hosted by
publicationslist.org
    
Eduardo Candelario-Jalil

ECandelario-Jalil@salud.unm.edu

Journal articles

2007
 
DOI   
PMID 
Eduardo Candelario-Jalil, Armando González-Falcón, Michel García-Cabrera, Olga Sonia León, Bernd L Fiebich (2007)  Post-ischaemic treatment with the cyclooxygenase-2 inhibitor nimesulide reduces blood-brain barrier disruption and leukocyte infiltration following transient focal cerebral ischaemia in rats.   J Neurochem 100: 4. 1108-1120 Feb  
Abstract: Several studies suggest that cyclooxygenase (COX)-2 plays a pivotal role in the progression of ischaemic brain damage. In the present study, we investigated the effects of selective inhibition of COX-2 with nimesulide (12 mg/kg) and selective inhibition of COX-1 with valeryl salicylate (VAS, 12-120 mg/kg) on prostaglandin E(2) (PGE(2)) levels, myeloperoxidase (MPO) activity, Evans blue (EB) extravasation and infarct volume in a standardized model of transient focal cerebral ischaemia in the rat. Post-ischaemic treatment with nimesulide markedly reduced the increase in PGE(2) levels in the ischaemic cerebral cortex 24 h after stroke and diminished infarct size by 48% with respect to vehicle-treated animals after 3 days of reperfusion. Furthermore, nimesulide significantly attenuated the blood-brain barrier (BBB) damage and leukocyte infiltration (as measured by EB leakage and MPO activity, respectively) seen at 48 h after the initial ischaemic episode. These studies provide the first experimental evidence that COX-2 inhibition with nimesulide is able to limit BBB disruption and leukocyte infiltration following transient focal cerebral ischaemia. Neuroprotection afforded by nimesulide is observed even when the treatment is delayed until 6 h after the onset of ischaemia, confirming a wide therapeutic window of COX-2 inhibitors in experimental stroke. On the contrary, selective inhibition of COX-1 with VAS had no significant effect on the evaluated parameters. These data suggest that COX-2 activity, but not COX-1 activity, contributes to the progression of focal ischaemic brain injury, and that the beneficial effects observed with non-selective COX inhibitors are probably associated to COX-2 rather than to COX-1 inhibition.
Notes:
2006
 
DOI   
PMID 
Anne Waschbisch, Bernd L Fiebich, Ravi Shankar Akundi, M Lienhard Schmitz, Jeroen J M Hoozemans, Eduardo Candelario-Jalil, Nina Virtainen, Robert Veerhuis, Helen Slawik, Juha Yrjänheikki, Michael Hüll (2006)  Interleukin-1 beta-induced expression of the prostaglandin E-receptor subtype EP3 in U373 astrocytoma cells depends on protein kinase C and nuclear factor-kappaB.   J Neurochem 96: 3. 680-693 Feb  
Abstract: Both interleukin-1beta (IL-1beta) and prostaglandins (PGs) are important mediators of physiological and pathophysiological processes in the brain. PGE2 exerts its effects by binding to four different types of PGE2 receptors named EP1-EP4. EP3 has found to be expressed in neurons, whereas expression of EP3 in glial cells has not been reported in the brain yet. Here we describe IL-1beta-induced EP3 receptor expression in human astrocytoma cells, primary astrocytes of rat and human origin and in rat brain. Using western blot, we found a marked up-regulation of EP3 receptor synthesis in human and rat primary glial cells. Intracerebroventricular administration of IL-1beta stimulated EP3 receptor synthesis in rat hippocampus. The analysis of involved signal transduction pathways by pathway-specific inhibitors revealed an essential role of protein kinase C and nuclear factor-kappaB in astrocytic IL-1beta-induced EP3 synthesis. Our data suggest that PGE2 signaling in the brain may be altered after IL-1beta release due to up-regulation of EP3 receptors. This might play an important role in acute and chronic conditions such as cerebral ischemia, traumatic brain injury, HIV-encephalitis, Alzheimer's disease and prion diseases in which a marked up-regulation of IL-1beta is followed by a prolonged increase of PGE2 levels in the brain.
Notes:
 
DOI   
PMID 
Eduardo Candelario-Jalil, Ravi S Akundi, Harsharan S Bhatia, Klaus Lieb, Kurt Appel, Eduardo Muñoz, Michael Hüll, Bernd L Fiebich (2006)  Ascorbic acid enhances the inhibitory effect of aspirin on neuronal cyclooxygenase-2-mediated prostaglandin E2 production.   J Neuroimmunol 174: 1-2. 39-51 May  
Abstract: Inhibition of neuronal cyclooxygenase-2 (COX-2) and hence prostaglandin E2 (PGE2) synthesis by non-steroidal anti-inflammatory drugs has been suggested to protect neuronal cells in a variety of pathophysiological situations including Alzheimer's disease and ischemic stroke. Ascorbic acid (vitamin C) has also been shown to protect cerebral tissue in a variety of experimental conditions, which has been attributed to its antioxidant capacity. In the present study, we show that ascorbic acid dose-dependently inhibited interleukin-1beta (IL-1beta)-mediated PGE2 synthesis in the human neuronal cell line, SK-N-SH. Furthermore, in combination with aspirin, ascorbic acid augmented the inhibitory effect of aspirin on PGE2 synthesis. However, ascorbic acid had no synergistic effect along with other COX inhibitors (SC-58125 and indomethacin). The inhibition of IL-1beta-mediated PGE2 synthesis by ascorbic acid was not due to the inhibition of the expression of COX-2 or microsomal prostaglandin E synthase (mPGES-1). Rather, ascorbic acid dose-dependently (0.1-100 microM) produced a significant reduction in IL-1beta-mediated production of 8-iso-prostaglandin F2alpha (8-iso-PGF2alpha), a reliable indicator of free radical formation, suggesting that the effects of ascorbic acid on COX-2-mediated PGE2 biosynthesis may be the result of the maintenance of the neuronal redox status since COX activity is known to be enhanced by oxidative stress. Our results provide in vitro evidence that the neuroprotective effects of ascorbic acid may depend, at least in part, on its ability to reduce neuronal COX-2 activity and PGE2 synthesis, owing to its antioxidant properties. Further, these experiments suggest that a combination of aspirin with ascorbic acid constitutes a novel approach to render COX-2 more sensitive to inhibition by aspirin, allowing an anti-inflammatory therapy with lower doses of aspirin, thereby avoiding the side effects of the usually high dose aspirin treatment.
Notes:
 
DOI   
PMID 
Bernd L Fiebich, Eduardo Candelario-Jalil, Michela Mantovani, Marcus Heinzmann, Ravi Shankar Akundi, Michael Hüll, Rainer Knörle, Peter Schnierle, Günter Finkenzeller, Bernhard Aicher (2006)  Modulation of catecholamine release from rat striatal slices by the fixed combination of aspirin, paracetamol and caffeine.   Pharmacol Res 53: 4. 391-396 Apr  
Abstract: The fixed combination of aspirin, paracetamol (acetaminophen) and caffeine has been used successfully to treat different kinds of pain including migraine attacks. Even when this formulation has been marketed for a long time, the exact molecular mechanisms underlying its therapeutic effectiveness have not been completely elucidated. In the present investigation, we have studied the effects of the fixed combination of aspirin, paracetamol and caffeine (APC) on the release of dopamine and noradrenaline from rat striatal slices in an attempt to find potential new mechanisms of action of this widely used analgesic combination. We found that APC produced a significant reduction in extracellular dopamine and a dramatic increase in norepinephrine release from the slices incubated with different concentrations of APC (dose relationship 1:1:0.2, corresponding to the dose-relationship of Thomapyrin). These findings suggest that the modulation of catecholaminergic neurotransmission is a new pharmacological effect of APC which could explain the mechanism of action of this formulation, considering that the independent effect of either compound alone does not explain the potent antinociceptive properties when observed in combination.
Notes:
 
DOI   
PMID 
B L Fiebich, P Valente, A Ferrer-Montiel, E Candelario-Jalil, J Menthe, P Luecker (2006)  Effects of coffees before and after special treatment procedure on cell membrane potentials in stomach cells.   Methods Find Exp Clin Pharmacol 28: 6. 369-372 Jul/Aug  
Abstract: Coffee, one of the most excessively used beverages worldwide, commences the risk of gastroesophageal reflux (GER), which may lead to gastric ulcers and increase the risk of gastric cancer. Many attempts have been made by the coffee industry to diminish the irritating effect on mucosa by means of altering the extraction methods concerning gerbic acids and the roasting processes. This paper describes the effect of differently produced coffees involving two brands of Darboven and two brands of other coffee roasters. The aim of this study was to prove the results of gastric potential measurements we found in literature by using human AGS gastric epithelial cells (human adenocarcinoma). All four coffee extracts tested differentially affected the membrane resting potential of AGS cells. Coffees no. 1 and no. 2 depolarized the cells, presumably by increasing the cation entry into the cytosol. In marked contrast, coffee no. 4 hyperpolarizes the cells, possibly by H(+) extrusion and/or Cl(-) influx, suggesting that this coffee might increase acidity in the stomach, which might negatively affect the stomach, especially in people with gastroesophageal reflux symptoms. Overall, our data suggest that different roasting methods of coffees affect the membrane potentials of AGS stomach cells, resulting in increased influx of H+ possibly resulting in decreased stomach acidity and thus reducing GER. These results are in good accordance with clinical pharmacological results from potential difference measurements in healthy volunteers we found in the literature.
Notes:
2005
 
DOI   
PMID 
Ravi Shankar Akundi, Eduardo Candelario-Jalil, Sandra Hess, Michael Hüll, Klaus Lieb, Peter J Gebicke-Haerter, Bernd L Fiebich (2005)  Signal transduction pathways regulating cyclooxygenase-2 in lipopolysaccharide-activated primary rat microglia.   Glia 51: 3. 199-208 Aug  
Abstract: Microglia are the major cell type involved in neuroinflammatory events in brain diseases such as encephalitis, stroke, and neurodegenerative disorders, and contribute significantly to the release of prostaglandins (PGs) during neuronal insults. In this report, we studied the immediate-early intracellular signalling pathways in microglia, following bacterial lipopolysaccharide (LPS) stimulation, leading to the synthesis and release of PGE2. Here we show that LPS induces cyclooxygenase (COX) 2 by activating sphingomyelinases leading to the release of ceramides, which in turn, activate the p38 mitogen-activated protein kinases (MAPK), but not the p42/44 MAPK. We further show that exogenously added ceramide analogue (C2-ceramide) also induce PGE2 synthesis through a p38 MAPK-dependent pathway. This potential nature of ceramides in activating microglia suggests that endogenously produced ceramides during neuronal apoptosis in ischemia or neurodegenerative diseases could also contribute to the amplification of neuroinflammatory events. In contrast to protein kinase C (PKC) and phosphocholine-specific phospholipase C (PC-PLC), which transcriptionally regulate LPS-induced COX-2 synthesis, inhibition of phospholipase A2 (PLA2) has no effect on COX-2 transcription, although it inhibits the release of PGE2. Transcriptional regulation of LPS-induced COX-2 by PKC is further proved by the ability of the PKC inhibitor, Gö 6976, to inhibit LPS-induced 8-isoprostane synthesis, but not affecting LPS-induced COX-2 activity. Our data with 8-isoprostane also indicates that COX-2 plays a major role in ROS production in LPS-activated microglia. This detailed view of the intracellular signaling pathway in microglial activation and COX-2 expression opens a new therapeutic window in the search for new and more effective central anti-inflammatory agents.
Notes:
 
DOI   
PMID 
Candelario-Jalil, Mhadu, González-Falcón, García-Cabrera, Muñoz, León, Fiebich (2005)  Effects of the cyclooxygenase-2 inhibitor nimesulide on cerebral infarction and neurological deficits induced by permanent middle cerebral artery occlusion in the rat.   J Neuroinflammation 2: 1. Jan  
Abstract: BACKGROUND: Previous studies suggest that the cyclooxygenase-2 (COX-2) inhibitor nimesulide has a remarkable protective effect against different types of brain injury including ischemia. Since there are no reports on the effects of nimesulide on permanent ischemic stroke and because most cases of human stroke are caused by permanent occlusion of cerebral arteries, the present study was conducted to assess the neuroprotective efficacy of nimesulide on the cerebral infarction and neurological deficits induced by permanent middle cerebral artery occlusion (pMCAO) in the rat. METHODS: Ischemia was induced by permanent occlusion of the middle cerebral artery in rats, via surgical insertion of a nylon filament into the internal carotid artery. Infarct volumes (cortical, subcortical and total) and functional recovery, assessed by neurological score evaluation and rotarod performance test, were performed 24 h after pMCAO. In initial experiments, different doses of nimesulide (3, 6 and 12 mg/kg; i.p) or vehicle were administered 30 min before pMCAO and again at 6, 12 and 18 h after stroke. In later experiments we investigated the therapeutic time window of protection of nimesulide by delaying its first administration 0.5-4 h after the ischemic insult. RESULTS: Repeated treatments with nimesulide dose-dependently reduced cortical, subcortical and total infarct volumes as well as the neurological deficits and motor impairment resulting from permanent ischemic stroke, but only the administration of the highest dose (12 mg/kg) was able to significantly (P < 0.01) diminish infarct volume. The lower doses failed to significantly reduce infarction but showed a beneficial effect on neurological function. Nimesulide (12 mg/kg) not only reduced infarct volume but also enhanced functional recovery when the first treatment was given up to 2 h after stroke. CONCLUSIONS: These data show that nimesulide protects against permanent focal cerebral ischemia, even with a 2 h post-treatment delay. These findings have important implications for the therapeutic potential of using COX-2 inhibitors in the treatment of stroke.
Notes:
 
DOI   
PMID 
Klaus Lieb, Lisa Biersack, Anne Waschbisch, Sonja Orlikowski, Ravi Shankar Akundi, Eduardo Candelario-Jalil, Michael Hüll, Bernd L Fiebich (2005)  Serotonin via 5-HT7 receptors activates p38 mitogen-activated protein kinase and protein kinase C epsilon resulting in interleukin-6 synthesis in human U373 MG astrocytoma cells.   J Neurochem 93: 3. 549-559 May  
Abstract: Serotonin [5-hydroxytryptamine (5-HT)] is a widely distributed neurotransmitter which is involved in neuroimmunomodulatory processes. Previously, it has been demonstrated that 5-HT may induce interleukin (IL)-6 expression in primary rat hippocampal astrocytes. The present study was undertaken to investigate the molecular pathways underlying this induction of IL-6 synthesis. As a model system, we used the human astrocytoma cell line U373 MG, which synthesizes IL-6 upon stimulation with various inducers. 5-HT dose- and time-dependently induced IL-6 protein synthesis. We identified several 5-HT receptors to be expressed on U373 MG cells, including the 5-HT1D, 5-HT2A, 5-HT3 and 5-HT7 receptors. In this report, we show that the 5-HT-induced IL-6 release is mediated by the 5-HT7 receptor based on several agonist/antagonists that were used. 5-HT-induced IL-6 synthesis is inhibited by the partially selective 5-HT7 receptor antagonist, pimozide, and the selective antagonist SB269970. Furthermore, IL-6 synthesis was induced by the 5-HT7 receptor agonist carboxamidotryptamin. In addition, we found p38 MAPKs and protein kinase C (PKC) epsilon to be involved in 5-HT-induced IL-6 synthesis as specific inhibitors of these enzymes (SB202190 and RO-31-8425, respectively) blocked 5-HT-induced IL-6 synthesis. Furthermore, 5-HT mediated the phosphorylation of both p38 MAPK as well as the PKC epsilon isoform. The p42/44 MAPKs, however, were not involved in 5-HT-induced IL-6 synthesis. This study shows, for the first time, a central role of 5-HT7 receptor linked to p38 MAPK and PKC epsilon for the induction of cytokine synthesis in astrocytic cells.
Notes:
 
DOI   
PMID 
Gregorio Martínez-Sánchez, Saied M Al-Dalain, Silvia Menéndez, Lamberto Re, Attilia Giuliani, Eduardo Candelario-Jalil, Hector Alvarez, José Ignacio Fernández-Montequín, Olga Sonia León (2005)  Therapeutic efficacy of ozone in patients with diabetic foot.   Eur J Pharmacol 523: 1-3. 151-161 Oct  
Abstract: Oxidative stress is suggested to have an important role in the development of complications in diabetes. Because ozone therapy can activate the antioxidant system, influencing the level of glycemia and some markers of endothelial cell damage, the aim of this study was to investigate the therapeutic efficacy of ozone in the treatment of patients with type 2 diabetes and diabetic feet and to compare ozone with antibiotic therapy. A randomized controlled clinical trial was performed with 101 patients divided into two groups: one (n = 52) treated with ozone (local and rectal insufflation of the gas) and the other (n = 49) treated with topical and systemic antibiotics. The efficacy of the treatments was evaluated by comparing the glycemic index, the area and perimeter of the lesions and biochemical markers of oxidative stress and endothelial damage in both groups after 20 days of treatment. Ozone treatment improved glycemic control, prevented oxidative stress, normalized levels of organic peroxides, and activated superoxide dismutase. The pharmacodynamic effect of ozone in the treatment of patients with neuroinfectious diabetic foot can be ascribed to the possibility of it being a superoxide scavenger. Superoxide is considered a link between the four metabolic routes associated with diabetes pathology and its complications. Furthermore, the healing of the lesions improved, resulting in fewer amputations than in control group. There were no side effects. These results show that medical ozone treatment could be an alternative therapy in the treatment of diabetes and its complications.
Notes:
 
DOI   
PMID 
Laureano de la Vega, Eduardo Muñoz, Marco A Calzado, Klaus Lieb, Eduardo Candelario-Jalil, Harald Gschaidmeir, Lothar Färber, Wolfgang Mueller, Thomas Stratz, Bernd L Fiebich (2005)  The 5-HT3 receptor antagonist tropisetron inhibits T cell activation by targeting the calcineurin pathway.   Biochem Pharmacol 70: 3. 369-380 Aug  
Abstract: Tropisetron, an antagonist of serotonin type 3 receptor, has been investigated in chronic inflammatory joint process. Since T cells play a key role in the onset of several inflammatory diseases, we have evaluated the immunosuppressive activity of tropisetron in human T cells, discovering that this compound is a potent inhibitor of early and late events in TCR-mediated T cell activation. Moreover, we found that tropisetron specifically inhibited both IL-2 gene transcription and IL-2 synthesis in stimulated T cells. To further characterize the inhibitory mechanisms of tropisetron at the transcriptional level, we examined the DNA binding and transcriptional activities of NF-(kappa)B, NFAT and AP-1 transcription factors in Jurkat T cells. We found that tropisetron inhibited both the binding to DNA and the transcriptional activity of NFAT and AP-1. We also observed that tropisetron is a potent inhibitor of PMA plus ionomycin-induced NF-(kappa)B activation but in contrast TNF(alpha)-mediated NF-(kappa)B activation was not affected by this antagonist. Finally, overexpression of a constitutively active form of calcineurin indicated that this phosphatase may represent one of the main targets for the inhibitory activity of tropisetron. These findings provide new mechanistic insights into the anti-inflammatory activities of tropisetron, which are probably independent of serotonin receptor signalling and highlight their potential to design novel therapeutic strategies to manage inflammatory diseases.
Notes:
 
PMID 
Eduardo Candelario-Jalil, Helen Slawik, Ingrid Ridelis, Anne Waschbisch, Ravi Shankar Akundi, Michael Hüll, Bernd L Fiebich (2005)  Regional distribution of the prostaglandin E2 receptor EP1 in the rat brain: accumulation in Purkinje cells of the cerebellum.   J Mol Neurosci 27: 3. 303-310  
Abstract: Prostaglandin E2 (PGE2), is a major prostanoid produced by the activity of cyclooxygenases (COX) in response to various physiological and pathological stimuli. PGE2 exerts its effects by activating four specific E-type prostanoid receptors (EP1, EP2, EP3, and EP4). In the present study, we analyzed the expression of the PGE2 receptor EP1 (mRNA and protein) in different regions of the adult rat brain (hippocampus, hypothalamus, striatum, prefrontal cerebral cortex, parietal cortex, brain stem, and cerebellum) using reverse transcription- polymerase chain reaction, Western blotting, and immunohistochemical methods. On a regional basis, levels of EP1 mRNA were the highest in parietal cortex and cerebellum. At the protein level, we found very strong expression of EP1 in cerebellum, as revealed by Western blotting experiments. Furthermore, the present study provides for the first time evidence that the EP1 receptor is highly expressed in the cerebellum, where the Purkinje cells displayed very high immunolabeling of their perikaryon and dendrites, as observed in the immunohistochemical analysis. Results from the present study indicate that the EP1 prostanoid receptor is expressed in specific neuronal populations, which possibly determine the region-specific response to PGE2.
Notes:
2004
 
PMID 
B L Fiebich, R S Akundi, M Seidel, V Geyer, U Haus, W Müller, T Stratz, E Candelario-Jalil (2004)  Expression of 5-HT3A receptors in cells of the immune system.   Scand J Rheumatol Suppl 119. 9-11  
Abstract: There is evidence from both human and animal research that 5-hydroxytryptamine3 (5-HT3) receptor antagonists, particularly tropisetron, exert analgesic and antiinflammatory effects. However, the underlying mechanisms of these effects including the expression of 5-HT3 receptors in cells of the immune system have not yet been investigated in detail. Therefore, we investigated the expression of the 5-HT3A receptor in primary human monocytes, chondrocytes, T-cells, dendritic cells, and synovial tissue. We found that 5-HT3A receptors are expressed in monocytes, chondrocytes, T-cells, and synovial tissue but not in dendritic cells. Our data show that 5-HT3A receptors are widely expressed in cells of the immune system and that they might play an important role in inflammatory events and in the observed antiphlogistic effects of 5-HT3 receptor antagonists.
Notes:
 
DOI   
PMID 
Eduardo Candelario-Jalil, Armando González-Falcón, Michel García-Cabrera, Olga Sonia León, Bernd L Fiebich (2004)  Wide therapeutic time window for nimesulide neuroprotection in a model of transient focal cerebral ischemia in the rat.   Brain Res 1007: 1-2. 98-108 May  
Abstract: Results from several studies indicate that cyclooxygenase-2 (COX-2) is involved in ischemic brain injury. The purpose of this study was to evaluate the neuroprotective effects of the selective COX-2 inhibitor nimesulide on cerebral infarction and neurological deficits in a standardized model of transient focal cerebral ischemia in rats. Three doses of nimesulide (3, 6 and 12 mg/kg; i.p.) or vehicle were administered immediately after stroke and additional doses were given at 6, 12, 24, 36 and 48 h after ischemia. In other set of experiments, the effect of nimesulide was studied in a situation in which its first administration was delayed for 3-24 h after ischemia. Total, cortical and subcortical infarct volumes and functional outcome (assessed by neurological deficit score and rotarod performance) were determined 3 days after ischemia. The effect of nimesulide on prostaglandin E(2) (PGE(2)) levels in the injured brain was also investigated. Nimesulide dose-dependently reduced infarct volume and improved functional recovery when compared to vehicle. Of interest is the finding that neuroprotection conferred by nimesulide (reduction of infarct size and neurological deficits and improvement of rotarod performance) was also observed when treatment was delayed until 24 h after ischemia. Further, administration of nimesulide in a delayed treatment paradigm completely abolished PGE(2) accumulation in the postischemic brain, suggesting that COX-2 inhibition is a promising therapeutic strategy for cerebral ischemia to target the late-occurring inflammatory events which amplify initial damage.
Notes:
 
DOI   
PMID 
H H Ajamieh, S Menéndez, G Martínez-Sánchez, E Candelario-Jalil, L Re, A Giuliani, Olga Sonia León Fernández (2004)  Effects of ozone oxidative preconditioning on nitric oxide generation and cellular redox balance in a rat model of hepatic ischaemia-reperfusion.   Liver Int 24: 1. 55-62 Feb  
Abstract: BACKGROUND: Many studies indicate that oxygen free-radical formation after reoxygenation of liver may initiate the cascade of hepatocellular injury. It has been demonstrated that controlled ozone administration may promote an oxidative preconditioning or adaptation to oxidative stress, preventing the damage induced by reactive oxygen species and protecting against liver ischaemia-reperfusion (I/R) injury. AIMS: In the present study, the effects of ozone oxidative preconditioning (OzoneOP) on nitric oxide (NO) generation and the cellular redox balance have been studied. Methods: Six groups of rats were classified as follows: (1). sham-operated; (2). sham-operated+l-NAME (N(omega)-nitro-l-arginine methyl ester); (3). I/R (ischaemia 90 min-reperfusion 90 min); (4). OzoneOP+I/R; (5). OzoneOP+l-NAME+I/R; and (6). l-NAME+I/R. The following parameters were measured: plasma transaminases (aspartate aminotransferase, alanine aminotransferase) as an index of hepatocellular injury; in homogenates of hepatic tissue: nitrate/nitrite as an index of NO production; superoxide dismutase (SOD), catalase (CAT) and glutathione levels as markers of endogenous antioxidant system; and finally malondialdehyde+4-hydroxyalkenals (MDA+4-HDA) and total hydroperoxides (TH) as indicators of oxidative stress. Results: A correspondence between liver damage and the increase of NO, CAT, TH, glutathione and MDA+4-HDA concentrations were observed just as a decrease of SOD activity. OzoneOP prevented and attenuated hepatic damage in I/R and OzoneOP+l-NAME+I/R, respectively, in close relation with the above-mentioned parameters. CONCLUSIONS: These results show that OzoneOP protected against liver I/R injury through mechanisms that promote a regulation of endogenous NO concentrations and maintenance of cellular redox balance. Ozone treatment may have important clinical implications, particularly in view of the increasing hepatic transplantation programs.
Notes:
 
PMID 
B L Fiebich, R S Akundi, K Lieb, E Candelario-Jalil, D Gmeiner, U Haus, W Müller, T Stratz, E Muñoz (2004)  Antiinflammatory effects of 5-HT3 receptor antagonists in lipopolysaccharide-stimulated primary human monocytes.   Scand J Rheumatol Suppl 119. 28-32  
Abstract: There is evidence from both human and animal research that 5-hydroxytryptamine (5-HT)3 receptor antagonists, particularly tropisetron, exert analgesic and antiinflammatory effects. However, the underlying mechanisms of these effects have not yet been investigated in detail. Therefore, the antiinflammatory effects of tropisetron and ondansetron were investigated in human monocytes. In human monocytes, both lipopolysaccharide (LPS)-stimulated tumour necrosis factor (TNF)-alpha and interleukin (IL)-1beta secretion were dose-dependently inhibited by tropisetron starting at a concentration of 5 microg/mL and reaching maximal levels at 25 microg/mL (IC50: 32 microg/mL and 12 microg/mL, respectively). LPS-induced IL-6 and PGE2 release was only slightly inhibited at high doses, whereas LPS-induced release of IL-8 and matrix metalloprotease (MMP)-9 was not affected. In conclusion, our data show that the binding of tropisetron to 5-HT3 receptors results in antiinflammatory effects through inhibition of TNF-alpha/IL-1beta, which might explain the antiphlogistic effects of 5-HT3 antagonists.
Notes:
2003
 
PMID 
Eduardo Candelario-Jalil, Armando González-Falcón, Michel García-Cabrera, Dalia Alvarez, Said Al-Dalain, Gregorio Martínez, Olga Sonia León, Joe E Springer (2003)  Assessment of the relative contribution of COX-1 and COX-2 isoforms to ischemia-induced oxidative damage and neurodegeneration following transient global cerebral ischemia.   J Neurochem 86: 3. 545-555 Aug  
Abstract: We investigated the relative contribution of COX-1 and/or COX-2 to oxidative damage, prostaglandin E2 (PGE2) production and hippocampal CA1 neuronal loss in a model of 5 min transient global cerebral ischemia in gerbils. Our results revealed a biphasic and significant increase in PGE2 levels after 2 and 24-48 h of reperfusion. The late increase in PGE2 levels (24 h) was more potently reduced by the highly selective COX-2 inhibitor rofecoxib (20 mg/kg) relative to the COX-1 inhibitor valeryl salicylate (20 mg/kg). The delayed rise in COX catalytic activity preceded the onset of histopathological changes in the CA1 subfield of the hippocampus. Post-ischemia treatment with rofecoxib (starting 6 h after restoration of blood flow) significantly reduced measures of oxidative damage (glutathione depletion and lipid peroxidation) seen at 48 h after the initial ischemic episode, indicating that the late increase in COX-2 activity is involved in the delayed occurrence of oxidative damage in the hippocampus after global ischemia. Interestingly, either selective inhibition of COX-2 with rofecoxib or inhibition of COX-1 with valeryl salicylate significantly increased the number of healthy neurons in the hippocampal CA1 sector even when the treatment began 6 h after ischemia. These results provide the first evidence that both COX isoforms are involved in the progression of neuronal damage following global cerebral ischemia, and have important implications for the potential therapeutic use of COX inhibitors in cerebral ischemia.
Notes:
 
DOI   
PMID 
Eduardo Candelario-Jalil, Olga Sonia León (2003)  Effects of nimesulide on kainate-induced in vitro oxidative damage in rat brain homogenates.   BMC Pharmacol 3: Jun  
Abstract: BACKGROUND: The cyclooxygenase-2 inhibitor nimesulide is able to reduce kainate-induced oxidative stress in vivo. Here we investigate if this effect is mediated by the direct antioxidant properties of nimesulide using a well-characterized in vitro model of kainate toxicity. RESULTS: Exposure of rat brain homogenates to kainate (12 mM) caused a significant (p < 0.01) increase in the concentrations of malondialdehyde and 4-hydroxy-alkenals and a significant (p < 0.01) decrease in sulfhydryl levels. High concentrations of nimesulide (0.6-1.6 mM) reduced the extent of lipid peroxidation and the decline in both total and non-protein sulfhydryl levels induced by kainate in a concentration-dependent manner. CONCLUSIONS: Our results suggest that the neuroprotective effects of nimesulide against kainate-induced oxidative stress in vivo are not mediated through its direct free radical scavenging ability because the concentrations at which nimesulide is able to reduce in vitro kainate excitotoxicity are excessively higher than those attained in plasma after therapeutic doses.
Notes:
 
PMID 
Eduardo Candelario-Jalil, Dalia Alvarez, Nelson Merino, Olga Sonia León (2003)  Delayed treatment with nimesulide reduces measures of oxidative stress following global ischemic brain injury in gerbils.   Neurosci Res 47: 2. 245-253 Oct  
Abstract: Metabolism of arachidonic acid by cyclooxygenase is one of the primary sources of reactive oxygen species in the ischemic brain. Neuronal overexpression of cyclooxygenase-2 has recently been shown to contribute to neurodegeneration following ischemic injury. In the present study, we examined the possibility that the neuroprotective effects of the cyclooxygenase-2 inhibitor nimesulide would depend upon reduction of oxidative stress following cerebral ischemia. Gerbils were subjected to 5 min of transient global cerebral ischemia followed by 48 h of reperfusion and markers of oxidative stress were measured in hippocampus of gerbils receiving vehicle or nimesulide treatment at three different clinically relevant doses (3, 6 or 12 mg/kg). Compared with vehicle, nimesulide significantly (P<0.05) reduced hippocampal glutathione depletion and lipid peroxidation, as assessed by the levels of malondialdehyde (MDA), 4-hydroxy-alkenals (4-HDA) and lipid hydroperoxides levels, even when the treatment was delayed until 6 h after ischemia. Biochemical evidences of nimesulide neuroprotection were supported by histofluorescence findings using the novel marker of neuronal degeneration Fluoro-Jade B. Few Fluoro-Jade B positive cells were seen in CA1 region of hippocampus in ischemic animals treated with nimesulide compared with vehicle. These results suggest that nimesulide may protect neurons by attenuating oxidative stress and reperfusion injury following the ischemic insult with a wide therapeutic window of protection.
Notes:
 
PMID 
Armando González-Falcón, Eduardo Candelario-Jalil, Michel García-Cabrera, Olga Sonia León (2003)  Effects of pyruvate administration on infarct volume and neurological deficits following permanent focal cerebral ischemia in rats.   Brain Res 990: 1-2. 1-7 Nov  
Abstract: Recent experimental evidences indicate that pyruvate, the final metabolite of glycolysis, has a remarkable protective effect against different types of brain injury. The purpose of this study was to assess the neuroprotective effect and the neurological outcome after pyruvate administration in a model of ischemic stroke induced by permanent middle cerebral artery occlusion (pMCAO) in rats. Three doses of pyruvate (250, 500 and 1000 mg/kg, i.p.) or vehicle were administered intraperitoneally 30 min after pMCAO. In other set of experiments, pyruvate was given either before, immediately after ischemia or in a long-term administration paradigm. Functional outcome, mortality and infarct volume were determined 24 h after stroke. Even when the lowest doses of pyruvate reduced mortality and neurological deficits, no concomitant reduction in infarct volume was observed. The highest dose of pyruvate increased cortical infarction by 27% when administered 30 min after pMCAO. In addition, when pyruvate was given before pMCAO, a significant increase in neurological deficits was noticed. Surprisingly, on the contrary of what was found in the case of transient global ischemia, present findings do not support a great neuroprotective role for pyruvate in permanent focal cerebral ischemia, suggesting two distinct mechanisms involved in the effects of this glycolytic metabolite in the ischemic brain.
Notes:
2002
 
PMID 
Eduardo Candelario-Jalil, Dalia Alvarez, Juana M Castañeda, Said M Al-Dalain, Gregorio Martínez-Sánchez, Nelson Merino, Olga Sonia León (2002)  The highly selective cyclooxygenase-2 inhibitor DFU is neuroprotective when given several hours after transient cerebral ischemia in gerbils.   Brain Res 927: 2. 212-215 Feb  
Abstract: Several studies suggest that cyclooxygenase-2 contributes to the delayed progression of ischemic brain damage. In this study we examined whether the highly selective cyclooxygenase-2 inhibitor DFU reduces neuronal damage when administered several hours after 5 min of transient forebrain ischemia in gerbils. The extent of ischemic injury was assessed behaviorally by measuring the increases in locomotor activity and by histopathological evaluation of the extent of CA1 hippocampal pyramidal cell injury 7 days after ischemia. DFU treatment (10 mg/kg, p.o.) significantly reduced hippocampal neuronal damage even if the treatment is delayed until 12 h after ischemia. These results suggest that selective cyclooxygenase-2 inhibitors may be a valuable therapeutic strategy for ischemic brain injury.
Notes:
 
DOI   
PMID 
Hussam Ajamieh, Nelson Merino, Eduardo Candelario-Jalil, Silvia Menéndez, Gregorio Martinez-Sanchez, Lamberto Re, Attilia Giuliani, Olga Sonia Leon (2002)  Similar protective effect of ischaemic and ozone oxidative preconditionings in liver ischaemia/reperfusion injury.   Pharmacol Res 45: 4. 333-339 Apr  
Abstract: Many studies indicate that oxygen free-radical formation after reoxygenation of liver may initiate the cascade of hepatocellular injury. It has been demonstrated that controlled ozone administration may promote an oxidative preconditioning or adaptation to oxidative stress, preventing the damage induced by reactive oxygen species (ROS) and protecting against liver ischaemia-reperfusion (I/R) injury. On the basis of those results we postulated that ozone treatment in our experimental conditions has biochemical parameters similar to the ischaemic preconditioning (IscheP) mechanism. Four groups of rats were classified as follows: (1) sham-operated animals subjected to anaesthesia and laparotomy, plus surgical manipulation; (2) I/R animals were subjected to 90 min of right-lobe hepatic ischaemia, followed by 90 min of reperfusion; (3) IscheP, previous to the I/R period (as in group 2): animals were subjected to 10 min of ischaemia and 10 min of reperfusion; (4) ozone oxidative preconditioning (OzoneOP), previous to the I/R period (as in group 2): animals were treated with ozone by rectal insufflation 1 mg kg (-1). The rats received 15 ozone treatments, one per day, of 5-5.5 ml at the ozone concentration of 50 microg ml (-1). The following parameters were measured: serum transaminases (AST, ALT) and 5'-nucleotidase (5 '-NT), with morphological determinations, as indicators or hepatocellular injury; total sulfhydryl groups, calcium levels and calpain activity as mediators which take part in xanthine deshydrogenase (XDH) conversion to xanthine oxidase (XO) (reversible and irreversible forms, respectively); XO activities and malondialdehyde + 4-hydroyalkenals as indicators of increased oxidative stress. AST, ALT levels were attenuated in the IscheP (130 +/- 11.4 and 75 +/- 5.7 U l (-1)) with regard to the I/R group (200 +/- 22 and 117 +/- 21.7 U l (-1)) while the OzoneOP maintained both of the enzyme activities ( 89.5 +/- 12.6 and 43.7 +/- 10 U l (-1)) without statistical differences (P< 0.05) in comparison with the sham-operated ( 63.95 +/- 11 and 19.48 +/- 3.2 U l (-1)). Protective effects of both the preconditioning settings on the preservation of total sylfhydryl groups (IscheP: 6.28 +/- 0.07, OzoneOP: 6.34 +/- 0.07 micromol mg prot (-1)), calcium concentrations (IscheP: 0.18 +/- 0.09, OzoneOP: 0.20 +/- 0.06 micromol mg prot (-1)), and calpain activity (IscheP: 1.04 +/- 0.58, OzoneOP: 1.41 +/- 0.79 U mg prot (-1)) were observed. Both of the preconditionings attenuated the increase of total XO associated to I/R injury. Generation of malondialdehyde + 4 hydroxyalkenals was prevented by IscheP and OzoneOP without statistical differences between the two protective procedures. These results provide evidence that both of the preconditioning settings share similar biochemical mechanisms of protection in the parameters which were measured. Although there were no differences from a biochemical point of view between Ischaemic and OzoneOPs, the histological results showed a more effective protection of OzoneOP than IscheP in our experimental conditions.
Notes:
 
PMID 
Eduardo Candelario-Jalil, Dalia Alvarez, Armando González-Falcón, Michel García-Cabrera, Gregorio Martínez-Sánchez, Nelson Merino, Attilia Giuliani, Olga Sonia León (2002)  Neuroprotective efficacy of nimesulide against hippocampal neuronal damage following transient forebrain ischemia.   Eur J Pharmacol 453: 2-3. 189-195 Oct  
Abstract: Cyclooxygenase-2 is involved in the inflammatory component of the ischemic cascade, playing an important role in the delayed progression of the brain damage. The present study evaluated the pharmacological effects of the selective cyclooxygenase-2 inhibitor nimesulide on delayed neuronal death of hippocampal CA1 neurons following transient global cerebral ischemia in gerbils. Administration of therapeutically relevant doses of nimesulide (3, 6 and 12 mg/kg; i.p.) 30 min before ischemia and at 6, 12, 24, 48 and 72 h after ischemia significantly (P<0.01) reduced hippocampal neuronal damage. Treatment with a single dose of nimesulide given 30 min before ischemia also resulted in a significant increase in the number of healthy neurons in the hippocampal CA1 sector 7 days after ischemia. Of interest is the finding that nimesulide rescued CA1 pyramidal neurons from ischemic death even when treatment was delayed until 24 h after ischemia (34+/-9% protection). Neuroprotective effect of nimesulide is still evident 30 days after the ischemic episode, providing the first experimental evidence that cyclooxygenase-2 inhibitors confer a long-lasting neuroprotection. Oral administration of nimesulide was also able to significantly reduce brain damage, suggesting that protective effects are independent of the route of administration. The present study confirms the ability of cyclooxygenase-2 inhibitors to reduce brain damage induced by cerebral ischemia and indicates that nimesulide can provide protection when administered for up to 24 h post-ischemia.
Notes:
2001
 
PMID 
E Candelario-Jalil, N H Mhadu, S M Al-Dalain, G Martínez, O S León (2001)  Time course of oxidative damage in different brain regions following transient cerebral ischemia in gerbils.   Neurosci Res 41: 3. 233-241 Nov  
Abstract: The time course of oxidative damage in different brain regions was investigated in the gerbil model of transient cerebral ischemia. Animals were subjected to both common carotid arteries occlusion for 5 min. After the end of ischemia and at different reperfusion times (2, 6, 12, 24, 48, 72, 96 h and 7 days), markers of lipid peroxidation, reduced and oxidized glutathione levels, glutathione peroxidase, glutathione reductase, manganese-dependent superoxide dismutase (MnSOD) and copper/zinc containing SOD (Cu/ZnSOD) activities were measured in hippocampus, cortex and striatum. Oxidative damage in hippocampus was maximal at late stages after ischemia (48-96 h) coincident with a significant impairment in glutathione homeostasis. MnSOD increased in hippocampus at 24, 48 and 72 h after ischemia, coincident with the marked reduction in the activity of glutathione-related enzymes. The late disturbance in oxidant-antioxidant balance corresponds with the time course of delayed neuronal loss in the hippocampal CA1 sector. Cerebral cortex showed early changes in oxidative damage with no significant impairment in antioxidant capacity. Striatal lipid peroxidation significantly increased as early as 2 h after ischemia and persisted until 48 h with respect to the sham-operated group. These results contribute significant information on the timing and factors that influence free radical formation following ischemic brain injury, an essential step in determining effective antioxidant intervention.
Notes:
 
PMID 
E Candelario-Jalil, S Mohammed-Al-Dalain, O S Fernández, S Menéndez, G Pérez-Davison, N Merino, S Sam, H H Ajamieh (2001)  Oxidative preconditioning affords protection against carbon tetrachloride-induced glycogen depletion and oxidative stress in rats.   J Appl Toxicol 21: 4. 297-301 Jul/Aug  
Abstract: The rectal insufflation of a judicious dose of ozone, selected from that used in clinical practice, is able to promote oxidative preconditioning or oxidative stress tolerance preventing the hepatocellular damage mediated by free radicals. In order to evaluate the effects of ozone oxidative preconditioning on carbon tetrachloride-mediated hepatotoxicity, the following experimental protocol was designed: group 1 (negative control, sunflower oil i.p.); group 2 (CCl(4) in sunflower oil, 1 ml kg(-1) i.p.); group 3 (15 ozone-oxygen pretreatments at a dose of 1 mg kg(-1) via rectal insufflation + CCl(4) as in group 2); group 4 (ozone control group, 15 ozone-oxygen pretreatments + sunflower oil i.p.). Ozone pretreatment prevented glycogen depletion (as demonstrated by biochemical and histopathological findings) and avoided lactate overproduction associated with the hepatotoxic effects of CCl(4). The administration of CCl(4) increased lipid peroxidation (as measured by thiobarbituric acid-reactive substances) and uric acid levels and inhibited superoxide dismutase activity. All these deleterious effects induced by CCl(4) were prevented by ozone pretreatment. The administration of ozone without CCl(4) (ozone control group) did not produce any changes in the evaluated parameters. Our results showed that ozone treatment, in our experimental conditions, was able to prevent anaerobic glycolysis and oxidative stress induced by CCl(4).
Notes:
 
DOI   
PMID 
S M Al-Dalain, G Martínez, E Candelario-Jalil, S Menéndez, L Re, A Giuliani, O S León (2001)  Ozone treatment reduces markers of oxidative and endothelial damage in an experimental diabetes model in rats.   Pharmacol Res 44: 5. 391-396 Nov  
Abstract: Ozone has been used as a therapeutical agent and beneficial effects have been observed. However so far only a few biochemical and pharmacodynamic mechanisms have been elucidated. We demonstrate that controlled ozone administration may promote an oxidative preconditioning or adaptation to oxidative stress, preventing the damage induced by reactive oxygen species (ROS). Taking into account that diabetes is a disorder associated with oxidative stress, we postulate that ozone treatment in our experimental conditions might protect antioxidant systems and maintain, at a physiological level, other markers of endothelial cell damage associated with diabetic complications. Five groups of rats were classified as follows: (1) control group treated only with physiological saline solution; (2) positive control group using streptozotocin (STZ) as a diabetes inductor; (3) ozone group, receiving 10 treatments (1.1 mg kg(-1)), one per day after STZ-induced diabetes; (4) oxygen group (26 mg kg(-1)), one per day, as in group 3 but using oxygen only; (5) control ozone group, as group 3, but without STZ. The ozone treatment improved glycemic control and prevented oxidative stress, the increase of aldose reductase, fructolysine content and advanced oxidation protein products. Nitrite and nitrate levels were maintained without changes with regard to non-diabetic control. The results of this study show that repeated administration of ozone in non-toxic doses might play a role in the control of diabetes and its complications.
Notes:
 
PMID 
E Candelario-Jalil, S M Al-Dalain, R Castillo, G Martínez, O S Fernández (2001)  Selective vulnerability to kainate-induced oxidative damage in different rat brain regions.   J Appl Toxicol 21: 5. 403-407 Sep/Oct  
Abstract: Some markers of oxidative injury were measured in different rat brain areas (hippocampus, cerebral cortex, striatum, hypothalamus, amygdala/piriform cortex and cerebellum) after the systemic administration of an excitotoxic dose of kainic acid (KA, 9 mg kg(-1) i.p.) at two different sampling times (24 and 48 h). Kainic acid was able to lower markedly (P < 0.05) the glutathione (GSH) levels in hippocampus, cerebellum and amygdala/piriform cortex (maximal reduction at 24 h). In a similar way, lipid peroxidation, as assessed by malonaldehyde and 4-hydroxyalkenal levels, significantly increased (P < 0.05) in hippocampus, cerebellum and amygdala/piriform cortex mainly at 24 h after KA. In addition, hippocampal superoxide dismutase (SOD) activity decreased significantly (P < 0.05) with respect to basal levels by 24 h after KA application. On the other hand, brain areas such as hypothalamus, striatum and cerebral cortex seem to be less susceptible to KA excitotoxicity. According to these findings, the pattern of oxidative injury induced by systemically administered KA seems to be highly region-specific. Further, our results have shown that a lower antioxidant status (GSH and SOD) seems not to play an important role in the selective vulnerability of certain brain regions because it correlates poorly with increases in markers of oxidative damage.
Notes:
 
PMID 
G Martínez Sánchez, E Candelario-Jalil, A Giuliani, O S León, S Sam, R Delgado, A J Núñez Sellés (2001)  "Mangifera indica L. extract (QF808) reduces ischaemia-induced neuronal loss and oxidative damage in the gerbil brain".   Free Radic Res 35: 5. 465-473 Nov  
Abstract: The effect of oral administration of Mangifera indica L. extract (QF808) on ischemia-reperfusion-induced neuronal death in the gerbil hippocampal CA1 sector was examined. Oral administration of QF808 for 7 days dose-dependently protected against neuronal cell death following transient ischaemia and reperfusion as assessed by histopathology. In addition, locomotor activity assessment prior to ischaemia and 7 days after correlated well with the histological results. To evaluate redox alterations by reactive oxygen species, total sulfhydryl, non-protein sulfhydryl groups (NPSH), malondialdehyde + 4-hydroxyalkenals and total nitrogen oxide levels were assayed in hippocampus and cortex homogenates. QF808 treatment attenuated NPSH loss, nitrogen oxide levels and lipid peroxidation in the hippocampus. These results suggest that orally administered QF808 is absorbed across the blood-brain barrier and attenuates neuronal death of the hippocampal CA1 area after ischaemia-reperfusion. These protective effects are most likely due to the antioxidant activity of QF808.
Notes:
2000
 
PMID 
E Candelario-Jalil, H H Ajamieh, S Sam, G Martínez, O S León Fernández (2000)  Nimesulide limits kainate-induced oxidative damage in the rat hippocampus.   Eur J Pharmacol 390: 3. 295-298 Mar  
Abstract: Kainate induces a marked expression of cyclooxygenase-2 after its systemic administration. Because cyclooxygenase-2 activity is associated to the production of reactive oxygen species, we investigated the effects of nimesulide, a selective cyclooxygenase-2 inhibitor, on kainate-induced in vivo oxidative damage in the rat hippocampus. A clinically relevant dose of nimesulide (6 mg/kg, i.p. ) was administered three times following kainate application (9 mg/kg, i.p.). After 24 h of kainate administration, the drastic decrease in hippocampal glutathione content and the significant increase in lipid peroxidation were attenuated in nimesulide-treated rats, suggesting that the induction of cyclooxygenase-2 is involved in kainate-mediated free radicals formation.
Notes:
Powered by publicationslist.org.