hosted by
publicationslist.org
    
Christoph Harms

christoph.harms@charite.de

Journal articles

2008
 
DOI   
PMID 
Jan Klohs, Michael Gräfe, Kristof Graf, Jens Steinbrink, Thore Dietrich, Dietger Stibenz, Peyman Bahmani, Golo Kronenberg, Christoph Harms, Matthias Endres, Ute Lindauer, Klaus Greger, Ernst H K Stelzer, Ulrich Dirnagl, Andreas Wunder (2008)  In vivo imaging of the inflammatory receptor CD40 after cerebral ischemia using a fluorescent antibody.   Stroke 39: 10. 2845-2852 Oct  
Abstract: BACKGROUND AND PURPOSE: Brain inflammation is a hallmark of stroke, where it has been implicated in tissue damage as well as in repair. Imaging technologies that specifically visualize these processes are highly desirable. In this study, we explored whether the inflammatory receptor CD40 can be noninvasively and specifically visualized in mice after cerebral ischemia using a fluorescent monoclonal antibody, which we labeled with the near-infrared fluorescence dye Cy5.5 (Cy5.5-CD40MAb). METHODS: Wild-type and CD40-deficient mice were subjected to transient middle cerebral artery occlusion. Mice were either intravenously injected with Cy5.5-CD40MAb or control Cy5.5-IgGMAb. Noninvasive and ex vivo near-infrared fluorescence imaging was performed after injection of the compounds. Probe distribution and specificity was further assessed with single-plane illumination microscopy, immunohistochemistry, and confocal microscopy. RESULTS: Significantly higher fluorescence intensities over the stroke-affected hemisphere, compared to the contralateral side, were only detected noninvasively in wild-type mice that received Cy5.5-CD40MAb, but not in CD40-deficient mice injected with Cy5.5-CD40MAb or in wild-type mice that were injected with Cy5.5-IgGMAb. Ex vivo near-infrared fluorescence showed an intense fluorescence within the ischemic territory only in wild-type mice injected with Cy5.5-CD40MAb. In the brains of these mice, single-plane illumination microscopy demonstrated vascular and parenchymal distribution, and confocal microscopy revealed a partial colocalization of parenchymal fluorescence from the injected Cy5.5-CD40MAb with activated microglia and blood-derived cells in the ischemic region. CONCLUSIONS: The study demonstrates that a CD40-targeted fluorescent antibody enables specific noninvasive detection of the inflammatory receptor CD40 after cerebral ischemia using optical techniques.
Notes:
 
DOI   
PMID 
Ferah Yildirim, Karen Gertz, Golo Kronenberg, Christoph Harms, Klaus B Fink, Andreas Meisel, Matthias Endres (2008)  Inhibition of histone deacetylation protects wildtype but not gelsolin-deficient mice from ischemic brain injury.   Exp Neurol 210: 2. 531-542 Apr  
Abstract: Acetylation/deactylation of histones is an important mechanism to regulate gene expression and chromatin remodeling. We have previously demonstrated that the HDAC inhibitor trichostatin A (TSA) protects cortical neurons from oxygen/glucose deprivation in vitro which is mediated--at least in part--via the up regulation of gelsolin expression. Here, we demonstrate that TSA treatment dose-dependently enhances histone acetylation in brains of wildtype mice as evidenced by immunoblots of total brain lysates and immunocytochemical staining. Along with increased histone acetylation dose-dependent up regulation of gelsolin protein was observed. Levels of filamentous actin were largely decreased by TSA pre-treatment in brain of wildtype but not gelsolin-deficient mice. When exposed to 1 h filamentous occlusion of the middle cerebral artery followed by reperfusion TSA pre-treated wildtype mice developed significantly smaller cerebral lesion volumes and tended to have improved neurological deficit scores compared to vehicle-treated mice. These protective effects could not be explained by apparent changes in physiological parameters. In contrast to wildtype mice, TSA pre-treatment did not protect gelsolin-deficient mice against MCAo/reperfusion suggesting that enhanced gelsolin expression is an important mechanism by which TSA protects against ischemic brain injury. Our results suggest that HDAC inhibitors such as TSA are a promising therapeutic strategy for reducing brain injury following cerebral ischemia.
Notes:
 
DOI   
PMID 
Golo Kronenberg, Christoph Harms, Robert W Sobol, Fernando Cardozo-Pelaez, Heinz Linhart, Benjamin Winter, Mustafa Balkaya, Karen Gertz, Shanna B Gay, David Cox, Sarah Eckart, Michael Ahmadi, Georg Juckel, Gerd Kempermann, Rainer Hellweg, Reinhard Sohr, Heide Hörtnagl, Samuel H Wilson, Rudolf Jaenisch, Matthias Endres (2008)  Folate deficiency induces neurodegeneration and brain dysfunction in mice lacking uracil DNA glycosylase.   J Neurosci 28: 28. 7219-7230 Jul  
Abstract: Folate deficiency and resultant increased homocysteine levels have been linked experimentally and epidemiologically with neurodegenerative conditions like stroke and dementia. Moreover, folate deficiency has been implicated in the pathogenesis of psychiatric disorders, most notably depression. We hypothesized that the pathogenic mechanisms include uracil misincorporation and, therefore, analyzed the effects of folate deficiency in mice lacking uracil DNA glycosylase (Ung-/-) versus wild-type controls. Folate depletion increased nuclear mutation rates in Ung-/- embryonic fibroblasts, and conferred death of cultured Ung-/- hippocampal neurons. Feeding animals a folate-deficient diet (FD) for 3 months induced degeneration of CA3 pyramidal neurons in Ung-/- but not Ung+/+ mice along with decreased hippocampal expression of brain-derived neurotrophic factor protein and decreased brain levels of antioxidant glutathione. Furthermore, FD induced cognitive deficits and mood alterations such as anxious and despair-like behaviors that were aggravated in Ung-/- mice. Independent of Ung genotype, FD increased plasma homocysteine levels, altered brain monoamine metabolism, and inhibited adult hippocampal neurogenesis. These results indicate that impaired uracil repair is involved in neurodegeneration and neuropsychiatric dysfunction induced by experimental folate deficiency.
Notes:
 
DOI   
PMID 
Ludger Hauck, Christoph Harms, Junfeng An, Jens Rohne, Karen Gertz, Rainer Dietz, Matthias Endres, Rüdiger von Harsdorf (2008)  Protein kinase CK2 links extracellular growth factor signaling with the control of p27(Kip1) stability in the heart.   Nat Med 14: 3. 315-324 Mar  
Abstract: p27(Kip1) (p27) blocks cell proliferation through the inhibition of cyclin-dependent kinase-2 (Cdk2). Despite its robust expression in the heart, little is known about both the function and regulation of p27 in this and other nonproliferative tissues, in which the expression of its main target, cyclin E-Cdk2, is known to be very low. Here we show that angiotensin II, a major cardiac growth factor, induces the proteasomal degradation of p27 through protein kinase CK2-alpha'-dependent phosphorylation. Conversely, unphosphorylated p27 potently inhibits CK2-alpha'. Thus, the p27-CK2-alpha' interaction is regulated by hypertrophic signaling events and represents a regulatory feedback loop in differentiated cardiomyocytes analogous to, but distinct from, the feedback loop arising from the interaction of p27 with Cdk2 that controls cell proliferation. Our data show that extracellular growth factor signaling regulates p27 stability in postmitotic cells, and that inactivation of p27 by CK2-alpha' is crucial for agonist- and stress-induced cardiac hypertrophic growth.
Notes:
2007
 
DOI   
PMID 
Matthias Endres, Joaquin Piriz, Karen Gertz, Christoph Harms, Andreas Meisel, Golo Kronenberg, Ignacio Torres-Aleman (2007)  Serum insulin-like growth factor I and ischemic brain injury.   Brain Res 1185: 328-335 Dec  
Abstract: Serum insulin-like growth factor I (IGF-I), which is mostly produced by the liver, has recently been shown to have the unexpected ability to modulate normal brain function as well as brain response to injury. Moreover, serum IGF-I levels are modified in many brain diseases, including stroke. However, whether these modifications are related to the disease process remains uncertain. We now examined a potential relationship between serum IGF-I and ischemic brain injury after middle cerebral artery occlusion (MCAo) and reperfusion in mice with either high or low serum IGF-I levels prior to insult. Surprisingly, we found that chronic high serum IGF-I correlates with increased brain infarct size following MCAo, while low levels correlate with reduced lesion size. Immunocytochemistry and immunoblot analyses revealed that levels of phosphorylated (i.e., activated) MAPK, known to be associated with the severity of ischemic brain injury, were increased in IGF-I treated mice. No overall effect of IGF-I treatment on IGF family mRNA expression in the brain was observed. Altogether, these results indicate that serum IGF-I levels negatively correlate with stroke outcome. Therefore, lowering serum IGF-I levels in aging mammals, including humans, may be beneficial against the increased risk of stroke associated to old age.
Notes:
 
DOI   
PMID 
Ludger Hauck, Christoph Harms, Daniela Grothe, Junfeng An, Karen Gertz, Golo Kronenberg, Rainer Dietz, Matthias Endres, Rüdiger von Harsdorf (2007)  Critical role for FoxO3a-dependent regulation of p21CIP1/WAF1 in response to statin signaling in cardiac myocytes.   Circ Res 100: 1. 50-60 Jan  
Abstract: Statins are widely used clinical drugs that exert beneficial growth-suppressive effects in patients with cardiac hypertrophy. We investigated the role of the cell cycle inhibitor p21(CIP1/WAF1) (p21) in statin-dependent inhibition of hypertrophic growth in postmitotic cardiomyocytes. We demonstrate that lovastatin fails to inhibit cardiac hypertrophy to angiotensin II in p21(-/-) mice and that reconstitution of p21 function by TAT.p21 protein transduction can rescue statin action in these otherwise normally developed animals. Lovastatin specifically recruits the forkhead box FoxO3a transcription factor to the p21 promoter, mediating transcriptional transactivation of the p21 gene as analyzed in isolated primary cardiomyocytes. Lovastatin also stimulates protein kinase B/Akt kinase activity, and Akt-dependent phosphorylation forces p21 in the cytoplasm, where it inhibits Rho-kinases contributing to the suppression of cardiomyocyte hypertrophy. Loss of p21 or FoxO3a by RNA interference causes a general inhibition of lovastatin signal transduction. These results suggest that p21 functions as FoxO3a downstream target to mediate an statin-derived anti-hypertrophic response. Taken together, our genetic and biochemical data delineate an essential function of p21 for statin-dependent inhibition of cardiac myocyte hypertrophy.
Notes:
 
DOI   
PMID 
Christoph Harms, Katharina Albrecht, Ulrike Harms, Kerstin Seidel, Ludger Hauck, Tina Baldinger, Denise Hübner, Golo Kronenberg, Junfeng An, Karsten Ruscher, Andreas Meisel, Ulrich Dirnagl, Rüdiger von Harsdorf, Matthias Endres, Heide Hörtnagl (2007)  Phosphatidylinositol 3-Akt-kinase-dependent phosphorylation of p21(Waf1/Cip1) as a novel mechanism of neuroprotection by glucocorticoids.   J Neurosci 27: 17. 4562-4571 Apr  
Abstract: The role of glucocorticoids in the regulation of apoptosis remains incongruous. Here, we demonstrate that corticosterone protects neurons from apoptosis by a mechanism involving the cyclin-dependent kinase inhibitor p21(Waf1/Cip1). In primary cortical neurons, corticosterone leads to a dose- and Akt-kinase-dependent upregulation with enhanced phosphorylation and cytoplasmic appearance of p21(Waf1/Cip1) at Thr 145. Exposure of neurons to the neurotoxin ethylcholine aziridinium (AF64A) results in activation of caspase-3 and a dramatic loss of p21(Waf1/Cip1) preceding apoptosis in neurons. These effects of AF64A are reversed by pretreatment with corticosterone. Corticosterone-mediated upregulation of p21(Waf1/Cip1) and neuroprotection are completely abolished by glucocorticoid and mineralocorticoid receptor antagonists as well as inhibitors of PI3- and Akt-kinase. Both germline and somatically induced p21(Waf1/Cip1) deficiency abrogate the neuroprotection by corticosterone, whereas overexpression of p21(Waf1/Cip1) suffices to protect neurons from apoptosis. We identify p21(Waf1/Cip1) as a novel antiapoptotic factor for postmitotic neurons and implicate p21(Waf1/Cip1) as the molecular target of neuroprotection by high-dose glucocorticoids.
Notes:
2006
 
DOI   
PMID 
Karen Gertz, Josef Priller, Golo Kronenberg, Klaus B Fink, Benjamin Winter, Helmut Schröck, Shengbo Ji, Milan Milosevic, Christoph Harms, Michael Böhm, Ulrich Dirnagl, Ulrich Laufs, Matthias Endres (2006)  Physical activity improves long-term stroke outcome via endothelial nitric oxide synthase-dependent augmentation of neovascularization and cerebral blood flow.   Circ Res 99: 10. 1132-1140 Nov  
Abstract: Physical activity upregulates endothelial nitric oxide synthase (eNOS), improves endothelium function, and protects from vascular disease. Here, we tested whether voluntary running would enhance neovascularization and long-term recovery following mild brain ischemia. Wild-type mice were exposed to 30 minutes of middle-cerebral artery occlusion (MCAo) and reperfusion. Continuous voluntary running on wheels conferred long-term upregulation of eNOS in the vasculature and of endothelial progenitor cells (EPCs) in the spleen and bone marrow (BM). This was associated with higher numbers of circulating EPCs in the blood and enhanced neovascularization. Moreover, engraftment of TIE2/LacZ-positive BM-derived cells was increased in the ischemic brain. Four weeks after the insult, trained animals showed higher numbers of newly generated cells in vascular sites, increased density of perfused microvessels and sustained augmentation of cerebral blood flow within the ischemic striatum. Moreover, running conferred tissue sparing and improved functional outcome at 4 weeks. The protective effects of running on angiogenesis and outcome were completely abolished when animals were treated with a NOS inhibitor or the antiangiogenic compound endostatin after brain ischemia, and in animals lacking eNOS expression. Voluntary physical activity improves long-term stroke outcome by eNOS-dependent mechanisms related to improved angiogenesis and cerebral blood flow.
Notes:
 
DOI   
PMID 
Andreas Meisel, Christoph Harms, Ferah Yildirim, Julian Bösel, Golo Kronenberg, Ulrike Harms, Klaus B Fink, Matthias Endres (2006)  Inhibition of histone deacetylation protects wild-type but not gelsolin-deficient neurons from oxygen/glucose deprivation.   J Neurochem 98: 4. 1019-1031 Aug  
Abstract: Histone acetylation and deacetylation participate in the epigenetic regulation of gene expression. In this paper, we demonstrate that pre-treatment with the histone deacetylation inhibitor trichostatin A (TSA) enhances histone acetylation in primary cortical neurons and protects against oxygen/glucose deprivation, a model for ischaemic cell death in vitro. The actin-binding protein gelsolin was identified as a mediator of neuroprotection by TSA. TSA enhanced histone acetylation of the gelsolin promoter region, and up-regulated gelsolin messenger RNA and protein expression in a dose- and time-dependent manner. Double-label confocal immunocytochemistry visualized the up-regulation of gelsolin and histone acetylation within the same neuron. Together with gelsolin up-regulation, TSA pre-treatment decreased levels of filamentous actin. The neuroprotective effect of TSA was completely abolished in neurons lacking gelsolin gene expression. In conclusion, we demonstrate that the enhancement of gelsolin gene expression correlates with neuroprotection induced by the inhibition of histone deacetylation.
Notes:
2005
 
DOI   
PMID 
Golo Kronenberg, Li-Ping Wang, Michael Synowitz, Karen Gertz, Juri Katchanov, Rainer Glass, Christoph Harms, Gerd Kempermann, Helmut Kettenmann, Matthias Endres (2005)  Nestin-expressing cells divide and adopt a complex electrophysiologic phenotype after transient brain ischemia.   J Cereb Blood Flow Metab 25: 12. 1613-1624 Dec  
Abstract: The intermediate filament nestin is upregulated in response to cerebral ischemia; the significance of this, however, is incompletely understood. Here, we used transgenic mice that express green fluorescent protein (GFP) under control of the nestin promotor to characterize the fate of nestin-expressing cells up to 8 weeks after 30 mins occlusion of the middle cerebral artery (MCAo) and reperfusion. The population of nestin-GFP+ cells increased in the ischemic lesion rim and core within 4 days, did not become TUNEL-positive, and was detectable up to 8 weeks in the lesion scar. Nestin-GFP+ cells proliferated in situ and underwent approximately one round of cell division. They were not recruited in large numbers from the subventricular zone (SVZ) as indicated by absence of colabeling with intracerebroventricularly injected dye DiI in the majority of nestin-GFP+ cells. Nestin-GFP+ cells expressed the chondroitin sulfate proteoglycan NG2 and nestin protein, but typically lacked mature astrocytic markers, that is, glial fibrillary acid protein (GFAP) or S100beta. Vice versa, the majority of GFAP+ cells lacked nestin-expression and surrounded the ischemic lesion by 4 days. Whole-cell patch-clamp recordings in acute brain slices from controls showed that only about half of nestin-GFP+ cells displayed complex membrane properties. In contrast, 4 days after the insult all nestin-GFP+ cells expressed these properties. We hypothesize that the change in physiologic properties induced by the ischemic insult is directed toward a specific function of nestin-expressing cells.
Notes:
 
DOI   
PMID 
Julian Bösel, Florin Gandor, Christoph Harms, Michael Synowitz, Ulrike Harms, Pierre Chryso Djoufack, Dirk Megow, Ulrich Dirnagl, Heide Hörtnagl, Klaus B Fink, Matthias Endres (2005)  Neuroprotective effects of atorvastatin against glutamate-induced excitotoxicity in primary cortical neurones.   J Neurochem 92: 6. 1386-1398 Mar  
Abstract: Statins [3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors] exert cholesterol-independent pleiotropic effects that include anti-thrombotic, anti-inflammatory, and anti-oxidative properties. Here, we examined direct protective effects of atorvastatin on neurones in different cell damage models in vitro. Primary cortical neurones were pre-treated with atorvastatin and then exposed to (i) glutamate, (ii) oxygen-glucose deprivation or (iii) several apoptosis-inducing compounds. Atorvastatin significantly protected from glutamate-induced excitotoxicity as evidenced by propidium iodide staining, nuclear morphology, release of lactate dehydrogenase, and mitochondrial tetrazolium metabolism, but not from oxygen-glucose deprivation or apoptotic cell death. This anti-excitototoxic effect was evident with 2-4 days pre-treatment but not with daily administration or shorter-term pre-treatment. The protective properties occurred independently of 3-hydroxy-3-methylglutaryl-CoA reductase inhibition because co-treatment with mevalonate or other isoprenoids did not reverse or attenuate neuroprotection. Atorvastatin attenuated the glutamate-induced increase of intracellular calcium, which was associated with a modulation of NMDA receptor function. Taken together, atorvastatin exerts specific anti-excitotoxic effects independent of 3-hydroxy-3-methylglutaryl-CoA reductase inhibition, which has potential therapeutic implications.
Notes:
2004
 
DOI   
PMID 
Christoph Harms, Julian Bösel, Marion Lautenschlager, Ulrike Harms, Johann S Braun, Heide Hörtnagl, Ulrich Dirnagl, David J Kwiatkowski, Klaus Fink, Matthias Endres (2004)  Neuronal gelsolin prevents apoptosis by enhancing actin depolymerization.   Mol Cell Neurosci 25: 1. 69-82 Jan  
Abstract: Gelsolin (gsn), an actin-severing protein, protects neurons from excitotoxic cell death via inactivation of membranous Ca(2+) channels. Its role during apoptotic cell death, however, has remained unclear. Using several models of neuronal cell death, we demonstrate that endogenous gelsolin has anti-apoptotic properties that correlate to its dynamic actions on the cytoskeleton. We show that neurons lacking gelsolin (gsn(-/-)) have enhanced apoptosis following exposure to staurosporine, thapsigargin, or the cholinergic toxin ethylcholine aziridinium (AF64A). AF64A-induced loss of mitochondrial membrane potential and activation of caspase-3 was specifically enhanced in gsn(-/-) neurons and could be reversed by pharmacological inhibition of mitochondrial permeability transition. Moreover, increased caspase-3 activation and cell death in AF64A-treated gsn(-/-) neurons were completely reversed by pharmacological depolymerization of actin filaments and further enhanced by their stabilization. In conclusion, actin remodeling by endogenous gelsolin or analogues protects neurons from apoptosis mediated by mitochondria and caspase-3.
Notes:
 
DOI   
PMID 
Matthias Endres, Detlev Biniszkiewicz, Robert W Sobol, Christoph Harms, Michael Ahmadi, Andreas Lipski, Juri Katchanov, Philipp Mergenthaler, Ulrich Dirnagl, Samuel H Wilson, Andreas Meisel, Rudolf Jaenisch (2004)  Increased postischemic brain injury in mice deficient in uracil-DNA glycosylase.   J Clin Invest 113: 12. 1711-1721 Jun  
Abstract: Uracil-DNA glycosylase (UNG) is involved in base excision repair of aberrant uracil residues in nuclear and mitochondrial DNA. Ung knockout mice generated by gene targeting are viable, fertile, and phenotypically normal and have regular mutation rates. However, when exposed to a nitric oxide donor, Ung(-/-) fibroblasts show an increase in the uracil/cytosine ratio in the genome and augmented cell death. After combined oxygen-glucose deprivation, Ung(-/-) primary cortical neurons have increased vulnerability to cell death, which is associated with early mitochondrial dysfunction. In vivo, UNG expression and activity are low in brains of naive WT mice but increase significantly after reversible middle cerebral artery occlusion and reperfusion. Moreover, major increases in infarct size are observed in Ung(-/-) mice compared with littermate control mice. In conclusion, our results provide compelling evidence that UNG is of major importance for tissue repair after brain ischemia.
Notes:
2003
 
PMID 
Krisztian J Kapinya, Ulrike Harms, Christoph Harms, Katharina Blei, Juri Katchanov, Ulrich Dirnagl, Heide Hörtnagl (2003)  Role of NAD(P)H:quinone oxidoreductase in the progression of neuronal cell death in vitro and following cerebral ischaemia in vivo.   J Neurochem 84: 5. 1028-1039 Mar  
Abstract: A direct involvement of the antioxidant enzyme NAD(P)H:quinone oxidoreductase (NQO1) in neuroprotection has not yet been shown. The aim of this study was to examine changes, localization and role of NQO1 after different neuronal injury paradigms. In primary cultures of rat cortex the activity of NQO1 was measured after treatment with ethylcholine aziridinium (AF64A; 40 micro m), inducing mainly apoptotic cell death, or oxygen-glucose deprivation (OGD; 120 min), which combines features of apoptotic and necrotic cell death. After treatment with AF64A a significant NQO1 activation started after 24 h. Sixty minutes after OGD a significant early induction of the enzyme was observed, followed by a second increase 24 h later. Enzyme activity was preferentially localized in glial cells in control and injured cultures, however, expression also occurred in injured neuronal cells. Inhibition of the NQO1 activity by dicoumarol, cibacron blue or chrysin (1-100 nM) protected the cells both after exposure to AF64A or OGD as assessed by the decreased release of lactate dehydrogenase. Comparable results were obtained in vivo using a mouse model of focal cerebral ischaemia. Dicoumarol treatment (30 nmol intracerebroventricular) reduced the infarct volume by 29% (p = 0.005) 48 h after the insult. After chemical induction of NQO1 activity by t-butylhydroquinone in vitro neuronal damage was exaggerated. Our data suggest that the activity of NQO1 is a deteriorating rather than a protective factor in neuronal cell death.
Notes:
2002
 
DOI   
PMID 
Thomas Walther, Laszlo Olah, Christoph Harms, Bjoern Maul, Michael Bader, Heide Hörtnagl, Heinz-Peter Schultheiss, Günter Mies (2002)  Ischemic injury in experimental stroke depends on angiotensin II.   FASEB J 16: 2. 169-176 Feb  
Abstract: Since pharmacological interactions of the renin-angiotensin system appear to alter the neurological outcome of stroke patients significantly, we examined the effect of elevated levels of angiotensin II and the role of its receptor subtype AT1 in brain infarction in transgenic mice after focal cerebral ischemia. Angiotensinogen-overexpressing and angiotensin receptor AT1 knockout mice underwent 1 h or 24 h permanent middle cerebral artery occlusion (MCAO). The current study revealed a much smaller penumbra size, i.e., brain tissue at risk, in angiotensinogen-overexpressing animals compared with their wild-type subgroup after 1 h MCAO, but an enlarged infarct size after 24 h. In contrast, a smaller lesion area of energy failure and a much larger penumbral area were found in AT1 knockout mice compared with wild-type littermates. Lower perfusion thresholds for ATP depletion and protein synthesis inhibition after MCAO in AT1-deficient mice and reduced cell damage in an in vitro model using embryonic neurons of AT1 knockout mice suggest injury mechanisms independent of arterial blood pressure. Our data, therefore, demonstrate a direct correlation between brain angiotensin II and the severity of ischemic injury in experimental stroke.
Notes:
2001
 
PMID 
C Harms, M Lautenschlager, A Bergk, J Katchanov, D Freyer, K Kapinya, U Herwig, D Megow, U Dirnagl, J R Weber, H Hörtnagl (2001)  Differential mechanisms of neuroprotection by 17 beta-estradiol in apoptotic versus necrotic neurodegeneration.   J Neurosci 21: 8. 2600-2609 Apr  
Abstract: The major goal of this study was to compare mechanisms of the neuroprotective potential of 17 beta-estradiol in two models for oxidative stress-independent apoptotic neuronal cell death with that in necrotic neuronal cell death in primary neuronal cultures derived from rat hippocampus, septum, or cortex. Neuronal apoptosis was induced either by staurosporine or ethylcholine aziridinium (AF64A), as models for necrotic cell death glutamate exposure or oxygen-glucose deprivation (OGD) were applied. Long-term (20 hr) pretreatment (0.1 microm 17 beta-estradiol) was neuroprotective in apoptotic neuronal cell death induced by AF64A (40 microm) only in hippocampal and septal neuronal cultures and not in cortical cultures. The neuroprotective effect was blocked by the estrogen antagonists ICI 182,780 and tamoxifen and the phosphatidylinositol 3-kinase (PI3-K) inhibitor LY294002. In glutamate and OGD-induced neuronal damage, long-term pretreatment was not effective. In contrast, short-term (1 hr) pretreatment with 17 beta-estradiol in the dose range of 0.5-1.0 microm significantly reduced the release of lactate dehydrogenase and improved morphology of cortical cultures exposed to glutamate or OGD but was not effective in the AF64A model. Staurosporine-induced apoptosis was not prevented by either long- or short-term pretreatment. The strong expression of the estrogen receptor-alpha and the modulation of Bcl proteins by 17 beta-estradiol in hippocampal and septal but not in cortical cultures indicates that the prevention of apoptotic, but not of necrotic, neuronal cell death by 17 beta-estradiol possibly depends on the induction of Bcl proteins and the density of estrogen receptor-alpha.
Notes:
 
DOI   
PMID 
M Weih, M Schmitt, J Gieche, C Harms, K Ruscher, U Dirnagl, T Grune (2001)  Proteolysis of oxidized proteins after oxygen-glucose deprivation in rat cortical neurons is mediated by the proteasome.   J Cereb Blood Flow Metab 21: 9. 1090-1096 Sep  
Abstract: Oxidative injury contributes to cellular damage during and after cerebral ischemia. However, the downstream catabolic pathways of damaged cellular components in neurons are largely unknown. In the current study, the authors examined the formation of oxidized proteins and their active degradation by the proteasome. In near-pure rat primary cortical neurons, it was found that protein-bound carbonyls as markers for oxidized proteins are increased after oxygen-glucose deprivation (OGD). During and after OGD, degradation of proteins metabolically radiolabeled before OGD increases two-to threefold compared with the normal protein turnover. Proteolysis after reoxygenation was attenuated by the presence of dimethylthiourea, a radical scavenger, and was blocked by lactacystin, a specific proteasome inhibitor. Lactacystin also increased the amount of protein carbonyls formed. In contrast, the activity of the proteasome complex itself after OGD was not different from sham-washed controls. The authors suggest that oxygen-glucose deprivation increases free radicals, which, in turn, oxidize proteins that are recognized and actively degraded by the proteasome complex. This protease itself is relatively resistant against oxidative injury. The authors conclude that the proteasome may be an active part of the cellular defense system against oxidative stress after cerebral ischemia.
Notes:
 
PMID 
J Katchanov, C Harms, K Gertz, L Hauck, C Waeber, L Hirt, J Priller, R von Harsdorf, W Bruck, H Hortnagl, U Dirnagl, P G Bhide, M Endres (2001)  Mild cerebral ischemia induces loss of cyclin-dependent kinase inhibitors and activation of cell cycle machinery before delayed neuronal cell death.   J Neurosci 21: 14. 5045-5053 Jul  
Abstract: After mild ischemic insults, many neurons undergo delayed neuronal death. Aberrant activation of the cell cycle machinery is thought to contribute to apoptosis in various conditions including ischemia. We demonstrate that loss of endogenous cyclin-dependent kinase (Cdk) inhibitor p16(INK4a) is an early and reliable indicator of delayed neuronal death in striatal neurons after mild cerebral ischemia in vivo. Loss of p27(Kip1), another Cdk inhibitor, precedes cell death in neocortical neurons subjected to oxygen-glucose deprivation in vitro. The loss of Cdk inhibitors is followed by upregulation of cyclin D1, activation of Cdk2, and subsequent cytoskeletal disintegration. Most neurons undergo cell death before entering S-phase, albeit a small number ( approximately 1%) do progress to the S-phase before their death. Treatment with Cdk inhibitors significantly reduces cell death in vitro. These results show that alteration of cell cycle regulatory mechanisms is a prelude to delayed neuronal death in focal cerebral ischemia and that pharmacological interventions aimed at neuroprotection may be usefully directed at cell cycle regulatory mechanisms.
Notes:
2000
 
PMID 
M Lautenschlager, M V Onufriev, N V Gulyaeva, C Harms, D Freyer, U Sehmsdorf, K Ruscher, Y V Moiseeva, A Arnswald, I Victorov, U Dirnagl, J R Weber, H Hörtnagl (2000)  Role of nitric oxide in the ethylcholine aziridinium model of delayed apoptotic neurodegeneration in vivo and in vitro.   Neuroscience 97: 2. 383-393  
Abstract: The involvement of nitric oxide in neurodegenerative processes still remains incompletely characterized. Although nitric oxide has been reported to be an important mediator in neuronal degeneration in different models of cell death involving NMDA-receptor activation, increasing evidence for protective mechanisms has been obtained. In this study the role of nitric oxide was investigated in a model of NMDA-independent, delayed apoptotic cell death, induced by the neurotoxin ethylcholine aziridinium ethylcholine aziridinium both in vivo and in vitro. For the in vivo evaluation rats received bilateral intracerebroventricular injections of ethylcholine aziridinium (2nmol/ventricle) or vehicle. In the hippocampus a transient decrease in nitric oxide synthase activity occurred, reaching its lowest levels three days after ethylcholine aziridinium treatment (51.7+/-9.8% of controls). The decrease coincided with the maximal reduction in choline acetyltransferase activity as marker for the extent of cholinergic lesion. The effect of pharmacological inhibition of nitric oxide synthase was tested by application of various nitric oxide synthase inhibitors with different selectivity for the nitric oxide synthase-isoforms. Unspecific nitric oxide synthase inhibition resulted in a significant potentiation of the loss of choline acetyltransferase activity in the hippocampus measured seven days after ethylcholine aziridinium application, whereas the specific inhibition of neuronal or inducible nitric oxide synthase was ineffective. These pharmacological data are suggestive for a neuroprotective role of nitric oxide generated by endothelial nitric oxide synthase. In vitro experiments were performed using serum-free primary neuronal cell cultures from hippocampus, cortex and septum of E15-17 Wistar rat embryos. Ethylcholine aziridinium-application in a range of 5-80microM resulted in delayed apoptotic neurodegeneration with a maximum after three days as confirmed by morphological criteria, life-death assays and DNA laddering. Nitric oxide synthase activity in harvested cells decreased in a dose- and time-dependent manner. Nitric oxide production as determined by measurement of the accumulated metabolite nitrite in the medium was equally low in controls and in ethylcholine aziridinium treated cells (range 0.77-1.86microM nitrite). An expression of inducible nitric oxide synthase messenger RNA could not be detected by semiquantitative RT-PCR 13h after ethylcholine aziridinium application.The present data indicate that in a model of delayed apoptotic neurodegeneration as induced by ethylcholine aziridinium neuronal cell death in vitro and in vivo is independent of the cytotoxic potential of nitric oxide. This is confirmed by a decrease in nitric oxide synthase activity, absence of nitric oxide production and absence of inducible nitric oxide synthase expression. In contrast, evidence for a neuroprotective role of nitric oxide was obtained in vivo as indicated by the exaggeration of the cholinergic lesion after unspecific nitric oxide synthase inhibition by N-nitro-L-arginine methylester.
Notes:
 
PMID 
M Lautenschlager, M Höltje, B von Jagow, R W Veh, C Harms, A Bergk, U Dirnagl, G Ahnert-Hilger, H Hörtnagl (2000)  Serotonin uptake and release mechanisms in developing cultures of rat embryonic raphe neurons: age- and region-specific differences.   Neuroscience 99: 3. 519-527  
Abstract: The development of serotonergic neurons of the rat raphe was followed in primary neuronal cell cultures taken at embryonic days embryonic day 13 and embryonic day 14 from three different raphe sub-groups, topographically defined with respect to their position to the isthmus as rostral (R1), intermediate (R2) and caudal (R3). In neurons cultivated from embryonic day 13 raphe serotonin, immunoreactivity was detected after only two days in vitro in the rostral R1 and the intermediate R2 sub-groups. Within two weeks of cultivation the number of serotonergic neurons as well as the dendritic branching continuously increased in all three sub-groups. In cultures obtained from embryonic day 13 raphe a specific uptake of [3H]serotonin could not be detected during the first days in vitro. Specific uptake as well as regulated serotonin release, however, was clearly discernible in these cultures after nine days in vitro, indicating developmental differentiation of the initially immature serotonergic neurons in culture. In contrast, serotonergic neurons obtained from the three raphe sub-groups at embryonic day 14 took up and released [3H]serotonin, as early as after two days in culture. Basal as well as stimulated serotonin release was diminished when preincubating the cells with tetanus toxin, which cleaves synaptobrevin thereby blocking exocytosis.Our data indicate that the differential development of serotonergic neurons in the various raphe sub-groups in vivo is also sustained in culture. The differences observed when comparing neurons from embryonic days 13 and 14 suggest that a short time-period of about 24h appears to be crucial for the developmental upregulation of serotonin uptake, storage and release.
Notes:
 
PMID 
C Harms, M Lautenschlager, A Bergk, D Freyer, M Weih, U Dirnagl, J R Weber, H Hörtnagl (2000)  Melatonin is protective in necrotic but not in caspase-dependent, free radical-independent apoptotic neuronal cell death in primary neuronal cultures.   FASEB J 14: 12. 1814-1824 Sep  
Abstract: To assess the neuroprotective potential of melatonin in apoptotic neuronal cell death, we investigated the efficacy of melatonin in serum-free primary neuronal cultures of rat cortex by using three different models of caspase-dependent apoptotic, excitotoxin-independent neurodegeneration and compared it to that in necrotic neuronal damage. Neuronal apoptosis was induced by either staurosporine or the neurotoxin ethylcholine aziridinium (AF64A) with a delayed occurrence of apoptotic cell death (within 72 h). The apoptotic component of oxygen-glucose deprivation (OGD) unmasked by glutamate antagonists served as a third model. As a model for necrotic cell death, OGD was applied. Neuronal injury was quantified by LDH release and loss of metabolic activity. Although melatonin (0.5 mM) partly protected cortical neurons from OGD-induced necrosis, as measured by a significant reduction in LDH release, it was not effective in all three models of apoptotic cell death. In contrast, exaggeration of neuronal damage by melatonin was observed in native cultures as well as after induction of apoptosis. The present data suggest that the neuroprotectiveness of melatonin strongly depends on the model of neuronal cell death applied. As demonstrated in three different models of neuronal apoptosis, the progression of the apoptotic type of neuronal cell death cannot be withhold or is even exaggerated by melatonin, in contrast to its beneficial effect in the necrotic type of cell death.
Notes:
 
PMID 
K Prass, F Wiegand, P Schumann, M Ahrens, K Kapinya, C Harms, W Liao, G Trendelenburg, K Gertz, M A Moskowitz, F Knapp, I V Victorov, D Megow, U Dirnagl (2000)  Hyperbaric oxygenation induced tolerance against focal cerebral ischemia in mice is strain dependent.   Brain Res 871: 1. 146-150 Jul  
Abstract: SV129 or C57BL/6 mice were exposed to hyperbaric oxygenation (HBO, 5 days, 1 h every day, 100% O(2) at 3 atm absolute). One day after the 5th HBO session focal cerebral ischemia was induced. In SV129 mice, HBO induced tolerance against permanent focal cerebral ischemia (n=42, mean infarct volume reduction 27%, P=0.001), but not against transient (30 or 60 min) focal cerebral ischemia. In the C57BL/6 strain of mice, HBO did not induce tolerance against focal cerebral ischemia, even when the duration of ischemia or the HBO protocol were modified. For the first time we demonstrate that HBO can induce tolerance to focal cerebral ischemia, but this effect is strain dependent.
Notes:
Powered by publicationslist.org.