hosted by
publicationslist.org
    
Claudina Rodrigues-Pousada

claudina@itqb.unl.pt

Journal articles

2007
D Azevedo, L Nascimento, J Labarre, M B Toledano, C Rodrigues-Pousada (2007)  The S. cerevisiae Yap1 and Yap2 transcription factors share a common cadmium-sensing domain.   FEBS Lett. . 581: 2. 187-195 Jan  
Abstract: Towards elucidating the function of Yap2, which remains unclear, we have taken advantage of the C-terminal homology between Yap1 and Yap2. Swapping domains experiments show that the Yap2 C-terminal domain functionally substitutes for the homologous Yap1 domain in the response to Cd, but not to H2O2. We conclude that specificity determinants of the Cd response are encoded within both Yap1 and Yap2 C-terminus, whereas those required for H2O2 response are only present in the Yap1 C-terminus. Furthermore, our results identify FRM2 as Cd-responsive Yap2 target and indicate a possible role of this protein in regulating a metal stress response.
Notes:
C Pimentel, D Van Der Straeten, E Pires, C Faro, C Rodrigues-Pousada (2007)  Characterization and expression analysis of the aspartic protease gene family of Cynara cardunculus L.   FEBS J 274: 10. 2523-2539 April  
Abstract: Cardosin A and cardosin B are two aspartic proteases mainly found in the pistils of cardoon Cynara cardunculus L., whose flowers are traditionally used in several Mediterranean countries in the manufacture of ewe's cheese. We have been characterizing cardosins at the biochemical, structural and molecular levels. In this study, we show that the cardoon aspartic proteases are encoded by a multigene family. The genes for cardosin A and cardosin B, as well as those for two new cardoon aspartic proteases, designated cardosin C and cardosin D, were characterized, and their expression in C. cardunculus L. was analyzed by RT-PCR. Together with cardosins, a partial clone of the cyprosin B gene was isolated, revealing that cardosin and cyprosin genes coexist in the genome of the same plant. As a first approach to understanding what dictates the flower-specific pattern of cardosin genes, the respective gene 5' regulatory sequences were fused with the reporter beta-glucuronidase and introduced into Arabidopsis thaliana. A subsequent deletion analysis of the promoter region of the cardosin A gene allowed the identification of a region of approximately 500 bp essential for gene expression in transgenic flowers. Additionally, the relevance of the leader intron of the cardosin A and B genes for gene expression was evaluated. Our data showed that the leader intron is essential for cardosin B gene expression in A. thaliana. In silico analysis revealed the presence of potential regulatory motifs that lay within the aforementioned regions and therefore might be important in the regulation of cardosin expression.
Notes:
M Broco, C M Soares, S Oliveira, S G Mayhew, C Rodrigues-Pousada (2007)  Molecular determinants for FMN-binding in Desulfovibrio gigas flavoredoxin.   FEBS Lett. 581: 23. 4397-4402 Aug  
Abstract: Flavoredoxin participates in Desulfovibrio gigas thiosulfate reduction pathway. Its 3-dimensional model was generated allowing the oxidized riboflavin-5'-phosphate (FMN) site to be predicted. Residues likely to be involved in FMN-binding were identified (N29, W35, T56, K92, H131 and F164) and mutated to alanine. Fluorescence titration with apoprotein showed that FMN is strongly bound in the wild-type protein. Comparison of K(d) values for mutants suggests that interactions with the phosphate group of FMN, contribute more to binding than the interactions with the isoalloxazine ring. The redox potential of bound FMN determined for wild-type and mutants revealed shifts to less negative values. These findings were correlated with the protein structure in order to contribute to a better understanding of the structure-function relationships in flavoredoxin
Notes:
2006
P Machado, R Félix, R Rodrigues, S Oliveira, C Rodrigues-Pousada (2006)  Characterization and expression analysis of the cytochrome bd oxidase operon from Desulfovibrio gigas   Curr Microbiol. 52: 4. 274-281 Apr  
Abstract: Although classified as anaerobic, Desulfovibrio gigas contains a functional canonical membrane respiratory chain, including a cytochrome bd quinol oxidase as its terminal element. In the present study, we report the identification of the operon cydAB encoding the two subunits of cytochrome bd from this bacterium. Two hypothetical promoter regions and sequences resembling transcriptional regulators-binding sites have been identified. Amino acid sequence analysis revealed a high similarity to cytochrome bd from other organisms, presenting the conserved residues typical from these proteins. Reverse transcription polymerase chain reaction (RT-PCR) and Northern blot analysis confirmed the operon transcription. Gene expression was assessed by real-time RT-PCR in cells grown in different media and under exposure to oxygen and nitric oxide. mRNA levels were slightly enhanced in the presence of 150 microM: NO. However, in the presence of 10 microM: NO, a decrease was observed of the steady-state population of cydAB mRNA. No considerable effect was observed in the presence of fumarate/sulfate medium, 60 microM: O2 or 10 microM: NO.
Notes:
R Rodrigues, J B Vicente, R Félix, S Oliveira, M Teixeira, C Rodrigues-Pousada (2006)  Desulfovibrio gigas flavodiiron protein affords protection against nitrosative stress in vivo.   J Bac 188: 8. 2745-2751 April  
Abstract: Desulfovibrio gigas flavodiiron protein (FDP), rubredoxin:oxygen oxidoreductase (ROO), was proposed to be the terminal oxidase of a soluble electron transfer chain coupling NADH oxidation to oxygen reduction. However, several members from the FDP family, to which ROO belongs, revealed nitric oxide (NO) reductase activity. Therefore, the protection afforded by ROO against the cytotoxic effects of NO was here investigated. The NO and oxygen reductase activities of recombinant ROO in vitro were tested by amperometric methods, and the enzyme was shown to effectively reduce NO and O(2). Functional complementation studies of an Escherichia coli mutant strain lacking the ROO homologue flavorubredoxin, an NO reductase, showed that ROO restores the anaerobic growth phenotype of cultures exposed to otherwise-toxic levels of exogenous NO. Additional studies in vivo using a D. gigas roo-deleted strain confirmed an increased sensitivity to NO of the mutant strain in comparison to the wild type. This effect is more pronounced when using the nitrosating agent S-nitrosoglutathione (GSNO), which effectively impairs the growth of the D. gigas Deltaroo strain. roo is constitutively expressed in D. gigas under all conditions tested. However, real-time reverse transcription-PCR analysis revealed a twofold induction of mRNA levels upon exposure to GSNO, suggesting regulation at the transcription level by NO. The newly proposed role of D. gigas ROO as an NO reductase combined with the O(2) reductase activity reveals a versatility which appears to afford protection to D. gigas at the onset of both oxidative and nitrosative stresses.
Notes:
R Félix, R Rodrigues, P Machado, S Oliveira, C Rodrigues-Pousada (2006)  A chemotaxis operon in the bacterium Desulfovibrio gigas is induced under several growth conditions.   DNA Seq 17: 1. 56-64 Feb  
Abstract: The chemosensory system of bacteria controls their motility and behaviour in different environments. In the present study, we report the identification of the first chemotaxis operon in Desulfovibrio gigas. Amino acid sequence analysis revealed seven coding regions for polypeptides with a high similarity to chemotaxis proteins from other organisms. D. gigas chemotaxis operon has a similar genetic organisation to chemotaxis operons found in the sequenced genomes of Desulfovibrio desulfuricans and Desulfovibrio vulgaris. Control of gene expression was assessed by real-time reverse transcription-PCR in cells grown under different conditions. mRNA levels were enhanced in the presence of thiosulfate and sulfite and decreased upon exposure to NO. No effect was observed in the presence of O2, NaNO2, pyruvate or fumarate. These results show that the expression of the chemotaxis operon is enhanced in the presence of thiosulfate and sulfite indicating that under these compounds a chemotactic response seems to be triggered in D. gigas.
Notes:
2005
C Rodrigues-Pousada, T Nevitt, R Menezes (2005)  The yeast stress response. Role of the Yap family of b-ZIP transcription factors. The PABMB Lecture delivered on 30 June 2004 at the 29th FEBS Congress in Warsaw.   FEBS J 272: 11. 3639-47 Jun  
Abstract: The budding yeast Saccharomyces cerevisiae possesses a very flexible and complex programme of gene expression when exposed to a plethora of environmental insults. Therefore, yeast cell homeostasis control is achieved through a highly coordinated mechanism of transcription regulation involving several factors, each performing specific functions. Here, we present our current knowledge of the function of the yeast activator protein family, formed by eight basic-leucine zipper trans-activators, which have been shown to play an important role in stress response.
Notes:
M Broco, A Marques, S Oliveira, C Rodrigues-Pousada (2005)  Characterisation of the 11 Kb DNA region adjacent to the gene encoding Desulfovibrio gigas flavoredoxin.   DNA Seq 16: 3. 207-216 Jun  
Abstract: Flavoredoxin is an FMN binding protein that functions as an electron carrier in the sulphate metabolism of Desulfovibrio gigas. The neighbouring DNA regions of the gene encoding flavoredoxin were sequenced and characterised. Transcript analysis of the flavoredoxin gene resulted in a positive band corresponding to the size of the coding region, suggesting that flavoredoxin is encoded by a monocystronic unit, as previously suggested by sequence analysis. Analysis of the adjacent DNA regions revealed several interesting genes. The sequenced DNA regions contain nine open reading frames (ORFs) organised in two polycystronic and two monocystronic units. These genes encode proteins involved in different metabolic pathways, namely in DNA methylation, tRNA and rRNA modification, mRNA metabolism, cell division, CoA synthesis and lipoprotein transport across the membrane
Notes:
M Broco, M Rousset, S Oliveira, C Rodrigues-Pousada (2005)  Deletion of flavoredoxin gene in Desulfovibrio gigas reveals its participation in thiosulfate reduction.   FEBS Lett. 579: 21. 4803-4807 Aug  
Abstract: The gene encoding Desulfovibrio gigas flavoredoxin was deleted to elucidate its physiological role in the sulfate metabolism. Disruption of flr gene strongly inhibited the reduction of thiosulfate and exhibited a reduced growth in the presence of sulfite with lactate as electron donor. The growth with sulfate was not however affected by the lack of this protein. Additionally, flr mutant cells revealed a decrease of about 50% in the H2 consumption rate using thiosulfate as electron acceptor. Altogether, our results show in vivo that during sulfite respiration, trithionate and thiosulfate are produced and that flavoredoxin is specific for thiosulfate reduction.
Notes:
Powered by publicationslist.org.