hosted by
publicationslist.org
    

Craig D Wenger


craig.wenger@gmail.com

Journal articles

2013
Alexander S Hebert, Anna E Merrill, Jonathan A Stefely, Derek J Bailey, Craig D Wenger, Michael S Westphall, David J Pagliarini, Joshua J Coon (2013)  Amine-reactive neutron-encoded labels for highly-plexed proteomic quantitation.   Molecular & cellular proteomics : MCP Jul  
Abstract: We describe a novel amine-reactive chemical label that exploits differential neutron-binding energy between 13C and 15N isotopes. These neutron encoded (NeuCode) chemical labels enable up to 12-plex MS1-based protein quantification. Each structurally identical, but isotopically unique tag is encoded with a 12.6 mDa mass difference, relative to its nearest neighbor, so that peptides bearing these NeuCode signatures do not increase spectral complexity and are only detected upon analysis with very high mass resolving powers (>100,000). We demonstrate that the method provides quantitative performance that is comparable to both metabolic labeling and isobaric tagging, while combining the benefits of both strategies. Finally, we employ the tags to characterize the proteome of Saccharomyces cerevisiae during the diauxic shift, a metabolic transition from fermentation to aerobic respiration.
Notes:
Ho Young Lee, Rachel E Haurwitz, Alex Apffel, Kaihong Zhou, Brian Smart, Craig D Wenger, Stephen Laderman, Laurakay Bruhn, Jennifer A Doudna (2013)  RNA-protein analysis using a conditional CRISPR nuclease.   Proc Natl Acad Sci U S A 110: 14. 5416-5421 Apr  
Abstract: RNA-binding proteins control the fate and function of the transcriptome in all cells. Here we present technology for isolating RNA-protein partners efficiently and accurately using an engineered clustered regularly interspaced short palindromic repeats (CRISPR) endoribonuclease. An inactive version of the Csy4 nuclease binds irreversibly to transcripts engineered with a 16-nt hairpin sequence at their 5' ends. Once immobilized by Csy4 on a solid support, contaminating proteins and other molecules can be removed by extensive washing. Upon addition of imidazole, Csy4 is activated to cleave the RNA, removing the hairpin tag and releasing the native transcript along with its specifically bound protein partners. This conditional Csy4 enzyme enables recovery of specific RNA-binding partners with minimal false-positive contamination. We use this method, coupled with quantitative MS, to identify cell type-specific human pre-microRNA-binding proteins. We also show that this technology is suitable for analyzing diverse size transcripts, and that it is suitable for adaptation to a high-throughput discovery format.
Notes:
Craig D Wenger, Joshua J Coon (2013)  A Proteomics Search Algorithm Specifically Designed for High-Resolution Tandem Mass Spectra.   J Proteome Res Jan  
Abstract: The acquisition of high-resolution tandem mass spectra (MS/MS) is becoming more prevalent in proteomics, but most researchers employ peptide identification algorithms that were designed prior to this development. Here, we demonstrate new software, Morpheus, designed specifically for high-mass accuracy data, based on a simple score that is little more than the number of matching products. For a diverse collection of data sets from a variety of organisms (E. coli, yeast, human) acquired on a variety of instruments (quadrupole-time-of-flight, ion trap-orbitrap, and quadrupole-orbitrap) in different laboratories, Morpheus gives more spectrum, peptide, and protein identifications at a 1% false discovery rate (FDR) than Mascot, Open Mass Spectrometry Search Algorithm (OMSSA), and Sequest. Additionally, Morpheus is 1.5 to 4.6 times faster, depending on the data set, than the next fastest algorithm, OMSSA. Morpheus was developed in C# .NET and is available free and open source under a permissive license.
Notes:
2012
Derek J Bailey, Christopher M Rose, Graeme C McAlister, Justin Brumbaugh, Pengzhi Yu, Craig D Wenger, Michael S Westphall, James A Thomson, Joshua J Coon (2012)  Instant spectral assignment for advanced decision tree-driven mass spectrometry.   Proc Natl Acad Sci U S A 109: 22. 8411-8416 May  
Abstract: We have developed and implemented a sequence identification algorithm (inSeq) that processes tandem mass spectra in real-time using the mass spectrometer's (MS) onboard processors. The inSeq algorithm relies on accurate mass tandem MS data for swift spectral matching with high accuracy. The instant spectral processing technology takes ∼16 ms to execute and provides information to enable autonomous, real-time decision making by the MS system. Using inSeq and its advanced decision tree logic, we demonstrate (i) real-time prediction of peptide elution windows en masse (∼3 min width, 3,000 targets), (ii) significant improvement of quantitative precision and accuracy (~3x boost in detected protein differences), and (iii) boosted rates of posttranslation modification site localization (90% agreement in real-time vs. offline localization rate and an approximate 25% gain in localized sites). The decision tree logic enabled by inSeq promises to circumvent problems with the conventional data-dependent acquisition paradigm and provides a direct route to streamlined and expedient targeted protein analysis.
Notes:
Neil G Rumachik, Graeme C McAlister, Jason D Russell, Derek J Bailey, Craig D Wenger, Joshua J Coon (2012)  Characterizing peptide neutral losses induced by negative electron-transfer dissociation (NETD).   J Am Soc Mass Spectrom 23: 4. 718-727 Apr  
Abstract: We implemented negative electron-transfer dissociation (NETD) on a hybrid ion trap/Orbitrap mass spectrometer to conduct ion/ion reactions using peptide anions and radical reagent cations. In addition to sequence-informative ladders of a•- and x-type fragment ions, NETD generated intense neutral loss peaks corresponding to the entire or partial side-chain cleavage from amino acids constituting a given peptide. Thus, a critical step towards the characterization of this recently introduced fragmentation technique is a systematic study of synthetic peptides to identify common neutral losses and preferential fragmentation pathways. Examining 46 synthetic peptides with high mass accuracy and high resolution analysis permitted facile determination of the chemical composition of each neutral loss. We identified 19 unique neutral losses from 14 amino acids and three modified amino acids, and assessed the specificity and sensitivity of each neutral loss using a database of 1542 confidently identified peptides generated from NETD shotgun experiments employing high-pH separations and negative electrospray ionization. As residue-specific neutral losses indicate the presence of certain amino acids, we determined that many neutral losses have potential diagnostic utility. We envision this catalogue of neutral losses being incorporated into database search algorithms to improve peptide identification specificity and to further advance characterization of the acidic proteome.
Notes:
2011
Craig D Wenger, Douglas H Phanstiel, M Violet Lee, Derek J Bailey, Joshua J Coon (2011)  COMPASS: a suite of pre- and post-search proteomics software tools for OMSSA.   Proteomics 11: 6. 1064-1074 Mar  
Abstract: Here we present the Coon OMSSA Proteomic Analysis Software Suite (COMPASS): a free and open-source software pipeline for high-throughput analysis of proteomics data, designed around the Open Mass Spectrometry Search Algorithm. We detail a synergistic set of tools for protein database generation, spectral reduction, peptide false discovery rate analysis, peptide quantitation via isobaric labeling, protein parsimony and protein false discovery rate analysis, and protein quantitation. We strive for maximum ease of use, utilizing graphical user interfaces and working with data files in the original instrument vendor format. Results are stored in plain text comma-separated value files, which are easy to view and manipulate with a text editor or spreadsheet program. We illustrate the operation and efficacy of COMPASS through the use of two LC-MS/MS data sets. The first is a data set of a highly annotated mixture of standard proteins and manually validated contaminants that exhibits the identification workflow. The second is a data set of yeast peptides, labeled with isobaric stable isotope tags and mixed in known ratios, to demonstrate the quantitative workflow. For these two data sets, COMPASS performs equivalently or better than the current de facto standard, the Trans-Proteomic Pipeline.
Notes:
Qiangwei Xia, M Violet Lee, Christopher M Rose, Alyce J Marsh, Shane L Hubler, Craig D Wenger, Joshua J Coon (2011)  Characterization and diagnostic value of amino acid side chain neutral losses following electron-transfer dissociation.   J Am Soc Mass Spectrom 22: 2. 255-264 Feb  
Abstract: Using a large set of high mass accuracy and resolution ETD tandem mass spectra, we characterized ETD-induced neutral losses. From these data we deduced the chemical formula for 20 of these losses. Many of them have been previously observed in electron-capture dissociation (ECD) spectra, such as losses of the side chains of arginine, aspartic acid, glutamic acid, glutamine, asparagine, leucine, histidine, and carbamidomethylated cysteine residues. With this information, we examined the diagnostic value of these amino acid-specific losses. Among 1285 peptide-spectrum matches, 92.5% have agreement between neutral loss-derived peptide amino acid composition and the peptide sequences. Moreover, we show that peptides can be uniquely identified by using only the accurate precursor mass and amino acid composition based on neutral losses; the median number of sequence candidates from an accurate mass query is reduced from 21 to 8 by adding side chain loss information. Besides increasing confidence in peptide identification, our findings suggest the potential use of these diagnostic losses in ETD spectra to improve false discovery rate estimation and to enhance the performance of scoring functions in database search algorithms.
Notes:
Douglas H Phanstiel, Justin Brumbaugh, Craig D Wenger, Shulan Tian, Mitchell D Probasco, Derek J Bailey, Danielle L Swaney, Mark A Tervo, Jennifer M Bolin, Victor Ruotti, Ron Stewart, James A Thomson, Joshua J Coon (2011)  Proteomic and phosphoproteomic comparison of human ES and iPS cells.   Nat Methods 8: 10. 821-827 09  
Abstract: Combining high-mass-accuracy mass spectrometry, isobaric tagging and software for multiplexed, large-scale protein quantification, we report deep proteomic coverage of four human embryonic stem cell and four induced pluripotent stem cell lines in biological triplicate. This 24-sample comparison resulted in a very large set of identified proteins and phosphorylation sites in pluripotent cells. The statistical analysis afforded by our approach revealed subtle but reproducible differences in protein expression and protein phosphorylation between embryonic stem cells and induced pluripotent cells. Merging these results with RNA-seq analysis data, we found functionally related differences across each tier of regulation. We also introduce the Stem Cell-Omics Repository (SCOR), a resource to collate and display quantitative information across multiple planes of measurement, including mRNA, protein and post-translational modifications.
Notes:
Craig D Wenger, M Violet Lee, Alexander S Hebert, Graeme C McAlister, Douglas H Phanstiel, Michael S Westphall, Joshua J Coon (2011)  Gas-phase purification enables accurate, multiplexed proteome quantification with isobaric tagging.   Nat Methods 8: 11. 933-935 Nov  
Abstract: We describe a mass spectrometry method, QuantMode, which improves accuracy of isobaric tag-based quantification by alleviating the pervasive problem of precursor interference, simultaneous isolation and fragmentation of impurities, through gas-phase purification. QuantMode analysis of a yeast sample 'contaminated' with interfering human peptides showed substantially improved quantitative accuracy compared to a standard scan, with a small loss of spectral identifications. This technique enables large-scale, multiplexed quantitative proteomics using isobaric tagging.
Notes:
M Violet Lee, Scott E Topper, Shane L Hubler, James Hose, Craig D Wenger, Joshua J Coon, Audrey P Gasch (2011)  A dynamic model of proteome changes reveals new roles for transcript alteration in yeast.   Mol Syst Biol 7: 07  
Abstract: The transcriptome and proteome change dynamically as cells respond to environmental stress; however, prior proteomic studies reported poor correlation between mRNA and protein, rendering their relationships unclear. To address this, we combined high mass accuracy mass spectrometry with isobaric tagging to quantify dynamic changes in ~2500 Saccharomyces cerevisiae proteins, in biological triplicate and with paired mRNA samples, as cells acclimated to high osmolarity. Surprisingly, while transcript induction correlated extremely well with protein increase, transcript reduction produced little to no change in the corresponding proteins. We constructed a mathematical model of dynamic protein changes and propose that the lack of protein reduction is explained by cell-division arrest, while transcript reduction supports redistribution of translational machinery. Furthermore, the transient 'burst' of mRNA induction after stress serves to accelerate change in the corresponding protein levels. We identified several classes of post-transcriptional regulation, but show that most of the variance in protein changes is explained by mRNA. Our results present a picture of the coordinated physiological responses at the levels of mRNA, protein, protein-synthetic capacity, and cellular growth.
Notes:
2010
David M Good, Craig D Wenger, Joshua J Coon (2010)  The effect of interfering ions on search algorithm performance for electron-transfer dissociation data.   Proteomics 10: 1. 164-167 Jan  
Abstract: Collision-activated dissociation and electron-transfer dissociation (ETD) each produce spectra containing unique features. Though several database search algorithms (e.g. SEQUEST, MASCOT, and Open Mass Spectrometry Search Algorithm) have been modified to search ETD data, this consists chiefly of the ability to search for c- and z(*)-ions; additional ETD-specific features are often unaccounted for and may hinder identification. Removal of these features via spectral processing increased total search sensitivity by approximately 20% for both human and yeast data sets; unique peptide identifications increased by approximately 17% for the yeast data sets and approximately 16% for the human data set.
Notes:
Paul A Grimsrud, Désirée den Os, Craig D Wenger, Danielle L Swaney, Daniel Schwartz, Michael R Sussman, Jean-Michel Ané, Joshua J Coon (2010)  Large-scale phosphoprotein analysis in Medicago truncatula roots provides insight into in vivo kinase activity in legumes.   Plant Physiol 152: 1. 19-28 Jan  
Abstract: Nitrogen fixation in legumes requires the development of root organs called nodules and their infection by symbiotic rhizobia. Over the last decade, Medicago truncatula has emerged as a major model plant for the analysis of plant-microbe symbioses and for addressing questions pertaining to legume biology. While the initiation of symbiosis and the development of nitrogen-fixing root nodules depend on the activation of a protein phosphorylation-mediated signal transduction cascade in response to symbiotic signals produced by the rhizobia, few sites of in vivo phosphorylation have previously been identified in M. truncatula. We have characterized sites of phosphorylation on proteins from M. truncatula roots, from both whole cell lysates and membrane-enriched fractions, using immobilized metal affinity chromatography and tandem mass spectrometry. Here, we report 3,457 unique phosphopeptides spanning 3,404 nonredundant sites of in vivo phosphorylation on 829 proteins in M. truncatula Jemalong A17 roots, identified using the complementary tandem mass spectrometry fragmentation methods electron transfer dissociation and collision-activated dissociation. With this being, to our knowledge, the first large-scale plant phosphoproteomic study to utilize electron transfer dissociation, analysis of the identified phosphorylation sites revealed phosphorylation motifs not previously observed in plants. Furthermore, several of the phosphorylation motifs, including LxKxxs and RxxSxxxs, have yet to be reported as kinase specificities for in vivo substrates in any species, to our knowledge. Multiple sites of phosphorylation were identified on several key proteins involved in initiating rhizobial symbiosis, including SICKLE, NUCLEOPORIN133, and INTERACTING PROTEIN OF DMI3. Finally, we used these data to create an open-access online database for M. truncatula phosphoproteomic data.
Notes:
Danielle L Swaney, Craig D Wenger, Joshua J Coon (2010)  Value of using multiple proteases for large-scale mass spectrometry-based proteomics.   J Proteome Res 9: 3. 1323-1329 Mar  
Abstract: Large-scale protein sequencing methods rely on enzymatic digestion of complex protein mixtures to generate a collection of peptides for mass spectrometric analysis. Here we examine the use of multiple proteases (trypsin, LysC, ArgC, AspN, and GluC) to improve both protein identification and characterization in the model organism Saccharomyces cerevisiae. Using a data-dependent, decision tree-based algorithm to tailor MS(2) fragmentation method to peptide precursor, we identified 92 095 unique peptides (609 665 total) mapping to 3908 proteins at a 1% false discovery rate (FDR). These results were a significant improvement upon data from a single protease digest (trypsin) - 27 822 unique peptides corresponding to 3313 proteins. The additional 595 protein identifications were mainly from those at low abundances (i.e., < 1000 copies/cell); sequence coverage for these proteins was likewise improved nearly 3-fold. We demonstrate that large portions of the proteome are simply inaccessible following digestion with a single protease and that multiple proteases, rather than technical replicates, provide a direct route to increase both protein identifications and proteome sequence coverage.
Notes:
Craig D Wenger, Graeme C McAlister, Qiangwei Xia, Joshua J Coon (2010)  Sub-part-per-million precursor and product mass accuracy for high-throughput proteomics on an electron transfer dissociation-enabled orbitrap mass spectrometer.   Mol Cell Proteomics 9: 5. 754-763 May  
Abstract: We demonstrate a new approach for internal mass calibration on an electron transfer dissociation-enabled linear ion trap-orbitrap hybrid mass spectrometer. Fluoranthene cations, a byproduct of the reaction used for generation of electron transfer dissociation reagent anions, are co-injected with the analyte cations in all orbitrap mass analysis events. The fluoranthene cations serve as a robust internal calibrant with minimal impact on scan time (<20 ms) or spectral quality. Following external mass calibration, 60 replicate LC-MS/MS runs of a complex peptide mixture were collected over the course of approximately 136 h (almost 6 days). Using only standard external mass calibration, the mass accuracy for a typical analysis was -3.31 +/- 0.93 ppm (sigma) for precursors and -2.32 +/- 0.89 ppm for products. After application of internal recalibration, mass accuracy improved to +0.77 +/- 0.71 ppm for precursors and +0.17 +/- 0.67 ppm for products. When all 60 replicate runs were analyzed together without internal mass recalibration, the mass accuracy was -1.23 +/- 1.54 ppm for precursors and -0.18 +/- 1.42 ppm for products, nearly a 2-fold drop in precision relative to an individual run. After internal mass recalibration, this improved to +0.80 +/- 0.70 ppm for precursors and +0.16 +/- 0.67 ppm for products, roughly equivalent to that obtained in a single run, demonstrating a near complete elimination of mass calibration drift.
Notes:
Paul A Grimsrud, Danielle L Swaney, Craig D Wenger, Nicole A Beauchene, Joshua J Coon (2010)  Phosphoproteomics for the masses.   ACS Chem Biol 5: 1. 105-119 Jan  
Abstract: Protein phosphorylation serves as a primary mechanism of signal transduction in the cells of biological organisms. Technical advancements over the last several years in mass spectrometry now allow for the large-scale identification and quantitation of in vivo phosphorylation at unprecedented levels. These developments have occurred in the areas of sample preparation, instrumentation, quantitative methodology, and informatics so that today, 10 000-20 000 phosphorylation sites can be identified and quantified within a few weeks. With the rapid development and widespread availability of such data, its translation into biological insight and knowledge is a current obstacle. Here we present an overview of how this technology came to be and is currently applied, as well as future challenges for the field.
Notes:
Graeme C McAlister, Doug Phanstiel, Craig D Wenger, M Violet Lee, Joshua J Coon (2010)  Analysis of tandem mass spectra by FTMS for improved large-scale proteomics with superior protein quantification.   Anal Chem 82: 1. 316-322 Jan  
Abstract: Using a newly developed dual-cell quadrupole linear ion trap-orbitrap hybrid mass spectrometer (dcQLT-orbitrap), we demonstrate the utility of collecting high-resolution tandem mass spectral data for large-scale shotgun proteomics. Multiple nanoLC-MS/MS experiments on both an older generation quadrupole linear ion trap-orbitrap hybrid (QLT-orbitrap) and the dcQLT-orbitrap, using both resonant-excitation CAD and beam-type CAD (HCD), were performed. Resulting from various technological advances (e.g., a stacked ring ion guide AP inlet, a dual cell QLT), the dcQLT-orbitrap exhibited increased duty cycle (approximately 1.5-2 times) and sensitivity for both CAD (ion trap detection) and HCD (orbitrap detection) methods. As compared to the older system, the dcQLT-orbitrap produced significantly more unique peptide identifications for both methods (approximately 30% improvement for CAD and approximately 115% improvement for HCD). The sizable improvement of the HCD method on the dcQLT-orbitrap system outperforms the current standard method of CAD with ion trap detection for large-scale analysis. Finally, we demonstrate that the increased HCD performance translates to a direct and substantial improvement in protein quantitation precision using isobaric tags.
Notes:
2009
Danielle L Swaney, Craig D Wenger, James A Thomson, Joshua J Coon (2009)  Human embryonic stem cell phosphoproteome revealed by electron transfer dissociation tandem mass spectrometry.   Proc Natl Acad Sci U S A 106: 4. 995-1000 Jan  
Abstract: Protein phosphorylation is central to the understanding of cellular signaling, and cellular signaling is suggested to play a major role in the regulation of human embryonic stem (ES) cell pluripotency. Here, we describe the use of conventional tandem mass spectrometry-based sequencing technology--collision-activated dissociation (CAD)--and the more recently developed method electron transfer dissociation (ETD) to characterize the human ES cell phosphoproteome. In total, these experiments resulted in the identification of 11,995 unique phosphopeptides, corresponding to 10,844 nonredundant phosphorylation sites, at a 1% false discovery rate (FDR). Among these phosphorylation sites are 5 localized to 2 pluripotency critical transcription factors--OCT4 and SOX2. From these experiments, we conclude that ETD identifies a larger number of unique phosphopeptides than CAD (8,087 to 3,868), more frequently localizes the phosphorylation site to a specific residue (49.8% compared with 29.6%), and sequences whole classes of phosphopeptides previously unobserved.
Notes:
Jonathan T Ferguson, Craig D Wenger, William W Metcalf, Neil L Kelleher (2009)  Top-down proteomics reveals novel protein forms expressed in Methanosarcina acetivorans.   J Am Soc Mass Spectrom 20: 9. 1743-1750 Sep  
Abstract: Using both automated nanospray and online liquid chromatography mass spectrometry LC-MS strategies, 99 proteins have been newly identified by top-down tandem mass spectrometry (MS/MS) in Methanosarcina acetivorans, the methanogen with the largest known genome [5.7 mega base pairs (Mb)] for an Archaeon. Because top-down MS/MS was used, 15 proteins were detected with mispredicted start sites along with an additional five from small open reading frames (SORFs). Beyond characterization of these more common discrepancies in genome annotation, one SORF resulted from a rare start codon (AUA) as the initiation site for translation of this protein. Also, a methylation on a 30S ribosomal protein (MA1259) was localized to Pro59-Val69, contrasting sharply from its homologue in Escherichia coli (rp S12) known to harbor an unusual beta-thiomethylated aspartic acid residue.
Notes:
David M Good, Craig D Wenger, Graeme C McAlister, Dina L Bai, Donald F Hunt, Joshua J Coon (2009)  Post-acquisition ETD spectral processing for increased peptide identifications.   J Am Soc Mass Spectrom 20: 8. 1435-1440 Aug  
Abstract: Tandem mass spectra (MS/MS) produced using electron transfer dissociation (ETD) differ from those derived from collision-activated dissociation (CAD) in several important ways. Foremost, the predominant fragment ion series are different: c- and z(*)-type ions are favored in ETD spectra while b- and y-type ions comprise the bulk of the fragments in CAD spectra. Additionally, ETD spectra possess charge-reduced precursors and unique neutral losses. Most database search algorithms were designed to analyze CAD spectra, and have only recently been adapted to accommodate c- and z(*)-type ions; therefore, inclusion of these additional spectral features can hinder identification, leading to lower confidence scores and decreased sensitivity. Because of this, it is important to pre-process spectral data before submission to a database search to remove those features that cause complications. Here, we demonstrate the effects of removing these features on the number of unique peptide identifications at a 1% false discovery rate (FDR) using the open mass spectrometry search algorithm (OMSSA). When analyzing two biologic replicates of a yeast protein extract in three total analyses, the number of unique identifications with a approximately 1% FDR increased from 4611 to 5931 upon spectral pre-processing--an increase of approximately 28.6%. We outline the most effective pre-processing methods, and provide free software containing these algorithms.
Notes:
Michael T Boyne, Benjamin A Garcia, Mingxi Li, Leonid Zamdborg, Craig D Wenger, Shannee Babai, Neil L Kelleher (2009)  Tandem mass spectrometry with ultrahigh mass accuracy clarifies peptide identification by database retrieval.   J Proteome Res 8: 1. 374-379 Jan  
Abstract: A platform was developed to analyze MS/MS spectra from large peptides with low part-per-million mass accuracy, including a commercial-grade software suite. Termed Middle Down Proteomics, this platform identified 7454 peptides from 2-20 kDa (1472 unique) from 555 proteins after 23 LC-MS/MS injections of Lys-C digests of HeLa-S3 nuclear proteins. Along with greatly increased confidence for both peptide identification (expectation values from 10(-89) to 10(-4)) and characterization (up to 18% of peptides were modified in some LC-MS/MS runs), fragmentation data with <2 ppm accuracy enabled error tolerant and routine multiplexed database searching-all clearly demonstrated in this study.
Notes:
2008
Craig D Wenger, Michael T Boyne, Jonathan T Ferguson, Dana E Robinson, Neil L Kelleher (2008)  Versatile online-offline engine for automated acquisition of high-resolution tandem mass spectra.   Anal Chem 80: 21. 8055-8063 Nov  
Abstract: For automated production of tandem mass spectrometric data for proteins and peptides >3 kDa at >50 000 resolution, a dual online-offline approach is presented here that improves upon standard liquid chromatography-tandem mass spectrometry (LC-MS/MS) strategies. An integrated hardware and software infrastructure analyzes online LC-MS data and intelligently determines which targets to interrogate offline using a posteriori knowledge such as prior observation, identification, and degree of characterization. This platform represents a way to implement accurate mass inclusion and exclusion lists in the context of a proteome project, automating collection of high-resolution MS/MS data that cannot currently be acquired on a chromatographic time scale at equivalent spectral quality. For intact proteins from an acid extract of human nuclei fractionated by reversed-phase liquid chromatography (RPLC), the automated offline system generated 57 successful identifications of protein forms arising from 30 distinct genes, a substantial improvement over online LC-MS/MS using the same 12 T LTQ FT Ultra instrument. Analysis of human nuclei subjected to a shotgun Lys-C digest using the same RPLC/automated offline sampling identified 147 unique peptides containing 29 co- and post-translational modifications. Expectation values ranged from 10 (-5) to 10 (-99), allowing routine multiplexed identifications.
Notes:
Casey J Krusemark, Jonathan T Ferguson, Craig D Wenger, Neil L Kelleher, Peter J Belshaw (2008)  Global amine and acid functional group modification of proteins.   Anal Chem 80: 3. 713-720 Feb  
Abstract: A sequential reaction methodology is employed for the complete derivatization of protein thiols, amines, and acids in high purity under denaturing conditions. Following standard thiol alkylation, protein amines are modified via reductive methylation with formaldehyde and pyridine-borane. Protein acids are subsequently amidated under buffered conditions in DMSO using the coupling reagent (7-azabenzotriazol-1-yloxy)tripyrrolidinophosphonium hexafluorophosphate. The generality of the approach is demonstrated with four proteins and with several amines yielding near-quantitative transformations as characterized by high-resolution Fourier transform mass spectrometry. The developed approach has numerous implications for protein characterization and general protein chemistry. Applications in mass spectrometry (MS) based proteomics of intact proteins (top-down MS) are explored, including the addition of stable isotopes for relative quantitation and protein identification through functional group counting. The methodology can be used for altering the physical and chemical properties of proteins, as demonstrated with amidation to modify protein isoelectric point and through derivatization with quaternary amines. Additionally, the chemistry has applications in the semisynthesis of monodisperse polymers based on protein scaffolds. We prepare proteins modified with azides and alkynes to enable further functionalization via copper(I)-catalyzed 1,3-dipolar Huisgen cycloaddition ("click") chemistry.
Notes:
2007
John Astle, Jonathan T Ferguson, J Bruce German, George G Harrigan, Neil L Kelleher, Thomas Kodadek, Bryan A Parks, Michael J Roth, Keith W Singletary, Craig D Wenger, Gail B Mahady (2007)  Characterization of proteomic and metabolomic responses to dietary factors and supplements.   J Nutr 137: 12. 2787-2793 Dec  
Abstract: Over the past decade there has been a renewed interest in research and development of both dietary and nutritional supplements. Significant advancements have been made in the scientific assessment of the quality, safety, and efficacy of these products because of the strong interest in and financial support of these projects. As research in both fields continues to advance, opportunities to use new and innovative research technologies and methodologies, such as proteomics and metabolomics, are critical for the future progress of the science. The purpose of the symposium was to begin the process of communicating new innovative proteomic and metabolomic methodologies that may be applied by researchers in both the nutrition and the natural product communities. This symposium highlighted 2 proteomic approaches, protein fingerprinting in complex mixtures with peptoid microarrays and top-down mass spectrometry for annotation of gene products. Likewise, an overview of the methodologies used in metabolomic profiling of natural products was presented, and an illustration of an integrated metabolomics approach in nutrition research was highlighted.
Notes:
Bryan A Parks, Lihua Jiang, Paul M Thomas, Craig D Wenger, Michael J Roth, Michael T Boyne, Patricia V Burke, Kurt E Kwast, Neil L Kelleher (2007)  Top-down proteomics on a chromatographic time scale using linear ion trap fourier transform hybrid mass spectrometers.   Anal Chem 79: 21. 7984-7991 Nov  
Abstract: Proteomics has grown significantly with the aid of new technologies that consistently are becoming more streamlined. While processing of proteins from a whole cell lysate is typically done in a bottom-up fashion utilizing MS/MS of peptides from enzymatically digested proteins, top-down proteomics is becoming a viable alternative that until recently has been limited largely to offline analysis by tandem mass spectrometry. Here we describe a method for high-resolution tandem mass spectrometery of intact proteins on a chromatographic time scale. In a single liquid chromatography-tandem mass spectrometry (LC-MS/MS) run, we have identified 22 yeast proteins with molecular weights from 14 to 35 kDa. Using anion exchange chromatography to fractionate a whole cell lysate before online LC-MS/MS, we have detected 231 metabolically labeled (14N/15N) protein pairs from Saccharomyces cerevisiae. Thirty-nine additional proteins were identified and characterized from LC-MS/MS of selected anion exchange fractions. Automated localization of multiple acetylations on Histone H4 was also accomplished on an LC time scale from a complex protein mixture. To our knowledge, this is the first demonstration of top-down proteomics (i.e., many identifications) on linear ion trap Fourier transform (LTQ FT) systems using high-resolution MS/MS data obtained on a chromatographic time scale.
Notes:
2006
Sabre Kais, Craig Wenger, Qi Wei (2006)  Quantum criticality at the infinite complete basis set limit: a thermodynamic analog of the Yang and Lee theorem   Chemical Physics Letters 423: 1-3. 45-49  
Abstract: Finite size scaling for calculations of the critical parameters of the few-body Schrödinger equation is based on taking the number of elements in a complete basis set as the size of the system. We show in an analogy with Yang and Lee theorem, which states that singularities of the free energy at phase transitions occur only in the thermodynamic limit, that singularities in the ground state energy occur only in the infinite complete basis set limit. To illustrate this analogy in the complex-parameter space, we present calculations for Yukawa type potential, and a Coulomb type potential for two-electron atoms.
Notes:
Powered by PublicationsList.org.