hosted by
publicationslist.org
    

Colin Rickman


c.rickman@hw.ac.uk

Journal articles

2013
Annya M Smyth, Lei Yang, Kirsty J Martin, Charlotte Hamilton, Weiping Lu, Michael A Cousin, Colin Rickman, Rory R Duncan (2013)  Munc18-1 protein molecules move between membrane molecular depots distinct from vesicle docking sites.   The Journal of biological chemistry 288: 7. 5102-5113 Feb  
Abstract: Four evolutionarily conserved proteins are required for mammalian regulated exocytosis: three SNARE proteins, syntaxin, SNAP-25, and synaptobrevin, and the SM protein, Munc18-1. Here, using single-molecule imaging, we measured the spatial distribution of large cohorts of single Munc18-1 molecules correlated with the positions of single secretory vesicles in a functionally rescued Munc18-1-null cellular model. Munc18-1 molecules were nonrandomly distributed across the plasma membrane in a manner not directed by mode of interaction with syntaxin1, with a small mean number of molecules observed to reside under membrane resident vesicles. Surprisingly, we found that the majority of vesicles in fully secretion-competent cells had no Munc18-1 associated within distances relevant to plasma membrane-vesicle SNARE interactions. Live cell imaging of Munc18-1 molecule dynamics revealed that the density of Munc18-1 molecules at the plasma membrane anticorrelated with molecular speed, with single Munc18-1 molecules displaying directed motion between membrane hotspots enriched in syntaxin1a. Our findings demonstrate that Munc18-1 molecules move between membrane depots distinct from vesicle morphological docking sites.
Notes:
2012
Lei Yang, Alison R Dun, Kirsty J Martin, Zhen Qiu, Andrew Dunn, Gabriel J Lord, Weiping Lu, Rory R Duncan, Colin Rickman (2012)  Secretory vesicles are preferentially targeted to areas of low molecular SNARE density.   PloS one 7: 11. 11  
Abstract: Intercellular communication is commonly mediated by the regulated fusion, or exocytosis, of vesicles with the cell surface. SNARE (soluble N-ethymaleimide sensitive factor attachment protein receptor) proteins are the catalytic core of the secretory machinery, driving vesicle and plasma membrane merger. Plasma membrane SNAREs (tSNAREs) are proposed to reside in dense clusters containing many molecules, thus providing a concentrated reservoir to promote membrane fusion. However, biophysical experiments suggest that a small number of SNAREs are sufficient to drive a single fusion event. Here we show, using molecular imaging, that the majority of tSNARE molecules are spatially separated from secretory vesicles. Furthermore, the motilities of the individual tSNAREs are constrained in membrane micro-domains, maintaining a non-random molecular distribution and limiting the maximum number of molecules encountered by secretory vesicles. Together our results provide a new model for the molecular mechanism of regulated exocytosis and demonstrate the exquisite organization of the plasma membrane at the level of individual molecular machines.
Notes:
2010
Annya M Smyth, Colin Rickman, Rory R Duncan (2010)  Vesicle fusion probability is determined by the specific interactions of munc18.   The Journal of biological chemistry 285: 49. 38141-38148 Dec  
Abstract: Mammalian-regulated secretion is absolutely dependent on four evolutionarily conserved proteins: three SNARE proteins and munc18. Dissecting the functional outcomes of the spatially organized protein interactions between these factors has been difficult because of the close interrelationship between different binding modes. Here, we investigated the spatial distribution of single munc18 molecules at the plasma membrane of cells and the underlying interactions between syntaxin and munc18. Disruption of munc18 binding to the N-terminal peptide motif of syntaxin did not alter munc18 localization on the plasma membrane but had a pronounced influence on the behavior of secretory vesicles and their likelihood to undergo fusion. We therefore conclude that interaction with the syntaxin N-peptide can confer differential release probabilities to secretory vesicles and may contribute to the delineation of secretory vesicle pools.
Notes:
Colin Rickman, Claire N Medine, Alison R Dun, David J Moulton, Ondrej Mandula, Nagaraj D Halemani, Silvio O Rizzoli, Luke H Chamberlain, Rory R Duncan (2010)  t-SNARE protein conformations patterned by the lipid microenvironment.   The Journal of biological chemistry 285: 18. 13535-13541 Apr  
Abstract: The spatial distribution of the target (t-)SNARE proteins (syntaxin and SNAP-25) on the plasma membrane has been extensively characterized. However, the protein conformations and interactions of the two t-SNAREs in situ remain poorly defined. By using super-resolution optical techniques and fluorescence lifetime imaging microscopy, we observed that within the t-SNARE clusters syntaxin and SNAP-25 molecules interact, forming two distinct conformations of the t-SNARE binary intermediate. These are spatially segregated on the plasma membrane with each cluster exhibiting predominantly one of the two conformations, representing the two- and three-helical forms previously observed in vitro. We sought to explain why these two t-SNARE intermediate conformations exist in spatially distinct clusters on the plasma membrane. By disrupting plasma membrane lipid order, we found that all of the t-SNARE clusters now adopted a single conformational state corresponding to the three helical t-SNARE intermediates. Together, our results define spatially distinct t-SNARE intermediate states on the plasma membrane and how the conformation adopted can be patterned by the underlying lipid environment.
Notes:
Colin Rickman, Rory R Duncan (2010)  Munc18/Syntaxin interaction kinetics control secretory vesicle dynamics.   The Journal of biological chemistry 285: 6. 3965-3972 Feb  
Abstract: In neuronal and hormonal release, regulated exocytosis requires an essential set of proteins: the soluble N-ethylmaleimide sensitive-factor attachment receptor proteins (SNAREs) syntaxin 1, SNAP-25, VAMP, and their regulator, Munc18. Recently, it was found that Munc18-1 can interact with syntaxin 1 through distinct mechanisms: an inhibitory mode enveloping syntaxin (mode 1), sequestering it from SNARE protein interactions, and direct binding to an evolutionarily conserved N-terminal peptide of syntaxin (mode 2/3). The latter interaction has been proposed to control "priming" of the fusion reaction, defined using electrophysiology, but it is unknown how this interaction is regulated, and any dynamic effect at the molecular or vesicular level in cells remains undiscovered. We now show that a phosphorylation site in syntaxin 1 (Ser(14)) regulates the N-terminal interaction with Munc18-1. Probing syntaxin 1 association with Munc18-1, in real-time and in living cells, we found that modification of Ser(14) modulated the dynamics of this interaction, specifically at the plasma membrane. Destabilization of this dynamic interaction enhanced vesicle immobilization at the plasma membrane with a resulting inhibition of exocytosis.
Notes:
Alison R Dun, Colin Rickman, Rory R Duncan (2010)  The t-SNARE complex: a close up.   Cellular and molecular neurobiology 30: 8. 1321-1326 Nov  
Abstract: The SNARE proteins, syntaxin, SNAP-25, and synaptobrevin have long been known to provide the driving force for vesicle fusion in the process of regulated exocytosis. Of particular interest is the initial interaction between SNAP-25 and syntaxin to form the t-SNARE heterodimer, an acceptor for subsequent synaptobrevin engagement. In vitro studies have revealed at least two different dynamic conformations of t-SNARE heterodimer defined by the degree of association of the C-terminal SNARE motif of SNAP-25 with syntaxin. At the plasma membrane, these proteins are organized into dense clusters of 50-60 nm in diameter. More recently, the t-SNARE interaction within these clusters was investigated in live cells at the molecular level, estimating each cluster to contain 35-70 t-SNARE molecules. This work reported the presence of both partially and fully zippered t-SNARE complex at the plasma membrane in agreement with the earlier in vitro findings. It also revealed a spatial segregation into distinct clusters containing predominantly one conformation apparently patterned by the surrounding lipid environment. The reason for this dynamic t-SNARE complex in exocytosis is uncertain; however, it does take us one step closer to understand the complex sequence of events leading to vesicle fusion, emphasizing the role of both membrane proteins and lipids.
Notes:
Annya M Smyth, Rory R Duncan, Colin Rickman (2010)  Munc18-1 and syntaxin1: unraveling the interactions between the dynamic duo.   Cellular and molecular neurobiology 30: 8. 1309-1313 Nov  
Abstract: All neurotransmitter and hormone regulated secretory events involve the action of three soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins, syntaxin, SNAP-25, and synaptobrevin. The SNARE proteins interact to form a four alpha-helical complex, involving syntaxin and SNAP-25 on the plasma membrane and synaptobrevin on the vesicular membrane, bringing the opposing membranes together, promoting bilayer merger and membrane fusion. The process of regulated secretion is an adaptation of the membrane fusion events which occur at multiple steps throughout the intracellular trafficking pathway, in each case catalyzed by SNARE protein isoforms. At all of these locations, the SNAREs are joined by a member of the Sec1p/Munc18 (SM) protein family which selectively bind to syntaxin isoforms. From their initial identification, the SM proteins were known to be essential for membrane fusion, however, over the intervening decades, deciphering the precise mechanism of action of the SM proteins has proved problematic. Recent studies, investigating the interactions of munc18-1 and syntaxin1, provide an explanation for previous, apparently conflicting, observations yielding a new understanding of their cellular functions.
Notes:
2009
Marc-Andre Martel, Francesc X Soriano, Paul Baxter, Colin Rickman, Rory Duncan, David J A Wyllie, Giles E Hardingham (2009)  Inhibiting pro-death NMDA receptor signaling dependent on the NR2 PDZ ligand may not affect synaptic function or synaptic NMDA receptor signaling to gene expression.   Channels (Austin, Tex.) 3: 1. 12-15 Jan/Feb  
Abstract: NMDA receptors (NMDARs) mediate ischemic brain damage, in part through interactions of the PDZ ligand of NR2 subunits with the PDZ domain proteins PSD-95 and neuronal nitric oxide synthase located within the NMDAR signaling complex. We have recently shown that this PDZ ligand-dependent pathway promotes neuronal death via p38 activation. A peptide mimetic of the NR2B PDZ ligand (TAT-NR2B9c) reduces p38-mediated death in vitro and p38-dependent ischemic damage in vivo. In the absence of the PDZ ligand-p38 pathway, such as in TAT-NR2B9c-treated neurons, or in NMDAR-expressing non-neuronal cells, NMDAR-dependent excitotoxicity is mediated largely by JNK and requires greater Ca2+ influx. A major reason for blocking pro-death signaling events downstream of the NMDAR as an anti-excitotoxic strategy is that it may spare physiological synaptic function and signaling. We find that neuroprotective doses of TAT-NR2B9c do not alter the frequency of spontaneous synaptic events within networks of cultured cortical neurons nor is mini-EPSC frequency altered. Furthermore, TAT-NR2B9c does not inhibit the capacity of synaptic NMDAR activity to promote neuroprotective changes in gene expression, including the upregulation of PACAP via CREB, and suppression of the pro-oxidative FOXO target gene Txnip. Thus, while the NR2 PDZ ligand does not account for all the excitotoxic effects of excessive NMDAR activity, these findings underline the value of the specific targeting of death pathways downstream of the NMDAR.
Notes:
2008
Francesc X Soriano, Marc-Andre Martel, Sofia Papadia, Anne Vaslin, Paul Baxter, Colin Rickman, Joan Forder, Michael Tymianski, Rory Duncan, Michelle Aarts, Peter Clarke, David J A Wyllie, Giles E Hardingham (2008)  Specific targeting of pro-death NMDA receptor signals with differing reliance on the NR2B PDZ ligand.   The Journal of neuroscience : the official journal of the Society for Neuroscience 28: 42. 10696-10710 Oct  
Abstract: NMDA receptors (NMDARs) mediate ischemic brain damage, for which interactions between the C termini of NR2 subunits and PDZ domain proteins within the NMDAR signaling complex (NSC) are emerging therapeutic targets. However, expression of NMDARs in a non-neuronal context, lacking many NSC components, can still induce cell death. Moreover, it is unclear whether targeting the NSC will impair NMDAR-dependent prosurvival and plasticity signaling. We show that the NMDAR can promote death signaling independently of the NR2 PDZ ligand, when expressed in non-neuronal cells lacking PSD-95 and neuronal nitric oxide synthase (nNOS), key PDZ proteins that mediate neuronal NMDAR excitotoxicity. However, in a non-neuronal context, the NMDAR promotes cell death solely via c-Jun N-terminal protein kinase (JNK), whereas NMDAR-dependent cortical neuronal death is promoted by both JNK and p38. NMDAR-dependent pro-death signaling via p38 relies on neuronal context, although death signaling by JNK, triggered by mitochondrial reactive oxygen species production, does not. NMDAR-dependent p38 activation in neurons is triggered by submembranous Ca(2+), and is disrupted by NOS inhibitors and also a peptide mimicking the NR2B PDZ ligand (TAT-NR2B9c). TAT-NR2B9c reduced excitotoxic neuronal death and p38-mediated ischemic damage, without impairing an NMDAR-dependent plasticity model or prosurvival signaling to CREB or Akt. TAT-NR2B9c did not inhibit JNK activation, and synergized with JNK inhibitors to ameliorate severe excitotoxic neuronal loss in vitro and ischemic cortical damage in vivo. Thus, NMDAR-activated signals comprise pro-death pathways with differing requirements for PDZ protein interactions. These signals are amenable to selective inhibition, while sparing synaptic plasticity and prosurvival signaling.
Notes:
2007
Colin Rickman, Claire N Medine, Axel Bergmann, Rory R Duncan (2007)  Functionally and spatially distinct modes of munc18-syntaxin 1 interaction.   The Journal of biological chemistry 282: 16. 12097-12103 Apr  
Abstract: Eukaryotic membrane trafficking is a conserved process under tight temporal and spatial regulation in which the fusion of membranes is driven by the formation of the ternary SNARE complex. Syntaxin 1a, a core component of the exocytic SNARE complex in neurons and neuroendocrine cells, is regulated directly by munc18-1, its cognate Sec1p/munc18 (SM) protein. SM proteins show remarkable structural conservation throughout evolution, indicating a common binding mechanism and function. However, SM proteins possess disparate binding mechanisms and regulatory effects with munc18-1, the major brain isoform, classed as atypical in both its binding specificity and its mode. We now show that munc18-1 interacts with syntaxin 1a through two mechanistically distinct modes of binding, both in vitro and in living cells, in contrast to current models. Furthermore, these functionally divergent interactions occur at distinct cellular locations. These findings provide a molecular explanation for the multiple, spatially distinct roles of munc18-1.
Notes:
Claire N Medine, Colin Rickman, Luke H Chamberlain, Rory R Duncan (2007)  Munc18-1 prevents the formation of ectopic SNARE complexes in living cells.   Journal of cell science 120: Pt 24. 4407-4415 Dec  
Abstract: Membrane trafficking in eukaryotic cells must be strictly regulated both temporally and spatially. The assembly at the plasma membrane of the ternary SNARE complex, formed between syntaxin1a, SNAP-25 and VAMP, is essential for efficient exocytotic membrane fusion. These exocytotic SNAREs are known to be highly promiscuous in their interactions with other non-cognate SNAREs. It is therefore an important cellular requirement to traffic exocytotic SNARE proteins through the endoplasmic reticulum and Golgi complex while avoiding ectopic interactions between SNARE proteins. Here, we show that syntaxin1a traffics in an inactive form to the plasma membrane, requiring a closed-form interaction, but not N-terminal binding, with munc18-1. If syntaxin is permitted to interact with SNAP-25, both proteins fail to traffic to the plasma membrane, becoming trapped in intracellular compartments. The munc18-1-syntaxin interactions must form before syntaxin encounters SNAP-25 in the Golgi complex, preventing the formation of intracellular exocytotic SNARE complexes there. Upon delivery to the plasma membrane, most SNARE clusters in resting cells do not produce detectable FRET between t-SNARE proteins. These observations highlight the crucial role that munc18-1 plays in trafficking syntaxin through the secretory pathway.
Notes:
Emma Connell, Frédéric Darios, Kerensa Broersen, Naomi Gatsby, Sew-Yeu Peak-Chew, Colin Rickman, Bazbek Davletov (2007)  Mechanism of arachidonic acid action on syntaxin-Munc18.   EMBO reports 8: 4. 414-419 Apr  
Abstract: Syntaxin and Munc18 are, in tandem, essential for exocytosis in all eukaryotes. Recently, it was shown that Munc18 inhibition of neuronal syntaxin 1 can be overcome by arachidonic acid, indicating that this common second messenger acts to disrupt the syntaxin-Munc18 interaction. Here, we show that arachidonic acid can stimulate syntaxin 1 alone, indicating that it is syntaxin 1 that undergoes a structural change in the syntaxin 1-Munc18 complex. Arachidonic acid is incapable of dissociating Munc18 from syntaxin 1 and, crucially, Munc18 remains associated with syntaxin 1 after arachidonic-acid-induced syntaxin 1 binding to synaptosomal-associated protein 25 kDa (SNAP25). We also show that the same principle operates in the case of the ubiquitous syntaxin 3 isoform, highlighting the conserved nature of the mechanism of arachidonic acid action. Neuronal soluble N-ethyl maleimide sensitive factor attachment protein receptors (SNAREs) can be isolated from brain membranes in a complex with endogenous Munc18, consistent with a proposed function of Munc18 in vesicle docking and fusion.
Notes:
2006
Colin Rickman, José L Jiménez, Margaret E Graham, Deborah A Archer, Mikhail Soloviev, Robert D Burgoyne, Bazbek Davletov (2006)  Conserved prefusion protein assembly in regulated exocytosis.   Molecular biology of the cell 17: 1. 283-294 Jan  
Abstract: The regulated release of hormones and neurotransmitters is a fundamental process throughout the animal kingdom. The short time scale for the calcium triggering of vesicle fusion in regulated secretion suggests that the calcium sensor synaptotagmin and the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) membrane fusion machinery are well ordered before the calcium signal. To gain insight into the organization of the prefusion protein assembly in regulated exocytosis, we undertook a structural/functional study of the vesicular synaptotagmin1 and the plasma membrane SNARE proteins, which copurify from the brain in the absence of calcium. Based on an evolutionary analysis, mutagenesis screens, and a computational protein docking approach, we now provide the first testable description of the supramolecular prefusion assembly. Perturbing the determined synaptotagmin/SNARE-interacting interface in several models of regulated exocytosis altered the secretion of hormones and neurotransmitters. These mutations also disrupted the constitutive synaptotagmin/SNARE link in full agreement with our model. We conclude that the interaction of synaptotagmin with preassembled plasma membrane SNARE proteins, before the action of calcium, can provide a precisely organized "tethering" scaffold that underlies regulated secretion throughout evolution.
Notes:
2005
Colin Rickman, Kuang Hu, Joe Carroll, Bazbek Davletov (2005)  Self-assembly of SNARE fusion proteins into star-shaped oligomers.   The Biochemical journal 388: Pt 1. 75-79 May  
Abstract: Three evolutionarily conserved proteins known as SNAREs (soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptors) mediate exocytosis from single cell eukaryotes to neurons. Among neuronal SNAREs, syntaxin and SNAP-25 (synaptosome-associated protein of 25 kDa) reside on the plasma membrane, whereas synaptobrevin resides on synaptic vesicles prior to fusion. The SNARE motifs of the three proteins form a helical bundle which probably drives membrane fusion. Since studies in vivo suggested an importance for multiple SNARE complexes in the fusion process, and models appeared in the literature with large numbers of SNARE bundles executing the fusion process, we analysed the quaternary structure of the full-length native SNARE complexes in detail. By employing a preparative immunoaffinity procedure we isolated all of the SNARE complexes from brain, and have shown by size-exclusion chromatography and negative stain electron microscopy that they exist as approx. 30 nm particles containing, most frequently, 3 or 4 bundles emanating from their centre. Using highly purified, individual, full-length SNAREs we demonstrated that the oligomerization of SNAREs into star-shaped particles with 3 to 4 bundles is an intrinsic property of these proteins and is not dependent on other proteins, as previously hypothesized. The average number of the SNARE bundles in the isolated fusion particles corresponds well with the co-operativity observed in calcium-triggered neuronal exocytosis.
Notes:
Colin Rickman, Bazbek Davletov (2005)  Arachidonic acid allows SNARE complex formation in the presence of Munc18.   Chemistry & biology 12: 5. 545-553 May  
Abstract: SNARE complex formation underlies intracellular membrane fusion in eukaryotic organisms; however, the factors regulating the SNARE assembly are not well understood. The neuronal SNARE complex is composed of synaptobrevin2, SNAP-25, and syntaxin1, the latter being under tight control by the cytosolic protein Munc18. We found that the inhibition of syntaxin1 by Munc18 both in nerve terminals and in defined in vitro reactions can be overcome by specific detergents. This serendipitous finding led us to screen biologically relevant fatty acids, revealing that unsaturated arachidonic and linolenic acids can stimulate Munc18-regulated SNARE complex formation in a direct manner. The direct effect of arachidonic acid on the syntaxin1/Munc18 complex suggests a mechanism for the activation of the SNARE assembly pathway and provides a lead for the further investigation of fatty acids that may regulate SNARE-mediated membrane fusion in eukaryotes.
Notes:
2004
Colin Rickman, Deborah A Archer, Frederic A Meunier, Molly Craxton, Mitsunori Fukuda, Robert D Burgoyne, Bazbek Davletov (2004)  Synaptotagmin interaction with the syntaxin/SNAP-25 dimer is mediated by an evolutionarily conserved motif and is sensitive to inositol hexakisphosphate.   The Journal of biological chemistry 279: 13. 12574-12579 Mar  
Abstract: Synaptotagmins are membrane proteins that possess tandem C2 domains and play an important role in regulated membrane fusion in metazoan organisms. Here we show that both synaptotagmins I and II, the two major neuronal isoforms, can interact with the syntaxin/synaptosomal-associated protein of 25 kDa (SNAP-25) dimer, the immediate precursor of the soluble NSF attachment protein receptor (SNARE) fusion complex. A stretch of basic amino acids highly conserved throughout the animal kingdom is responsible for this calcium-independent interaction. Inositol hexakisphosphate modulates synaptotagmin coupling to the syntaxin/SNAP-25 dimer, which is mirrored by changes in chromaffin cell exocytosis. Our results shed new light on the functional importance of the conserved polybasic synaptotagmin motif, suggesting that synaptotagmin interacts with the t-SNARE dimer to up-regulate the probability of SNARE-mediated membrane fusion.
Notes:
Kuang Hu, Colin Rickman, Joe Carroll, Bazbek Davletov (2004)  A common mechanism for the regulation of vesicular SNAREs on phospholipid membranes.   The Biochemical journal 377: Pt 3. 781-785 Feb  
Abstract: The SNARE (soluble N -ethylmaleimide-sensitive fusion protein attachment protein receptor) family of proteins is essential for membrane fusion in intracellular traffic in eukaryotic organisms. v-SNAREs (vesicular SNAREs) must engage target SNAREs in the opposing membrane to form the fusogenic SNARE complex. Temporal and spatial control of membrane fusion is important for many aspects of cell physiology and may involve the regulation of the SNAREs resident on intracellular membranes. Here we show that the v-SNARE synaptobrevin 2, also known as VAMP (vesicle-associated membrane protein) 2, is restricted from forming the SNARE complex in chromaffin granules from adrenal medullae to the same degree as in brain-purified synaptic vesicles. Our analysis indicates that the previously reported synaptophysin-synaptobrevin interaction is not likely to be involved in regulation of the v-SNARE. Indeed, the restriction can be reproduced for two distinct v-SNARE homologues, synaptobrevin 2 and cellubrevin/VAMP3, by reconstituting them in pure liposomal membranes. Overall, our data uncover a common mechanism for the control of SNARE engagement where intact phospholipid membranes rather than proteins down-regulate vesicular SNAREs in different cellular organelles.
Notes:
Mark Bajohrs, Colin Rickman, Thomas Binz, Bazbek Davletov (2004)  A molecular basis underlying differences in the toxicity of botulinum serotypes A and E.   EMBO reports 5: 11. 1090-1095 Nov  
Abstract: Botulinum neurotoxins (BoNTs) block neurotransmitter release through their specific proteolysis of the proteins responsible for vesicle exocytosis. Paradoxically, two serotypes of BoNTs, A and E, cleave the same molecule, synaptosome-associated protein with relative molecular mass 25K (SNAP-25), and yet they cause synaptic blockade with very different properties. Here we compared the action of BoNTs A and E on the plasma membrane fusion machinery composed of syntaxin and SNAP-25. We now show that the BoNT/A-cleaved SNAP-25 maintains its association with two syntaxin isoforms in vitro, which is mirrored by retention of SNAP-25 on the plasma membrane in vivo. In contrast, BoNT/E severely compromises the ability of SNAP-25 to bind the plasma membrane syntaxin isoforms, leading to dissociation of SNAP-25. The distinct properties of botulinum intoxication, therefore, can result from the ability of shortened SNAP-25 to maintain its association with syntaxins-in the case of BoNT/A poisoning resulting in unproductive syntaxin/SNAP-25 complexes that impede vesicle exocytosis.
Notes:
Colin Rickman, Molly Craxton, Shona Osborne, Bazbek Davletov (2004)  Comparative analysis of tandem C2 domains from the mammalian synaptotagmin family.   The Biochemical journal 378: Pt 2. 681-686 Mar  
Abstract: Intracellular membrane traffic is governed by a conserved set of proteins, including Syts (synaptotagmins). The mammalian Syt family includes 15 isoforms. Syts are membrane proteins that possess tandem C2 domains (C2AB) implicated in calcium-dependent phospholipid binding. We performed a pair-wise amino acid sequence comparison, together with functional studies of rat Syt C2ABs, to examine common and divergent properties within the mammalian family. Sequence analysis indicates three different C2AB classes, the members of which share a high degree of sequence similarity. All the other C2ABs are highly divergent in sequence. Nearly half of the Syt family does not exhibit calcium/phospholipid binding in comparison to Syt I, the major brain isoform. Syts do, however, possess a more conserved function, namely calcium-independent binding to target SNARE (soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor) heterodimers. All tested isoforms, except Syt XII and Syt XIII, bound the target SNARE heterodimer comprising syntaxin 1 and SNAP-25 (25 kDa synaptosome-associated protein). Our present study suggests that many Syt isoforms can function in membrane trafficking to interact with the target SNARE heterodimer on the pathway to calcium-triggered membrane fusion.
Notes:
Colin Rickman, Frederic A Meunier, Thomas Binz, Bazbek Davletov (2004)  High affinity interaction of syntaxin and SNAP-25 on the plasma membrane is abolished by botulinum toxin E.   The Journal of biological chemistry 279: 1. 644-651 Jan  
Abstract: The release of hormones and neurotransmitters requires the fusion of cargo-containing vesicles with the plasma membrane. This process of exocytosis relies on three SNARE proteins, namely syntaxin and SNAP-25 on the target plasma membrane and synaptobrevin on the vesicular membrane. In this study we examined the molecular assembly pathway that leads to formation of the fusogenic SNARE complex. We now show that the plasma membrane syntaxin and SNAP-25 interact with high affinity and equimolar stoichiometry to form a stable dimer on the pathway to the ternary SNARE complex. In bovine chromaffin cells, syntaxin and SNAP-25 colocalize in defined clusters that average 700 nm in diameter and cover 10% of the plasma membrane. Removal of the C terminus of SNAP-25 by botulinum neurotoxin E, a known neuroparalytic agent, dissociates the target SNARE dimer in vitro and disrupts the SNARE clustering in vivo. Together, our data uncover formation of stable syntaxin/SNAP-25 dimers as a central principle of the SNARE assembly pathway underlying regulated exocytosis.
Notes:
2003
Colin Rickman, Bazbek Davletov (2003)  Mechanism of calcium-independent synaptotagmin binding to target SNAREs.   The Journal of biological chemistry 278: 8. 5501-5504 Feb  
Abstract: Synaptic vesicle exocytosis requires three SNARE (soluble N-ethylmaleimide-sensitive-factor attachment protein receptor) proteins: syntaxin and SNAP-25 on the plasma membrane (t-SNAREs) and synaptobrevin/VAMP on the synaptic vesicles (v-SNARE). Vesicular synaptotagmin 1 is essential for fast synchronous SNARE-mediated exocytosis and interacts with the SNAREs in brain material. To uncover the step at which synaptotagmin becomes linked to the three SNAREs, we purified all four proteins from brain membranes and analyzed their interactions. Our study reveals that, in the absence of calcium, native synaptotagmin 1 binds the t-SNARE heterodimer, formed from syntaxin and SNAP-25. This interaction is both stoichiometric and of high affinity. Synaptotagmin contains two divergent but conserved C2 domains that can act independently in calcium-triggered phospholipid binding. We now show that both C2 domains are strictly required for the calcium-independent interaction with the t-SNARE heterodimer, indicating that the double C2 domain structure of synaptotagmin may have evolved to acquire a function beyond calcium/phospholipid binding.
Notes:
2002
Peter D Ellis, Karen M Martin, Colin Rickman, James C Metcalfe, Paul R Kemp (2002)  Increased actin polymerization reduces the inhibition of serum response factor activity by Yin Yang 1.   The Biochemical journal 364: Pt 2. 547-554 Jun  
Abstract: Recent evidence has implicated CC(A/T(richG))GG (CArG) boxes, binding sites for serum response factor (SRF), in the regulation of expression of a number of genes in response to changes in the actin cytoskeleton. In many cases, the activity of SRF at CArG boxes is modulated by transcription factors binding to overlapping (e.g. Yin Yang 1, YY1) or adjacent (e.g. ets) binding sites. However, the mechanisms by which SRF activity is regulated by the cytoskeleton have not been determined. To investigate these mechanisms, we screened for cells that did or did not increase the activity of a fragment of the promoter for a smooth-muscle (SM)-specific gene SM22alpha, in response to changes in actin cytoskeletal polymerization induced by LIM kinase. These experiments showed that vascular SM cells (VSMCs) and C2C12 cells increased the activity of promoters containing at least one of the SM22alpha CArG boxes (CArG near) in response to LIM kinase, whereas P19 cells did not. Bandshift assays using a probe to CArG near showed that P19 cells lacked detectable YY1 DNA binding to the CArG box in contrast with the other two cell types. Expression of YY1 in P19 cells inhibited SM22alpha promoter activity and conferred responsiveness to LIM kinase. Mutation of the CArG box to inhibit YY1 or SRF binding indicated that both factors were required for the LIM kinase response in VSMCs and C2C12 cells. The data indicate that changes in the actin cytoskeletal organization modify SRF activity at CArG boxes by modulating YY1-dependent inhibition.
Notes:
Kuang Hu, Joe Carroll, Sergei Fedorovich, Colin Rickman, Andrei Sukhodub, Bazbek Davletov (2002)  Vesicular restriction of synaptobrevin suggests a role for calcium in membrane fusion.   Nature 415: 6872. 646-650 Feb  
Abstract: Release of neurotransmitter occurs when synaptic vesicles fuse with the plasma membrane. This neuronal exocytosis is triggered by calcium and requires three SNARE (soluble-N-ethylmaleimide-sensitive factor attachment protein receptors) proteins: synaptobrevin (also known as VAMP) on the synaptic vesicle, and syntaxin and SNAP-25 on the plasma membrane. Neuronal SNARE proteins form a parallel four-helix bundle that is thought to drive the fusion of opposing membranes. As formation of this SNARE complex in solution does not require calcium, it is not clear what function calcium has in triggering SNARE-mediated membrane fusion. We now demonstrate that whereas syntaxin and SNAP-25 in target membranes are freely available for SNARE complex formation, availability of synaptobrevin on synaptic vesicles is very limited. Calcium at micromolar concentrations triggers SNARE complex formation and fusion between synaptic vesicles and reconstituted target membranes. Although calcium does promote interaction of SNARE proteins between opposing membranes, it does not act by releasing synaptobrevin from synaptic vesicle restriction. Rather, our data suggest a mechanism in which calcium-triggered membrane apposition enables syntaxin and SNAP-25 to engage synaptobrevin, leading to membrane fusion.
Notes:
Kuang Hu, Joe Carroll, Colin Rickman, Bazbek Davletov (2002)  Action of complexin on SNARE complex.   The Journal of biological chemistry 277: 44. 41652-41656 Nov  
Abstract: Calcium-dependent synaptic vesicle exocytosis requires three SNARE (soluble N-ethylmaleimide-sensitive-factor attachment protein receptor) proteins: synaptobrevin/vesicle-associated membrane protein in the vesicular membrane and syntaxin and SNAP-25 in the presynaptic membrane. The SNAREs form a thermodynamically stable complex that is believed to drive fusion of vesicular and presynaptic membranes. Complexin, also known as synaphin, is a neuronal cytosolic protein that acts as a positive regulator of synaptic vesicle exocytosis. Complexin binds selectively to the neuronal SNARE complex, but how this promotes exocytosis remains unknown. Here we used purified full-length and truncated SNARE proteins and a gel shift assay to show that the action of complexin on SNARE complex depends strictly on the transmembrane regions of syntaxin and synaptobrevin. By means of a preparative immunoaffinity procedure to achieve total extraction of SNARE complex from brain, we demonstrated that complexin is the only neuronal protein that tightly associates with it. Our data indicated that, in the presence of complexin, the neuronal SNARE proteins assemble directly into a complex in which the transmembrane regions interact. We propose that complexin facilitates neuronal exocytosis by promoting interaction between the complementary syntaxin and synaptobrevin transmembrane regions that reside in opposing membranes prior to fusion.
Notes:
Powered by PublicationsList.org.