrates where physiological evidence is backed up by molecular sequences and expression/functional studies. As marine invertebrates represent a much greater range of phyla than terrestrial vertebrates and invertebrates together, we argue that these animals represent a highly divergent, though relatively underused source of channel novelty. As ion channels are exquisitely selective sensors for voltage and ligands, their potential and actual applications in biotechnology are manifold.
Notes:
2010
Atsuo Nishino, Yasushi Okamura, Stefania Piscopo, Euan R Brown (2010)  A glycine receptor is involved in the organization of swimming movements in an invertebrate chordate.   BMC Neurosci 11: 01  
Abstract: Rhythmic motor patterns for locomotion in vertebrates are generated in spinal cord neural networks known as spinal Central Pattern Generators (CPGs). A key element in pattern generation is the role of glycinergic synaptic transmission by interneurons that cross the cord midline and inhibit contralaterally-located excitatory neurons. The glycinergic inhibitory drive permits alternating and precisely timed motor output during locomotion such as walking or swimming. To understand better the evolution of this system we examined the physiology of the neural network controlling swimming in an invertebrate chordate relative of vertebrates, the ascidian larva Ciona intestinalis.
Notes:
Teresa Mattiello, Gabriella Fiore, Euan R Brown, d'Ischia Marco, Anna Palumbo (2010)  Nitric oxide mediates the glutamate-dependent pathway for neurotransmission in Sepia officinalis chromatophore organs.   J Biol Chem 285: 31. 24154-24163 Jul  
Abstract: Chromatophore organs are complex and unique structures responsible for the variety of body coloration patterns used by cephalopods to communicate and camouflage. They are formed by a pigment-containing cytoelastic sacculus, surrounded by muscle fibers directly innervated from the brain. Muscle contraction and relaxation are responsible for expansion and retraction of the pigment-containing cell. Their functioning depends on glutamate and Phe-Met-Arg-Phe-NH(2)-related peptides, which induce fast and slow cell expansion, respectively, and 5-hydroxytryptamine, which induces retraction. Apart from these three substances and acetylcholine, which acts presynaptically, no other neuroactive compounds have so far been found to be involved in the neuroregulation of chromatophore physiology, and the detailed signaling mechanisms are still little understood. Herein, we disclose the role of nitric oxide (NO) as mediator in one of the signaling pathways by which glutamate activates body patterning. NO and nitric-oxide synthase have been detected in pigment and muscle fibers of embryo, juvenile, and adult chromatophore organs from Sepia officinalis. NO-mediated Sepia chromatophore expansion operates at slower rate than glutamate and involves cGMP, cyclic ADP-ribose, and ryanodine receptor activation. These results demonstrate for the first time that NO is an important messenger in the long term maintenance of the body coloration patterns in Sepia.
Notes:
2008
Paolo Sordino, Nikos Andreakis, Euan R Brown, Nicola I Leccia, Paola Squarzoni, Raffaella Tarallo, Christian Alfano, Luigi Caputi, Palmira D'Ambrosio, Paola Daniele, Enrico D'Aniello, Salvatore D'Aniello, Sylvie Maiella, Valentina Miraglia, Monia Teresa Russo, Gerarda Sorrenti, Margherita Branno, Lucio Cariello, Paola Cirino, Annamaria Locascio, Antonietta Spagnuolo, Laura Zanetti, Filomena Ristoratore (2008)  Natural variation of model mutant phenotypes in Ciona intestinalis.   PLoS One 3: 6. 06  
Abstract: The study of ascidians (Chordata, Tunicata) has made a considerable contribution to our understanding of the origin and evolution of basal chordates. To provide further information to support forward genetics in Ciona intestinalis, we used a combination of natural variation and neutral population genetics as an approach for the systematic identification of new mutations. In addition to the significance of developmental variation for phenotype-driven studies, this approach can encompass important implications in evolutionary and population biology.
Notes:
2007
Rita Marino, Daniela Melillo, Miriam Di Filippo, Atsuko Yamada, Maria Rosaria Pinto, Rosaria De Santis, Euan R Brown, Giorgio Matassi (2007)  Ammonium channel expression is essential for brain development and function in the larva of Ciona intestinalis.   J Comp Neurol 503: 1. 135-147 Jul  
Abstract: Ammonium uptake into the cell is known to be mediated by ammonium transport (Amt) proteins, which are present in all domains of life. The physiological role of Amt proteins remains elusive; indeed, loss-of-function experiments suggested that Amt proteins do not play an essential role in bacteria, yeast, and plants. Here we show that the reverse holds true in the tunicate Ciona intestinalis. The genome of C. intestinalis contains two AMT genes, Ci-AMT1a and Ci-AMT1b, which we show derive from an ascidian-specific gene duplication. We analyzed Ci-AMT expression during embryo development. Notably, Ci-AMT1a is expressed in the larval brain in a small number of cells defining a previously unseen V-shaped territory; these cells connect the brain cavity to the external environment. We show that the knockdown of Ci-AMT1a impairs the formation of the brain cavity and consequently the function of the otolith, the gravity-sensing organ contained in it. We speculate that the normal mechanical functioning (flotation and free movement) of the otolith may require a close regulation of ammonium salt(s) concentration in the brain cavity, because ammonium is known to affect both fluid density and viscosity; the cells forming the V territory may act as a conduit in achieving such a regulation.
Notes:
Stefania Piscopo, Francesco Moccia, Carlo Di Cristo, Luigi Caputi, Anna Di Cosmo, Euan R Brown (2007)  Pre- and postsynaptic excitation and inhibition at octopus optic lobe photoreceptor terminals; implications for the function of the 'presynaptic bags'.   Eur J Neurosci 26: 8. 2196-2203 Oct  
Abstract: Synaptic transmission was examined in the plexiform zone of Octopus vulgaris optic lobes using field-potential recording from optic lobe slices. Stimulation of the optic nerve produced pre- and postsynaptic field potentials. Transmission was abolished in calcium-free seawater, L- glutamate or the AMPA/Kainate receptor blocker CNQX (EC(50), 40 microm), leaving an intact presynaptic field potential. ACh markedly reduced or blocked and d-tubocurarine augmented both pre- and postsynaptic field potentials, while alpha-bungarotoxin and atropine were without effect. Paired-pulse stimulation showed short-term depression of pre- and postsynaptic components with a half-time of recovery of approximately 500 ms. The depression was partially relieved in the presence of d-tubocurarine (half-time of recovery, 350 ms). No long-term changes in synaptic strength were induced by repetitive stimulation. A polyclonal antibody raised against a squid glutamate receptor produced positive staining in the third radial layer of the plexiform zone. No positive staining was observed in the other layers. Taking into account previous morphological data and our results, we propose that the excitatory terminations of the photoreceptors are in the innermost layer of the plexiform zone where the transmitter is likely to be glutamate and postsynaptic receptors are AMPA/kainate-like. Thus, the function of the terminal bags is to provide a location for a presynaptic cholinergic inhibitory shunt. The results imply that this arrangement provides a temporal filter for visual processing and enhances the perception of moving vs. stationary objects.
Notes:
Laura Zanetti, Filomena Ristoratore, Maria Francone, Stefania Piscopo, Euan R Brown (2007)  Primary cultures of nervous system cells from the larva of the ascidian Ciona intestinalis.   J Neurosci Methods 165: 2. 191-197 Sep  
Abstract: The ascidian Ciona intestinalis is a useful model for the study of nervous system development and function. The larva of this animal represents a 'primitive' vertebrate form that contains only about 100 neurons in the CNS. Although embryos can be easily subjected to genetic manipulation, the nervous system cells are not easily accessible for neurophysiological study at the larval stage. To remedy this problem, we have developed a method to obtain primary cell cultures from the larval stage of Ciona. Light microscopy and electrophysiology discriminate several types of cells including neurons and photoreceptors. The results show that in Ciona primary cultures different types of neurons as well as neurite sprouting and synapse formation can be visualised. Ciona primary cell cultures will be very useful to study the biochemical, molecular and biophysical properties of individual cells in the larval nervous system of C. intestinalis.
Notes:
E R Brown, S Piscopo, J - T Chun, M Francone, I Mirabile, A D'Aniello (2007)  Modulation of an AMPA-like glutamate receptor (SqGluR) gating by L- and D-aspartic acids.   Amino Acids 32: 1. 53-57 Jan  
Abstract: L- and D-aspartic acids (L-Asp and D-Asp) are present in the majority of nervous systems. In phylogeny, significant levels have been reported in mollusc brains, particularly cephalopods. To examine the role of L- and D-Asp on a cephalopod receptor, we studied ligand gating of a squid glutamate receptor (SqGluR) expressed in HEK 239 (human embryonic kidney) cells. Under voltage clamp, application of L-glutamate (L-Glu; 1-30 mM), but not D-glutamate (D-Glu), or L- or D-Asp, evoked an inward current of 0.1 nA. L- or D-Asp (200 microM) applied with 20 mM L-Glu, slowed the time course of activation and inactivation of the L-Glu gated current (time constant increased from 1 s (L-Glu alone) to 3 s (D-Asp and L-Glu) and to 19 s (L-Asp and L-Glu)). Our results suggest that in molluscan systems, aspartic acid could act as a neuromodulator during glutamatergic transmission and could significantly alter synaptic integration by slowing glutamate receptor gating.
Notes:
2006
Giuliana Zega, Michael C Thorndyke, Euan R Brown (2006)  Development of swimming behaviour in the larva of the ascidian Ciona intestinalis.   J Exp Biol 209: Pt 17. 3405-3412 Sep  
Abstract: The aim of this study was to characterize the swimming behaviour of C. intestinalis larvae during the first 6 h after hatching by measuring tail muscle field potentials. This recording method allowed a quantitative description of the responses of the larva under light and dark conditions. Three different larval movements were distinguished by their specific frequencies: tail flicks, 'spontaneous' swimming, and shadow response, or dark induced activity, with respective mean frequencies of about 10, 22 and 32 Hz. The shadow response develops at about 1.5 h post hatching (h.p.h.). The frequency of muscle potentials associated with this behaviour became higher than those of spontaneous swimming activity, shifting from 20 to 30 Hz, but only from about 2 h.p.h. onwards. Swimming rate was influenced positively for about 25 s after the beginning of the shadow response. Comparison of swimming activity at three different larval ages (0-2, 2-4 and 4-6 h.p.h.) showed that Ciona larvae swim for longer periods and more frequently during the first hours after hatching. Our results provide a starting point for future studies that aim to characterize the nervous control of ascidian locomotion, in wild-type or mutant larvae.
Notes:
Euan R Brown, Stefania Piscopo, Rosanna De Stefano, Antonio Giuditta (2006)  Brain and behavioural evidence for rest-activity cycles in Octopus vulgaris.   Behav Brain Res 172: 2. 355-359 Sep  
Abstract: Octopus vulgaris maintained under a 12/12h light/dark cycle exhibit a pronounced nocturnal activity pattern. Animals deprived of rest during the light period show a marked 'rebound' in activity in the following 24h. 'Active' octopuses attack faster than 'quiet' animals and brain activity recorded electrically intensifies during 'quiet' behaviour. Thus, in Octopus as in vertebrates, brain areas involved in memory or 'higher' processes exhibit 'off-line' activity during rest periods.
Notes:
Patrizia Spinelli, Euan R Brown, Gabriele Ferrandino, Margherita Branno, Pier Giorgio Montarolo, Enrico D'Aniello, Rakesh K Rastogi, Biagio D'Aniello, Gabriella Chieffi Baccari, George Fisher, Antimo D'Aniello (2006)  D-aspartic acid in the nervous system of Aplysia limacina: possible role in neurotransmission.   J Cell Physiol 206: 3. 672-681 Mar  
Abstract: In the marine mollusk Aplysia limacina, a substantial amount of endogenous D-aspartic acid (D-Asp) was found following its synthesis from L-aspartate by an aspartate racemase. Concentrations of D-Asp between 3.9 and 4.6 micromol/g tissue were found in the cerebral, abdominal, buccal, pleural, and pedal ganglia. In non nervous tissues, D-Asp occurred at a very low concentration compared to the nervous system. Immunohistochemical studies conducted on cultured Aplysia neurons using an anti-D-aspartate antibody demonstrated that D-Asp occurs in the soma, dendrites, and in synaptic varicosities. Synaptosomes and synaptic vesicles from cerebral ganglia were prepared and characterized by electron microscopy. HPLC analysis revealed high concentrations of D-Asp together with L-aspartate and L-glutamate in isolated synaptosomes In addition, D-Asp was released from synaptosomes by K+ depolarization or by ionomycin. D-Asp was one of the principal amino acids present in synaptic vesicles representing about the 25% of total amino acids present in these cellular organelles. Injection of D-Asp into live animals or addition to the incubation media of cultured neurons, caused an increase in cAMP content. Taken as a whole, these findings suggest a possible role of D-Asp in neurotransmission in the nervous system of Aplysia limacina.
Notes:
Erica Sodergren, George M Weinstock, Eric H Davidson, R Andrew Cameron, Richard A Gibbs, Robert C Angerer, Lynne M Angerer, Maria Ina Arnone, David R Burgess, Robert D Burke, James A Coffman, Michael Dean, Maurice R Elphick, Charles A Ettensohn, Kathy R Foltz, Amro Hamdoun, Richard O Hynes, William H Klein, William Marzluff, David R McClay, Robert L Morris, Arcady Mushegian, Jonathan P Rast, L Courtney Smith, Michael C Thorndyke, Victor D Vacquier, Gary M Wessel, Greg Wray, Lan Zhang, Christine G Elsik, Olga Ermolaeva, Wratko Hlavina, Gretchen Hofmann, Paul Kitts, Melissa J Landrum, Aaron J Mackey, Donna Maglott, Georgia Panopoulou, Albert J Poustka, Kim Pruitt, Victor Sapojnikov, Xingzhi Song, Alexandre Souvorov, Victor Solovyev, Zheng Wei, Charles A Whittaker, Kim Worley, K James Durbin, Yufeng Shen, Olivier Fedrigo, David Garfield, Ralph Haygood, Alexander Primus, Rahul Satija, Tonya Severson, Manuel L Gonzalez-Garay, Andrew R Jackson, Aleksandar Milosavljevic, Mark Tong, Christopher E Killian, Brian T Livingston, Fred H Wilt, Nikki Adams, Robert Bellé, Seth Carbonneau, Rocky Cheung, Patrick Cormier, Bertrand Cosson, Jenifer Croce, Antonio Fernandez-Guerra, Anne-Marie Genevière, Manisha Goel, Hemant Kelkar, Julia Morales, Odile Mulner-Lorillon, Anthony J Robertson, Jared V Goldstone, Bryan Cole, David Epel, Bert Gold, Mark E Hahn, Meredith Howard-Ashby, Mark Scally, John J Stegeman, Erin L Allgood, Jonah Cool, Kyle M Judkins, Shawn S McCafferty, Ashlan M Musante, Robert A Obar, Amanda P Rawson, Blair J Rossetti, Ian R Gibbons, Matthew P Hoffman, Andrew Leone, Sorin Istrail, Stefan C Materna, Manoj P Samanta, Viktor Stolc, Waraporn Tongprasit, Qiang Tu, Karl-Frederik Bergeron, Bruce P Brandhorst, James Whittle, Kevin Berney, David J Bottjer, Cristina Calestani, Kevin Peterson, Elly Chow, Qiu Autumn Yuan, Eran Elhaik, Dan Graur, Justin T Reese, Ian Bosdet, Shin Heesun, Marco A Marra, Jacqueline Schein, Michele K Anderson, Virginia Brockton, Katherine M Buckley, Avis H Cohen, Sebastian D Fugmann, Taku Hibino, Mariano Loza-Coll, Audrey J Majeske, Cynthia Messier, Sham V Nair, Zeev Pancer, David P Terwilliger, Cavit Agca, Enrique Arboleda, Nansheng Chen, Allison M Churcher, F Hallböök, Glen W Humphrey, Mohammed M Idris, Takae Kiyama, Shuguang Liang, Dan Mellott, Xiuqian Mu, Greg Murray, Robert P Olinski, Florian Raible, Matthew Rowe, John S Taylor, Kristin Tessmar-Raible, D Wang, Karen H Wilson, Shunsuke Yaguchi, Terry Gaasterland, Blanca E Galindo, Herath J Gunaratne, Celina Juliano, Masashi Kinukawa, Gary W Moy, Anna T Neill, Mamoru Nomura, Michael Raisch, Anna Reade, Michelle M Roux, Jia L Song, Yi-Hsien Su, Ian K Townley, Ekaterina Voronina, Julian L Wong, Gabriele Amore, Margherita Branno, Euan R Brown, Vincenzo Cavalieri, Véronique Duboc, Louise Duloquin, Constantin Flytzanis, Christian Gache, François Lapraz, Thierry Lepage, Annamaria Locascio, Pedro Martinez, Giorgio Matassi, Valeria Matranga, Ryan Range, Francesca Rizzo, Eric Röttinger, Wendy Beane, Cynthia Bradham, Christine Byrum, Tom Glenn, Sofia Hussain, Gerard Manning, Esther Miranda, Rebecca Thomason, Katherine Walton, Athula Wikramanayke, Shu-Yu Wu, Ronghui Xu, C Titus Brown, Lili Chen, Rachel F Gray, Pei Yun Lee, Jongmin Nam, Paola Oliveri, Joel Smith, Donna Muzny, Stephanie Bell, Joseph Chacko, Andrew Cree, Stacey Curry, Clay Davis, Huyen Dinh, Shannon Dugan-Rocha, Jerry Fowler, Rachel Gill, Cerrissa Hamilton, Judith Hernandez, Sandra Hines, Jennifer Hume, Laronda Jackson, Angela Jolivet, Christie Kovar, Sandra Lee, Lora Lewis, George Miner, Margaret Morgan, Lynne V Nazareth, Geoffrey Okwuonu, David Parker, Ling-Ling Pu, Rachel Thorn, Rita Wright (2006)  The genome of the sea urchin Strongylocentrotus purpuratus.   Science 314: 5801. 941-952 Nov  
Abstract: We report the sequence and analysis of the 814-megabase genome of the sea urchin Strongylocentrotus purpuratus, a model for developmental and systems biology. The sequencing strategy combined whole-genome shotgun and bacterial artificial chromosome (BAC) sequences. This use of BAC clones, aided by a pooling strategy, overcame difficulties associated with high heterozygosity of the genome. The genome encodes about 23,300 genes, including many previously thought to be vertebrate innovations or known only outside the deuterostomes. This echinoderm genome provides an evolutionary outgroup for the chordates and yields insights into the evolution of deuterostomes.
Notes:
Salvatore D'Aniello, Enrico D'Aniello, Annamaria Locascio, Alessandra Memoli, Marcella Corrado, Monia Teresa Russo, Francesco Aniello, Laura Fucci, Euan R Brown, Margherita Branno (2006)  The ascidian homolog of the vertebrate homeobox gene Rx is essential for ocellus development and function.   Differentiation 74: 5. 222-234 Jun  
Abstract: The tadpole larvae prosencephalon of the ascidian Ciona intestinalis contains a single large ventricle, along the inner walls of which lie two sensory organs: the otolith (a gravity-sensing organ) and the ocellus (a photo-sensing organ composed of a single cup-shaped pigment cell, about 20 photoreceptor cells, and three lens cells). Comparison has been drawn between the morphology and physiology of photoreceptor cells in the ascidian ocellus and the vertebrate eye. The development of vertebrate and invertebrate eyes requires the activity of several conserved genes and it is regulated by precise expression patterns and cell fate decisions common to several species. We have isolated a Ciona homeobox gene (Ci-Rx) that belongs to the paired-like class of homeobox genes. Rx genes have been identified from a variety of organisms and have been demonstrated to have a role in vertebrate eye formation. Ci-Rx is expressed in the anterior neural plate in the middle tailbud stage and subsequently in the larval stage in the sensory vesicle around the ocellus. Loss of Ci-Rx function leads to an ocellus-less phenotype that shows a loss of photosensitive swimming behavior, suggesting the important role played by Ci-Rx in basal chordate photoreceptor cell differentiation and ocellus formation. Furthermore, studies on Ci-Rx regulatory elements electroporated into Ciona embryos using LacZ or GFP as reporter genes indicate the presence of Ci-Rx in pigment cells, photoreceptors, and neurons surrounding the sensory vesicle. In Ci-Rx knocked-down larvae, neither basal swimming activity nor shadow responses develop. Thus, Rx has a role not only in pigment cells and photoreceptor formation but also in the correct development of the neuronal circuit that controls larval photosensitivity and swimming behavior. The results suggest that a Ci-Rx "retinal" territory exists, which consists of pigment cells, photoreceptors, and neurons involved in transducing the photoreceptor signals.
Notes:
Brown, Piscopo, Chun, Francone, Mirabile, D'Aniello (2006)  Modulation of an AMPA-like glutamate receptor (SqGluR) gating by L- and D-aspartic acids.   Amino Acids Jun  
Abstract: L- and D-aspartic acids (L-Asp and D-Asp) are present in the majority of nervous systems. In phylogeny, significant levels have been reported in mollusc brains, particularly cephalopods. To examine the role of L- and D-Asp on a cephalopod receptor, we studied ligand gating of a squid glutamate receptor (SqGluR) expressed in HEK 239 (human embryonic kidney) cells. Under voltage clamp, application of L-glutamate (L-Glu; 1-30 mM), but not D-glutamate (D-Glu), or L- or D-Asp, evoked an inward current of 0.1 nA. L- or D-Asp (200 microM) applied with 20 mM L-Glu, slowed the time course of activation and inactivation of the L-Glu gated current (time constant increased from 1 ms (L-Glu alone) to 3 ms (D-Asp and L-Glu) and to 19 ms (L-Asp and L-Glu)). Our results suggest that in molluscan systems, aspartic acid could act as a neuromodulator during glutamatergic transmission and could significantly alter synaptic integration by slowing glutamate receptor gating.
Notes:
Salvatore D'Aniello, Enrico D'Aniello, Annamaria Locascio, Alessandra Memoli, Marcella Corrado, Monia Teresa Russo, Francesco Aniello, Laura Fucci, Euan R Brown, Margherita Branno (2006)  The ascidian homolog of the vertebrate homeobox gene Rx is essential for ocellus development and function.   Differentiation 74: 5. 222-234 Jun  
Abstract: The tadpole larvae prosencephalon of the ascidian Ciona intestinalis contains a single large ventricle, along the inner walls of which lie two sensory organs: the otolith (a gravity-sensing organ) and the ocellus (a photo-sensing organ composed of a single cup-shaped pigment cell, about 20 photoreceptor cells, and three lens cells). Comparison has been drawn between the morphology and physiology of photoreceptor cells in the ascidian ocellus and the vertebrate eye. The development of vertebrate and invertebrate eyes requires the activity of several conserved genes and it is regulated by precise expression patterns and cell fate decisions common to several species. We have isolated a Ciona homeobox gene (Ci-Rx) that belongs to the paired-like class of homeobox genes. Rx genes have been identified from a variety of organisms and have been demonstrated to have a role in vertebrate eye formation. Ci-Rx is expressed in the anterior neural plate in the middle tailbud stage and subsequently in the larval stage in the sensory vesicle around the ocellus. Loss of Ci-Rx function leads to an ocellus-less phenotype that shows a loss of photosensitive swimming behavior, suggesting the important role played by Ci-Rx in basal chordate photoreceptor cell differentiation and ocellus formation. Furthermore, studies on Ci-Rx regulatory elements electroporated into Ciona embryos using LacZ or GFP as reporter genes indicate the presence of Ci-Rx in pigment cells, photoreceptors, and neurons surrounding the sensory vesicle. In Ci-Rx knocked-down larvae, neither basal swimming activity nor shadow responses develop. Thus, Rx has a role not only in pigment cells and photoreceptor formation but also in the correct development of the neuronal circuit that controls larval photosensitivity and swimming behavior. The results suggest that a Ci-Rx "retinal" territory exists, which consists of pigment cells, photoreceptors, and neurons involved in transducing the photoreceptor signals.
Notes:
2005
E R Brown, A Nishino, Q Bone, I A Meinertzhagen, Y Okamura (2005)  GABAergic synaptic transmission modulates swimming in the ascidian larva.   Eur J Neurosci 22: 10. 2541-2548 Nov  
Abstract: To examine the role of the amino acid GABA in the locomotion of basal chordates, we investigated the pharmacology of swimming and the morphology of GABA-immunopositive neurones in tadpole larvae of the ascidians Ciona intestinalis and Ciona savignyi. We verified that electrical recording from the tail reflects alternating muscle activity during swimming by correlating electrical signals with tail beats using high-speed video recording. GABA reversibly reduced swimming periods to single tail twitches, while picrotoxin increased the frequency and duration of electrical activity associated with spontaneous swimming periods. Immunocytochemistry for GABA revealed extensive labelling throughout the larval central nervous system. Two strongly labelled regions on either side of the sensory vesicle were connected by an arc of labelled fibres, from which fibre tracts extended caudally into the visceral ganglion. Fibre tracts extended ventrally from a third, more medial region in the posterior sensory vesicle. Two rows of immunoreactive cell bodies in the visceral ganglion extended neurites into the nerve cord, where varicosities were seen. Thus, presumed GABAergic neurones form a network that could release GABA during swimming that is involved in modulating the time course and frequency of periods of spontaneous swimming. GABAergic and motor neurones in the visceral ganglion could interact at the level of their cell bodies and/or through the presumed GABAergic fibres that enter the nerve cord. The larval swimming network appears to possess some of the properties of spinal networks in vertebrates, while at the same time possibly showing a type of peripheral innervation resembling that in some protostomes.
Notes:
Stefania Piscopo, Rosanna De Stefano, Michael C Thorndyke, Euan R Brown (2005)  Alteration and recovery of appetitive behaviour following nerve section in the starfish Asterias rubens.   Behav Brain Res 164: 1. 36-41 Oct  
Abstract: The starfish Asterias rubens is an invertebrate deuterostome whose nervous system shows remarkable regenerative properties. To understand when full functionality of a damaged part of the nervous system recovers, and to follow nerve regeneration in detail, we carried out behavioural experiments with 29 starfishes that had the nerve in one of the arms sectioned in a mid-arm position. Loss and recovery of normal behaviour was followed by video analysis of animal performance in an appetitive behavioural test. When compared to 13 control (unoperated) animals, the appetitive response of freshly sectioned animals is normal initially, progressively deteriorates up to 40 days after the lesion, and then gradually improves until 60 days, when recovery is complete. This is true only when one of the leading arms in the appetitive test is a sectioned arm; turning the starfish so that both the leading arms facing the prey are unlesioned, results in normal behaviour even at 40 days after the cut. Thus, regeneration is a multi-step process whose time course coincides with anatomical regeneration. At intermediate times the animals have coordination problems in an appetitive behaviour test and these give some insights into how arms may inter-communicate to organize concerted movements.
Notes:
2003
F Moccia, G A Nusco, D Lim, E Ercolano, G Gragnaniello, E R Brown, L Santella (2003)  Ca2+ signalling and membrane current activated by cADPr in starfish oocytes.   Pflugers Arch 446: 5. 541-552 Aug  
Abstract: Cyclic ADP-ribose (cADPr) is a second messenger that regulates intracellular free [Ca2+] ([Ca2+](i)) in a variety of cell types, including immature oocytes from the starfish Astropecten auranciacus. In this study, we employed confocal laser scanning microscopy and voltage clamp techniques to investigate the source of the cADPr-elicited Ca2+ wave originating from the cortical Ca2+ patches we have described previously. The Ca2+ swing was accompanied by a membrane current with a reversal potential of approximately +20 mV. Decreasing external Na+ almost abolished the current without affecting the Ca2+ response. Removal of extracellular Ca2+ altered neither the Ca2+ transient nor the ionic current, nor did the holding potential exert any effect on the Ca2+ wave. Both the Ca2+ response and the membrane current were abolished when BAPTA, ruthenium red or 8-NH(2)-cADPr were preinjected into the oocytes, while perfusion with ADPr did not elicit any [Ca2+](i) increase or ionic current. However, elevating [Ca2+](i) by uncaging Ca2+ from nitrophenyl- (NP-EGTA) or by photoliberating inositol 1,4,5-trisphosphate (InsP(3)) induced an ionic current with biophysical properties similar to that elicited by cADPr. These results suggest that cADPr activates a Ca2+ wave by releasing Ca2+ from intracellular ryanodine receptors and that the rise in [Ca2+](i) triggers a non-selective monovalent cation current that does not seem to contribute to the global Ca2+ elevation.
Notes:
Binyamin Hochner, Euan R Brown, Marina Langella, Tal Shomrat, Graziano Fiorito (2003)  A learning and memory area in the octopus brain manifests a vertebrate-like long-term potentiation.   J Neurophysiol 90: 5. 3547-3554 Nov  
Abstract: Cellular mechanisms underlying learning and memory were investigated in the octopus using a brain slice preparation of the vertical lobe, an area of the octopus brain involved in learning and memory. Field potential recordings revealed long-term potentiation (LTP) of glutamatergic synaptic field potentials similar to that in vertebrates. These findings suggest that convergent evolution has led to the selection of similar activity-dependent synaptic processes that mediate complex forms of learning and memory in vertebrates and invertebrates.
Notes:
Pedro A Lima, Giovanna Nardi, Euan R Brown (2003)  AMPA/kainate and NMDA-like glutamate receptors at the chromatophore neuromuscular junction of the squid: role in synaptic transmission and skin patterning.   Eur J Neurosci 17: 3. 507-516 Feb  
Abstract: Glutamate receptor types were examined at the chromatophore synapses of the squids Alloteuthis subulata and Loligo vulgaris, where nerve-induced muscle contraction causes chromatophore expansion. Immunoblotting with antibody raised against a squid AMPA receptor (sGluR) demonstrated that AMPA/kainate receptors are present in squid skin. Application of l-glutamate evoked chromatophore muscle contractions in both ventral and dorsal skins, while NMDA was only active on a subpopulation of dorsal chromatophores. In dorsal skin, neurotransmission was partly blocked by either AMPA/kainate receptor antagonists (CNQX and DNQX) or NMDA receptor antagonists (AP-5 and MK-801) or completely blocked by simultaneous application of both classes of antagonists. In isolated muscle fibres, ionophoretic application of l-glutamate evoked fast inward CNQX- and DNQX-sensitive currents with reversal potentials around +14 mV and a high conductance to Na+. In fibres from dorsal skin only, a slower outward glutamate-sensitive current appeared at positive holding potentials. At negative potentials, currents were potentiated by glycine or by removing external Mg2+ and were blocked by AP-5 and MK-801. Glutamate caused a fast, followed by a slow, transient increase in cytoplasmic Ca2+. The slow component was increased in amplitude and duration by glycine or by lowering external Mg2+ and decreased by AP-5 and MK-801. In cells from ventral skin, no 'NMDA-like responses' were detected. Thus, while AMPA/kainate receptors mediated fast excitatory synaptic transmission and rapid colour change over the whole skin, activation of both AMPA/kainate and NMDA-like receptors in a subpopulation of dorsal chromatophores prolonged the postsynaptically evoked Ca2+ elevation causing temporally extended colour displays with behavioural significance.
Notes:
2002
I M Vinogradova, J Zajicek, S Gentile, E R Brown (2002)  Effect of glycine on synaptic transmission at the third order giant synapse of the squids Alloteuthis subulata and Loligo vulgaris.   Neurosci Lett 325: 1. 42-46 May  
Abstract: Intracellular microelectrode recordings were made from presynaptic and postsynaptic regions of the third order giant synapses of the squids Alloteuthis subulata and Loligo vulgaris. Synaptically generated postsynaptic action potential trains, and excitatory postsynaptic potentials (EPSPs) were reversibly decreased by glycine, beta - alanine or taurine while presynaptic action potentials (APs) were unaltered. Glycine was effective in the presence of strychnine (30-50 microM), NMDA (500 microM), AP-5 (50 microM), CPP (100 microM), or MK 801 (which also had no effect on normal synaptic transmission). The glycine effect was reduced reversibly by D-tubocurarine (100 microM) and blocked by reducing extracellular chloride by 50% with propionate. Excitatory postsynaptic currents (EPSCs) were decreased by glycine addition without altering resting membrane conductance. We postulate that glycine or a glycine like substance provides an excitatory postsynaptic input during synaptic stimulation. Bath addition of glycine desensitises these receptors and decreases the amplitude of the EPSPs and EPSCs. Modulation of this synaptic input may provide an effective mechanism to suppress or potentiate synaptic transmission in the squid giant synapse.
Notes:
Isao Inoue, Izuo Tsutsui, N Joan Abbott, Euan R Brown (2002)  Ionic currents in isolated and in situ squid Schwann cells.   J Physiol 541: Pt 3. 769-778 Jun  
Abstract: Ionic currents from Schwann cells isolated enzymatically from the giant axons of the squids Loligo forbesi, Loligo vulgaris and Loligo bleekeri were compared with those obtained in situ. Macroscopic and single channel ionic currents were recorded using whole-cell voltage and patch clamp. In the whole-cell configuration, depolarisation from negative holding potentials evoked two voltage-dependent currents, an inward current and a delayed outward current. The outward current resembled an outwardly rectifying K+ current and was activated at -40 mV after a latent period of 5-20 ms following a step depolarisation. The current was reduced by externally applied nifedipine, Co2+ or quinine, was not blocked by addition of apamin or charibdotoxin and was insensitive to externally applied L-glutamate or acetylcholine. The voltage-gated inward current was activated at -40 mV and was identified as an L-type calcium current sensitive to externally applied nifedipine. Schwann cells were impaled in situ in split-open axons and voltage clamped using discontinuous single electrode voltage clamp. Voltage dependent outward currents were recorded that were kinetically identical to those seen in isolated cells and that had similar current-voltage relations. Single channel currents were recorded from excised inside-out patches. A single channel type was observed with a reversal potential close to the equilibrium potential for K+ (E(K)) and was therefore identified as a K+ channel. The channel conductance was 43.6 pS when both internal and external solutions contained 150 mM K+. Activity was weakly dependent on membrane voltage but sensitive to the internal Ca2+ concentration. Activity was insensitive to externally or internally applied L-glutamate or acetylcholine. The results suggest that calcium channels and calcium-activated K+ channels play an important role in the generation of the squid Schwann cell membrane potential, which may be controlled by the resting intracellular Ca2+ level.
Notes:
2001
C M Rogers, E R Brown (2001)  Differential sensitivity to calciseptine of L-type Ca(2+) currents in a 'lower' vertebrate (Scyliorhinus canicula), a protochordate (Branchiostoma lanceolatum) and an invertebrate (Alloteuthis subulata).   Exp Physiol 86: 6. 689-694 Nov  
Abstract: Voltage-dependent calcium currents in vertebrate (Scyliorhinus canicula), protochordate (Branchiostoma lanceolatum), and invertebrate (Alloteuthis subulata) skeletal and striated muscle were examined under whole-cell voltage clamp. Nifedipine (10 microM) suppressed and cobalt (5 mM) blocked striated/skeletal muscle calcium currents in all of the animals examined, confirming that they are of the L-type class. Calciseptine, a specific blocker of vertebrate cardiac muscle and neuronal L-type calcium currents, was applied (0.2 microM) under whole-cell voltage clamp. Protochordate and invertebrate striated muscle L-type calcium currents were suppressed while up to 4 microM calciseptine had no effect on dogfish skeletal muscle L-type calcium currents. Our results demonstrate the presence of at least two sub-types of L-type calcium current in these different animals, which may be distinguished by their calciseptine sensitivity. We conclude that the invertebrate and protochordate L-type current sub-type that we have examined has properties in common with vertebrate 'cardiac' and 'neuronal' current sub-types, but not the skeletal muscle sub-type of the L-type channel.
Notes:
2000
J C Benech, P A Lima, J R Sotelo, E R Brown (2000)  Ca(2+) dynamics in synaptosomes isolated from the squid optic lobe.   J Neurosci Res 62: 6. 840-846 Dec  
Abstract: Synaptosomes from the optic lobes of squid (Loligo forbesi) were prepared by homogenization and allowed to settle onto glass coverslips. Synaptosomes were loaded with Ca(2+) sensitive dyes (Fura-2 AM, Calcium Green-1 AM and Calcium Green-5N AM), visualized by light microscopy and Ca(2+) sensitive fluorescence signals recorded and analyzed. With Fura-2, resting Ca(2+) was found to be 80 nM (n = 10, SEM 5.7). Addition of K(+) (30 mM), caffeine (3 mM) and thapsigargin (10 microM) evoked transient increases in cytoplasmic Ca(2+). Addition of BAPTA-AM (20 microM) decreased intrasynaptosomal free Ca(2+). Similar results were obtained with Calcium Green-1 AM but not with Calcium Green-5N AM. We conclude that synaptosomes from the squid optic lobe posses intact membranes and mechanisms to regulate intrasynaptosomal free [Ca(2+)], as well as caffeine sensitive Ca(2+) stores. The results of this study are discussed with respect to the role of Ca(2+) in presynaptic protein synthesis.
Notes:
1997
Rogers, Nelson, Brown (1997)  Different excitation-contraction coupling mechanisms exist in squid, cuttlefish and octopod mantle muscle   J Exp Biol 200 (Pt 23): 3033-3041 Dec  
Abstract: Excitation-contraction (EC) coupling was studied in central zone mantle muscle fibres of a squid (Alloteuthis subulata), a cuttlefish (Sepia officinalis) and an octopod (Eledone cirrhosa). Thin slices of muscle were used for twitch experiments and enzymatic isolation of single fibres for whole-cell patch-clamp studies. The current required for a supramaximal twitch response during direct stimulation of muscle slices was lower for squid than for cuttlefish. In squid, but not in cuttlefish, the current-response relationship was independent of slice thickness (range 0.1-0.5 mm). Twitches of squid and cuttlefish slices were reversibly abolished by removal of extracellular Ca2+. In squid, but not in cuttlefish, the current-response relationship was Na+-dependent, and in the absence of Na+ higher current strengths were required to generate a supramaximal response. In whole-cell voltage-clamp experiments on isolated muscle fibres from squid, cuttlefish and Eledone cirrhosa, a sustained inward current was recorded upon depolarisation. This current was blocked by 5 mmol l-1 Co2+ and suppressed by 10 micromol l-1 nifedipine. In squid, an additional inward fast-activating transient current was seen which was blocked by 2 micromol l-1 tetrodotoxin and depolarised holding potentials. The fast current represents a voltage-activated Na+ channel, and the slow currents represent L-type Ca2+ channels. We conclude that squid possess a specialised rapid EC coupling mechanism in central zone fibres that is absent in cuttlefish and Eledone cirrhosa.
Notes:
I Inoue, I Tsutsui, E R Brown (1997)  K+ accumulation and K+ conductance inactivation during action potential trains in giant axons of the squid Sepioteuthis.   J Physiol 500 ( Pt 2): 355-366 Apr  
Abstract: 1. During action potential trains in giant axons from the squid Sepioteuthis, decline of the peak level of the undershoot potential was observed. The time course of the decline of the undershoot could be fitted with a three-exponential function with time constants of approximately 25, approximately 400 and approximately 7,000 ms, respectively. 2. When the osmolarity of the external solution was doubled by adding glucose (1.2 M), the fast component of undershoot decline, but not the medium and slow components, was significantly reduced. 3. Under voltage clamp in high osmolarity solutions where K+ accumulation was completely removed, repeated depolarizing pulses at 40 Hz (designed to mimic a train of action potentials) elicited K+ currents whose peak value declined. The decline is consistent with inactivation of the K+ conductance (gK). The decline of gK was fitted by a two-exponential function with time constants of approximately 400 and approximately 7,000 ms, respectively. 4. Interventions designed to modify Schwann cell physiology, such as high frequency stimulation (100 Hz, 2 min), externally applied ouabain (100-500 microM), L-glutamate (100 microM), ACh (100 microM), Co2+ (5mM), Ba2+ (2mM), or removal of external Ca2+ by EGTA, had no significant effects on the fast, medium or slow components of undershoot decline. 5. The results suggest that the fast component of undershoot decline represents K+ accumulation in the space between Schwann cell and axolemma. The medium and slow components are the result of axonal gK inactivation. Schwann cells appear to be involved in K+ clearance only to the extent that they provide an efficient physical pathway for the clearance of K+ by extracellular diffusion.
Notes:
1994
Bone, Brown, Travers (1994)  ON THE RESPIRATORY FLOW IN THE CUTTLEFISH SEPIA OFFICINALIS   J Exp Biol 194: 1. 153-165 Sep  
Abstract: The respiratory flow of water over the gills of the cuttlefish Sepia officinalis at rest is produced by the alternate activity of the radial muscles of the mantle and the musculature of the collar flaps; mantle circular muscle fibres are not involved. Inspiration takes place as the radial fibres contract, thinning the mantle and expanding the mantle cavity. The rise in mantle cavity pressure (up to 0.15 kPa), expelling water via the siphon during expiration, is brought about by inward movement of the collar flaps and (probably) mainly by elastic recoil of the mantle connective tissue network 'wound up' by radial fibre contraction during inspiration. Sepia also shows a second respiratory pattern, in which mantle cavity pressures during expiration are greater (up to 0.25 kPa). Here, the mantle circular fibres are involved, as they are during the large pressure transients (up to 10 kPa) seen during escape jetting. Active contraction of the muscles of the collar flaps is seen in all three patterns of expulsion of water from the mantle cavity, electrical activity increasing with increasing mantle cavity pressures. Respiratory expiration in the resting squid Loligo vulgaris is probably driven as in Sepia, whereas in the resting octopus Eledone cirrhosa, the mantle circular musculature is active during expiration. The significance of these observations is discussed.
Notes:
1993
E R Brown, N J Abbott (1993)  Ultrastructure and permeability of the Schwann cell layer surrounding the giant axon of the squid.   J Neurocytol 22: 4. 283-298 Apr  
Abstract: The ultrastructure of the Schwann cell layer surrounding the giant axon of the squid Alloteuthis subulata is described, and the permeability of extracellular compartments assessed by exposure to electron-dense tracers. Morphometric analysis is used to deduce the number, size and shape of the Schwann cells, and the routes for ion flux across the Schwann cell layer. Axons (mean diameter 233 microns) were surrounded by a 1-2 microns thick layer of Schwann cells which were approximately 1 micron thick, approximately 70 microns long and approximately 23 microns wide. There were around 62,000 Schwann cells per cm2 axon surface. The outer (abaxonal) surface of the Schwann cells was invaginated, with evidence for a covering of fine Schwann cells processes; the inner (adaxonal) surface of the Schwann cells was less folded. The percentage area occupied by mesaxonal cleft openings to the axon and to the basal lamina was 0.02% and 1.09% respectively. A system of tubules, the glial tubular system, occupied 3.9% of the Schwann cell volume, and opened to both axonal and basal lamina surfaces, with more elaborate lattice-like clusters towards the basal side of the cell. Tubule openings accounted for 0.26% of the surface area facing the axon and 0.37% of the area facing the basal lamina (where there was greater clustering of openings). The electron dense tracers horseradish peroxidase, ionic lanthanum and tannic acid filled mesaxon clefts, glial tubular system and periaxonal space. If ion flux occurred via the mesaxonal clefts, a theoretical series resistance (Rsth) of > 20 omega cm2, would be predicted, whereas if it occurred via the tubular system, the figure would be < 2 omega cm2, closer to physiological estimates. The results presented show that the glial tubular system is likely to be the major route for ion flux into and across the Schwann cell layer, and for clearance of K+ from the periaxonal space during periods of axonal stimulation. The implications for K+ homeostasis in the axonal microenvironment are discussed.
Notes:
E R Brown (1993)  K+ accumulation around the giant axon of the squid: comparison of electrical and morphological measurements.   Jpn J Physiol 43 Suppl 1: S279-S284  
Abstract: K+ clearance following axon activity was measured around squid axons and found to be 20 times more efficient in preparations that were undissected. Around dissected preparations, Schwann cells were found to be swollen and vacuolated. It is suggested that traditional dissection methods damage Schwann cells and their K+ clearance function is impaired.
Notes:
1991
E R Brown, Q Bone, K P Ryan, N J Abbott (1991)  Morphology and electrical properties of Schwann cells around the giant axon of the squids Loligo forbesi and Loligo vulgaris.   Proc Biol Sci 243: 1308. 255-262 Mar  
Abstract: The first successful dye-fills of Schwann cells around the split giant axon of Loligo show them to be spindle-shaped cells ca. 600 microns long and 20 microns wide lying parallel to the axonal axis. There are some 50,000 Schwann cells per cm2 of axonal membrane. Only a small part (ca. 6% of each Schwann cell membrane) is in contact with the periaxonal space, the remainder is overlain by adjacent Schwann cells, or applied to the basal lamina. The mean membrane potential of the Schwann cells in artificial seawater (ASW) varies from around -40 mV in fresh split-axon preparations to around -60 to -70 mV after 1-2 h; this hyperpolarization is not seen in preparations dissected and maintained in Ca2(+)-free ASW. Electrical- and dye-coupling (abolished by prior octanol treatment) is present between Schwann cells, but is weaker in cells with lower (less negative) membrane potentials. The implications for potassium homeostasis around the axon are briefly discussed.
Notes:
1989
Powered by PublicationsList.org.