

Measurement for improving accuracy of estimates:

the case study of a small software organisation

Sylvie Trudel

Abstract
This paper describes the case study of a small Canadian software development

organisation that has established and sustained a measurement program for its software

activities, which includes functional size measurement using the COSMIC-FFP method. This

company has been in operation for over 20 years, and has 11 employees, all directly involved

in software projects. Their “not to exceed” estimate business model, guarantees that fixing

all defects found by their customer are free of charge. Quality is absolutely not an issue since

they deliver a new software release to their major customer every other week with less than

one defect per release on average, which is usually fixed within three hours. For that reason,

they do not require a defect management system. Thus, the motivation for a measurement

program came from other issues such as the inaccuracy of initial estimates, commitment to

quality and productivity by applying best practices and continuous improvement, and the

desire to improve productivity due to the loss of potential contracts to offshore organisations.

Many challenges were encountered and resolved while implementing the measurement

program such as dealing with company growth, tuning of estimation models to improve

accuracy between initial estimates and project actual performance data, and applying the

required rigour to sustain measurement activities.

This paper also describes a simple measurement plan. Measurement results presented

were used to improve the accuracy of estimation models, in which the step-by-step approach

is described. With more accurate estimates, several sound business decisions were made

regarding future projects.

1. Introduction
For many involved in software projects, accurate estimation is still perceived as an art,

despite the fact that several estimation methodologies have been developed and published
over the last years. Of course, the success of an estimation methodology implies collecting
and analyzing accurate project measures that are later used in an estimation model. Some of
these measures, namely effort and size, are known to be highly correlated as development
effort is dependant on the software size. But these two factors alone do not guarantee
accuracy of an estimation model and an organisation must stop and reflect in order to
understand the other factors influencing the productivity of a software team. Adding factors to
an estimation model may look like it increases its accuracy, but it could make it less accurate
due to the error propagation inherent with each factor used [1].

Part of this thought process was made in a small Canadian software development company
in order to come up with a more accurate estimation model. The need for accuracy came from
their business model. The factors that were examined came from their product technology and
their software process. This paper describes what was done and measured to improve the
accuracy of their estimation model.

2. Company description
2.1. Company overview

The small Canadian company was started 22 years ago by its president who is now acting
as project manager. All of the 11 employees are developers, two of which are also analysts

responsible for requirements development. They have no overhead but accounting (one day
per week) and housekeeping are subcontracted. The company has up to six active customers,
one of which is a large financial organisation managing loans for assets acquisition that
makes up for an average of 80% of the company’s annual gross revenues. For that customer
alone, the company develops and maintains a series of systems to support their sales and
operations. One of these systems, a sophisticated ERP called SUM, is interfaced with 10
peripheral systems and has been developed and used for over 10 years. Maintaining and
developing new features in SUM required seven person-years in 2006.

They have a backlog of projects roughly defined and planned to keep the whole team busy
for the next 6 to 8 months.

2.2. Business model
The company’s business model is to provide each customer a “not to exceed” project

estimate. If it takes less effort to develop a project than what was estimated, the customer is
invoiced at a lower price. When it takes more effort to develop than what was estimated, the
customer is invoiced the estimated price. Therefore, there is a strong motivation for accurate
estimating because, if the estimation is too high, the customer may decide to outsource the
project elsewhere, a situation which has occurred in the past. As well, if the estimation is too
low, the company does not make any profit and may even have to absorb a loss.

In addition, any defect found is to be fixed at the company’s expense. Therefore, there is a
strong commitment to quality and it became a company goal to deliver defect free products,
which can also be seen as a competitive advantage.

Every hour spent performing activities during “Initiate project” and “Analyze and
estimate” (see section 3.2 for process overview) is always billed to the project. As a result, the
effort estimates must include all other types of activities: project management, software
development and testing, documentation, packaging, and validation. Different hourly rates are
used per activity depending on the skill sets required, i.e. individuals performing project
management or analysis activities have significantly higher wages.

3. Process description
3.1. Process improvement initiative

The company missed deadlines on several features given their short bi-weekly release
cycle. They experienced cost overruns on half of their projects. Quality was not an issue since
they usually have less than one defect per release, found once the release is in production and
fixed within a three hour period. Nevertheless, some of their potential projects were lost to
major outsourcing organisations in India from 2001-2002 and they needed to be more
competitive. They had learned about the existence of the CMMI [2] and were concerned
about applying its best practices to increase their efficiency and productivity.

In November 2004, the company formally began to continuously improve its software
process by hiring the author as an external consultant. They had a stable but undocumented
process. They were not facing any big issues related to software development but small
irritants were observed, namely in software development estimation and lack of formality in
customer communication. The path adopted was to learn about the CMMI, assess their
practices against CMMI practices at a rate of one process area per month, and start improving
their process on a continuous basis.

The demand for features from their largest customer was growing, so was the team size.
They wanted to continue to be results-oriented and needed to involve more team members
into project coordination.

The process was and still is project-oriented. They define a project as being a set of one or
more related features laid out to develop or modify a part of existing or new modules. The
average project effort is approximately 150 hours; some bigger projects attain more than
1,300 hours.

They document user needs and requirements in simple text files which include interface
mock-ups. They apply the Scrum methodology [3] for managing their projects and related
detailed requirements. They use spreadsheets to gather planning data, design decisions, and
test cases. Peer reviews are applied to selected deliverables. Effort is measured using a home-
grown timesheet system called eMalaya.

3.2. Process overview
The company’s process has nine phases (Figure 1), each of them being detailed in a set of

activities directly producing or updating an output.

Initiate project

(define user

needs)

Analyze and

estimate

Manage project

(coordinate work)

Go

Design, code and

unit testing

Package new

version

Close project

(retrospective)

Invoice projects

(monthly)

Install and validate

version

Sub-project

assigned

Tests

completed

Go

Release new

version to

production

Go

No Go: Defects

No

Go

Project

completed

End of

month

No

Go
Defects

Figure 1. Process overview.

3.3. Measurement program
The company already had a measurement program that included effort and schedule

measures, and its main purpose was for billing the customers at the end of every month and at
the end of the project and tracking R&D. However, no measurement plan existed that related
the measures to the business goals because some of the required measures and indicators were
not available. In the fall of 2006, it was decided to document the measurement plan as an
exercise to understand the information needs of the manager and team members.

In small companies, when a new practice is introduced in the process, such as developing
and maintaining a measurement plan, its advantages must be clear for the manager; otherwise
he or she may decide quickly to abandon this new practice, especially if it seems
cumbersome. So a very simple approach for documenting it had to be taken. It was decided to
use the classic “Goal-Question-Metric” (GQM) technique and to put the measurement plan

into a spreadsheet with three worksheets in it: one for the goals (Table 1), one for the
questions and indicators (Table 2), and one for basic measures (Table 3).

Table 1. Company goals.

ID Goals Reason

G1 Deliver projects within effort estimates
Reach corporate goal of 30% gross
margin.

G2 Deliver defect free versions into production
Ensure product quality and customer
satisfaction, minimize rework.

One of the challenges the manager and analysts encountered at the beginning of the

measurement program was the continuous rigour and discipline required to feed the
measurement program. At first, the main file used to monitor all projects, the project portfolio
file, did not contain any of the measures or indicators and this data was simply kept in its
source repository. It was decided early on to include these measures and indicators in the
project portfolio file so the manager would be able to view a whole year of projects at a
glance. Only then did the motivation to sustain the measurement program arise, because it
looked simple, useful, and they knew exactly why these measures were taken and what
decisions or actions should be taken based on indicator values.

4. Product description
4.1. Product overview

SUM is deployed in 14 locations throughout Canada and is utilized by approximately 250
users on a daily basis. Three servers are used simultaneously to provide the required
performance: Montreal (Quebec), Toronto (Ontario), and Calgary (Alberta). It is built on
client-server architecture for Windows.

Ten years ago, SUM was fully developed in Visual Fox Pro (VFP), including its database
(see Figure 2 for Previous SUM Architecture). In 2003, the database was changed to MS-SQL
Server, which was more secure and reliable than VFP, and they began a six-year
reengineering plan in .Net C# (for both Windows and Web user interfaces), which includes
refactoring the business logic and the data into separate layers to accommodate various
interface types (Windows, Web, Mobile) without duplicating important portions of the source
code that also requires more intensive testing (see Figure 3 for New SUM Architecture).

Today, SUM is made of 310 windows and screens distributed in 11 internal modules and
10 external modules; it has over 1 million lines of code (see Table 4) and 474 database tables
containing a total of 4,333 fields (see Table 5).

Q
4

H
o

w
 m

an
y

 d
ef

ec
ts

 d
o

w
e

h
av

e
p

er
 y

ea
r

an
d

 p
er

re
le

as
e?

N
u

m
b

er
 o

f
d

ef
ec

ts
 p

er

re
le

as
e

an
d

 t
o

ta
l

G
2

U
n

it

V
er

si
o

n
 f

il
e

P
M

"D
ef

ec
ts

"
co

lu
m

n

A
ft

er
 e

v
er

y
 r

el
ea

se

A
ll

W
h

en
 >

 1
,

h
ig

h
li

g
h

t
in

re
d

.

W
h

en
 >

 1
,

d
o

 a

re
tr

o
sp

ec
ti

v
e.

Q
3

W
h

at
 a

re
 t

h
e

d
if

fe
re

n
ce

s
b

et
w

ee
n

 t
h

e

p
la

n
n

ed
 e

ff
o

rt
 a

n
d

 t
h

e
in

it
ia

l
S

cr
u

m

d
et

ai
le

d
 e

st
im

at
e?

P
la

n
n

ed
 e

ff
o

rt
 –

 S
cr

u
m

 i
n

it
ia

l
ef

fo
rt

G
1

H
o

u
r

P
ro

je
ct

 P
o

rt
fo

li
o

 f
il

e

S
cr

u
m

 M
as

te
r

o
r

P
M

S
ep

ar
at

e
"S

cr
u

m
 e

ff
o

rt
"

co
lu

m
n

A
s

so
o

n
 a

s
S

cr
u

m
 d

et
ai

le
d

 e
st

im
at

ed
 i

s

d
o

n
e

M
an

ag
er

+
P

M
+

A
n

al
y

st

W
h

en
 S

cr
u

m
 e

st
im

at
e

ex
ce

ed
s

p
la

n
n

ed

ef
fo

rt
 o

f
m

o
re

 t
h

an
 5

%
,

h
ig

h
li

g
h

t
in

re
d

.

-
R

e-
es

ti
m

at
e

ei
th

er
 p

la
n

 o
r

S
cr

u
m

.

-
If

 a
p

p
ro

p
ri

at
e,

 a
d

v
is

e
cu

st
o

m
er

 o
f

an

es
ti

m
at

e
ch

an
g

e
p

ri
o

r
to

 b
eg

in
n

in
g

p
ro

je
ct

.

Q
2

W
h

at
 p

ro
je

ct
 p

ro
p

o
rt

io
n

h
as

 a
n

 o
v

er
ru

n
 >

 5
%

?

(N
u

m
b

er
 o

f
p

ro
je

ct
s

o
f

o
v

er
ru

n
>

+
5

%
)*

1
0

0
/

to
ta

l

n
u

m
b

er
 o

f
p

ro
je

ct
s

G
1

%

P
ro

je
ct

 P
o

rt
fo

li
o

 f
il

e

M
an

ag
er

O
n

 t
o

p
 o

f
th

e
"E

ff
o

rt

o
v

er
ru

n
"

co
lu

m
n

Q
u

ar
te

rl
y

M
an

ag
er

+
P

M
+

A
n

al
y

st

W
h

en
 >

 1
5

%
,

h
ig

h
li

g
h

t

in
 r

ed
.

W
h

en
 >

 1
5

%
,

ad
ju

st

es
ti

m
at

io
n

 m
o

d
el

Q
1

F
o

r
ea

ch
 p

ro
je

ct
,

w
h

at
 i

s
th

e

d
if

fe
re

n
ce

 b
et

w
ee

n
 a

ct
u

al

ef
fo

rt
 a

n
d

 p
la

n
n

ed
 e

ff
o

rt
?

(A
ct

u
al

 e
ff

o
rt

 -

(p
la

n
n

ed
 e

ff
o

rt
 +

 C
R

s)
)*

1
0

0

/(
p

la
n

n
ed

 e
ff

o
rt

 +
 C

R
s)

G
1

%

P
ro

je
ct

 P
o

rt
fo

li
o

 f
il

e

M
an

ag
er

"E
ff

o
rt

 o
v

er
ru

n
"

co
lu

m
n

E
n

d
 o

f
ev

er
y

 p
ro

je
ct

M
an

ag
er

+
P

M
+

A
n

al
y

st

U
se

 c
o

n
d

it
io

n
al

 f
o

rm
at

ti
n

g

to
 h

ig
h

li
g

h
t

an
y

 o
v

er
ru

n
.

-
V

er
if

y
 t

h
at

 t
h

e
p

ro
ce

ss
 w

as

ap
p

li
ed

,
es

p
ec

ia
ll

y
 o

n
 C

R
s.

-
V

er
if

y
 a

n
y

 e
n

co
u

n
te

re
d

is
su

e.

T
ab

le
 2

.
E

x
am

p
le

 o
f

q
u

es
ti

o
n

s
an

d
 i

n
d

ic
at

o
rs

 (
re

la
te

d
 t

o
 g

o
al

 #
1

).

ID

In
d

ic
a

to
rs

(q
u

es
ti

o
n

s)

F
o

rm
u

la

G
o

a
l

U
 o

f
M

S
o

u
rc

e
o

f
d

a
ta

R
es

p
o

n
si

b
le

S
to

re
d

 w
h

er
e

S
to

re
d

 w
h

en

S
ta

k
eh

o
ld

er
s

A
n

a
ly

si
s

P
ro

ce
d

u
re

P
o

ss
ib

le

A
ct

io
n

s

M
4

S
cr

u
m

 i
n

it
ia

l

ef
fo

rt

P
er

 p
ro

je
ct

H
o

u
rs

1
 h

r

E
m

p
lo

y
ee

s

S
cr

u
m

 W
o

rk
s

A
s

so
o

n
 a

s

S
cr

u
m

 i
n

it
ia

l

ef
fo

rt
 i

s

co
m

p
le

te
d

,
th

e

P
M

 c
o

p
ie

s
th

e

ef
fo

rt
 v

al
u

e
in

th
e

p
ro

je
ct

p
o

rt
fo

li
o

 f
il

e.

R
ev

ie
w

 b
y

 t
h

e

P
M

.

M
3

T
o

ta
l

ef
fo

rt

fo
r

al
l

C
R

s

P
er

 p
ro

je
ct

H
o

u
rs

1
 h

r

P
M

C
R

 f
il

es

A
s

so
o

n
 a

s
a

C
R

 i
s

ap
p

ro
v

ed
,

en
te

r
it

 i
n

 t
h

e

C
R

 F
o

ll
o

w
-u

p

ta
b

le
 i

n
 t

h
e

p
ro

je
ct

 p
la

n
.

P
ee

r
re

v
ie

w

es
ti

m
at

es
 t

o

en
su

re
 t

h
at

n
o

th
in

g
 w

as

fo
rg

o
tt

en
.

V
al

id
at

io
n

w
it

h

cu
st

o
m

er
.

M
2

P
la

n
n

ed
 e

ff
o

rt

P
er

 p
ro

je
ct

H
o

u
rs

1
 h

r

P
M

P
ro

je
ct

 p
la

n

P
ro

je
ct

 <

5
0

 h
rs

 =

m
an

u
al

 o
n

ly

P
ro

je
ct

 >

5
0

 h
rs

 =
 F

S
M

P
ee

r
re

v
ie

w

es
ti

m
at

es
 t

o

en
su

re
 t

h
at

n
o

th
in

g
 w

as

fo
rg

o
tt

en
.

V
al

id
at

io
n

w
it

h

cu
st

o
m

er
.

M
1

A
ct

u
al

 e
ff

o
rt

P
er

 p
ro

je
ct

H
o

u
rs

1
 h

r

E
m

p
lo

y
ee

s

A
n

at
im

e

T
im

es
h

ee
t

m
u

st

b
e

en
te

re
d

ev
er

y
 d

ay

V
er

if
y

ti
m

es
h

ee
ts

 p
ri

o
r

to
 i

n
v

o
ic

in
g

(m
o

n
th

ly
):

ri
g

h
t

p
ro

je
ct

,

ri
g

h
t

ta
sk

,

co
n

si
st

en
t

n
u

m
b

er
 o

f

h
o

u
rs

.

T
ab

le
 3

.
S

o
m

e
o

f
th

e
b

as
ic

 m
ea

su
re

s
(r

el
at

ed
 t

o
 g

o
al

 #
1

).

ID

M
ea

su
re

s

S
co

p
e

U
 o

f
M

P
re

ci
si

o
n

M
ea

su
re

d

b
y

D
a

ta
 s

o
u

rc
e

D
a

ta

co
ll

ec
ti

o
n

p
ro

ce
d

u
re

Q
u

a
li

ty

a
ss

u
ra

n
ce

VFP User Interface

and Business Logic

VFP Database

engine (local)

Synchronization

package (VFP)

VFP Database

engine (national)

VFP Database

engine (regional)

User

Interface

Layer

Business

Logic Layer

Data Layer

Database Layer

(SQL-Server)

VFP,

C# for Windows,

or C# Web

C#

SQL scripts,

stored procedures, and

user defined functions

Figure 2: Previous SUM Architecture. Figure 3: New SUM Architecture.

Table 4: Source code physical measures.

Language # lines, incl. comments # commented lines Comments ratio

VFP 541,288 211,071 39%

.Net C# 484,082 121,391 25%

SQLNote 1 100,098 18,800 19%

Total: 1,125,468 351,262 31%

Note 1: The database layer contains 398 Stored Procedures for 73,515 lines of
code and 999 User Defined Functions for 20,327 lines of code.

Table 5: Database structure physical measures.

 Dynamic
Note 2

Static Total

Number of tables 172 302 474

Number of attributes (fields) 2,751 1,582 4,333

Note 2: The content of Dynamic tables is synchronized every 15
minutes between the Montreal, Toronto, and Calgary
servers, for redundancy and security reasons.

4.2. Product release cycle
The product is released into production every other week. Supplemental releases may be

required for bug fixing or the addition of an urgent feature. A new version releases several
features from several projects. A project can also be developed iteratively and delivered over
several product releases, in this case hidden or partially deployed project can be included in a
release.

For every release, the build master compiles a new version from the source code
repository, installs it on the test environment and tests are performed for half a day (Thursday
morning). If defects are found at this point, verbal communication occurs with the developer
in charge who fixes the defect immediately, stores the modified code into the repository, and
advises the build master who rebuilds a new version. These defects are not measured.

When tests results show no defects, a readiness for validation notice is sent to their
customer. Two team members supervise validation testing at the customer’s site during one to
four hours (Thursday afternoon). At this point, any defect found is fixed Friday morning and
the product is retested in the afternoon. These defects are not measured either. Once
validated, the new version is released into production by the customer’s IT staff, using the
installation procedure during the weekend. When defects are found after it has been sent to
production, they are noted and measured in the “Version file”. These defects are fixed
immediately and a new version is sent before noon that day.

On average, fixing defects takes one hour, building the application requires 10 minutes,
and deployment requires 30 minutes. This efficiency is possible using a home-grown
deployment tool.

4.3. Product quality
Delivering defect free products is one of the company’s main goals. In 2006, 35 releases of

SUM were deployed, of which 17 had zero defects. In the other 18 releases, 28 defects were
found and each of them was fixed within half a day. It represents an average of 0.8 defect per
release. The main reasons for these astonishing results are: a robust software architecture, in-

depth knowledge of the business domain, the framework used, and strong commitment to
quality from management.

Considered as a rare situation, this company does not use any defect management tool
because there are simply not enough defects to manage.

5. Project estimation
5.1. Initial estimation process

Before 2005, estimation was done on a task-effort basis. During analysis, a list of tasks
was detailed to define the software work needed to accomplish the project in the four main
software layers: user interfaces and reports, business logic, data and database. Every task was
estimated by the analyst and a developer would validate the list of tasks and associated design
and programming effort. A percentage was then added for testing and project management.

As a result, half of the projects ended up exceeding estimates.

5.2. Functional size measurement
Functional size measurement (FSM) using COSMIC-FFP [4] was introduced in the fall of

2005 as an ingredient to develop a new estimation model. FSM was then performed on 3 to 4
projects. In December 2005, as the “Guideline for sizing business application software using
COSMIC-FFP” [5] was published, validation was applied to actual functional size and
modifications were made resulting from a better understanding of the COSMIC-FFP method.

The project plan template was modified to add a worksheet for FSM, which contains the
list of functionalities with their associated data groups. The analyst was responsible to
measure the size of current and new projects. When using the project plan template, the
analyst identifies each functionality, its associated data groups and relevant data movements.
Functional size is automatically calculated based on identified data movements.

5.3. Early estimation models based on FSM
A productivity model was established based on functional size and actual effort. It was

mostly used to validate estimates made on a task-effort basis. Significant differences in
productivity models were observed among projects, ranging from 1.5 to 6 hours per size unit.
Variation between estimates and project performance was sometimes more than 50%. This
inaccuracy makes a big difference for a 150,000$ project vs. a 600,000$ project, where the
potential customer would have accepted the first, but refused the second.

5.4. First observations on inaccurate results
It was no surprise to find out that the most important factor for differences between effort

estimates and projects actual effort was due to change requests (CR) that were not
systematically estimated and measured. A so called “small request” made by the customer
over the phone can become a 45% effort increase. A decision was taken to formally document
any CR for approval by the customer and to monitor all CRs of a project in the project
portfolio file. Also, effort for implementing CRs is entered in the timesheet system with
specific description in order to isolate that effort easily.

When effort from implementing CRs in a project was extracted, variations between actual
effort and estimated effort were less than 27%. However, it was still significant and research
was undertaken to improve accuracy.

6. Improving estimation models
Intuitively, the analysts and project manager believed in the FSM approach for effort

estimation and decided to refine the concept of measuring functional size without having to
switch to the developer’s viewpoint. The following sections describe the detailed steps that
were taken to come up with more accurate estimation models.

6.1. Step 1: assess reasons for inaccuracy from product and process
Investigation helped explain this variation and it appeared that the main difference came

from the technology used: VFP projects productivity averages 2.5 hours per size unit, and C#
projects productivity averages 4.5 hours per size unit, once they thought the learning curve of
team members was over. One of the difficulties was when several technologies (i.e., VFP for
GUI and C# for business logic) needed to be integrated because it is more complicated and
requires more effort, up to 6 hours per size unit. Also, a lot of effort had to be spent on
creating stored procedures for new database tables. Many projects developing new features
were actually using existing tables along with their stored procedures. In these cases, the
required effort per size unit was lower than the productivity model of projects for which most
tables needed to be created.

The team productivity model behaved as if new development occurs only for the first
functional process (i.e., creating GUI, business logic, data persistence, and database layers)
and as if it switches to maintenance mode thereafter (i.e., stored procedures are already
created and used in an evolutive or adaptative software maintenance).

Training was provided by an expert on estimation based on FSM in fall of 2005. This
expert described the following estimation ratios for software maintenance:

� Add a new data movement = 100% of effort
� Delete a data movement = 10% of effort, mainly required for testing
� Modify portions of an existing data movement = 50% of effort.
These ratios were applied on the estimation model itself (e.g., if the estimation model is 5

hours per size unit, deleting a data movement would require 0.5 hour and adding one or
several attributes to a data group would require 2.5 hours for each affected data movement.)
The functional size remains the same; an adjusted estimation model is simply applied on each
data movement. The analysts tried to estimate using this technique but felt uncomfortable
with it for the following reasons:

1. This method seemed appropriate only when the software architecture is in a single
layer because it implies that all data movements related to that new data group are also
new and have to be fully developed.

2. When developing in a multi-layer architecture, a new data group requires more effort
to create when developing the first functional process, and less effort when reusing
that data group data layer code and business layer code in any subsequent functional
process.

3. When modifying existing data groups and data movements, such as adding attributes,
there is a significant difference of effort due to the number of attributes affected, and
thus the 50% ratio for maintenance needed to be redefined.

Using the developer’s viewpoint was considered for FSM but the idea was quickly
abandoned for fear of increasing measurement effort by having to measure all data
movements for each of the software layers. Instead, it was decided to continue using the
user’s viewpoint but try to establish the impact of reuse on each data movement.

6.2. Step 2: evaluate impact of reuse from software architecture layers
In depth knowledge of the development process tied to the software architecture led the

analysts to evaluate the impact of in-process reuse of basic software components. The
analysts measured the ratio of effort required to develop several new functional processes
requiring all new data groups. For example, such functional process could be a screen to
assign an employee to a department. On average, half of the effort is spent developing the
business and data layers in C#, 20% is spent on developing the database layers (SQL stored
procedures and user defined functions), and the rest is for the user interface for which effort
may vary depending on the technology used. The technology issue will be addressed later.

When a second functional process is developed, such as displaying the list of employees
with their current department, all required components from the database layer and many of
the components from the business logic and data layer already exist, so the developer simply
has to reuse them. In such case, the display (exit) of an employee/department record is
considered as a new data movement, but reading the employee, employee-department, and
department tables is done with reusable components, for which minor adjustments in the
business logic must be done, along with required effort in the user interface for selection or
filtering criteria.

A function that requires a minor change is defined as adding one to three attributes in an
existing data group, affecting all relevant data movements (e.g., adding a customer web site
link in a user interface, which requires to add the web site field in the customer table, add the
business logic to validate format of the web site link, and add the field in the user interface to
be displayed.) All components exist but affected data movements require small modifications
throughout all layers. The same principle applies for a major change defined as adding more
than three attributes to an existing data group, affecting all relevant data movements (e.g.,
adding a shipping address and shipping phone number of customers on the “display invoices”
function.) Example of obtained results is shown in Table 6.

Table 6. Effort ratio per software layer.

 Effort ratio

Software layer New Reuse Minor change Major change

User interface 30% 15% 10% 30%

Business logic and data (C#) 50% 10% 10% 30%

Database layer (SQL) 20% 0% 10% 10%

Total: 100% 25% 30% 70%

6.3. Step 3: apply reusability factors to data movements
Taking into account the reusability allows “weighting” of each data movement (i.e.,

calculating a fraction of its size by applying the appropriate effort ratio: new=100%,
reused=25%, minor change=30%, and major change=70 %). This activity is performed as part
of FSM and is automated in the estimation spreadsheet, as shown in Figure 4.

 Total : 13 14 13 12 52 -9,75 42,25

Module
Functional
Process

Data
Group

Reuse
type

FFP
Read

FFP
Exit

FFP
Entry

FFP
Writ
e

FFP
Total

Reuse
Impa
ct

Weighted
size

Create
email/fax

Display main
window

Trigger New 0 0 1 0 1 0 1

Create
email/fax

Display main
window

Document
Header

Reuse 1 1 0 0 2 -1,5 0,5

Create
email/fax

Display main
window

curDocHe
ader

New 0 0 1 1 2 0 2

Create
email/fax

Display main
window

Error
message

New 0 1 0 0 1 0 1

Create
email/fax

Maintain
address book

Contacts Reuse 1 1 1 1 4 -3 1

Create
email/fax

Maintain
address book

curContac
t

New 0 0 1 1 2 0 2

Create
email/fax

Maintain
address book

Error
message

New 0 1 0 0 1 0 1

Create
email/fax

Maintain
address book

UserLogo
n

Reuse 1 1 1 1 4 -3 1

Create
email/fax

Maintain
address book

curUserLo
gon

New 0 0 1 1 2 0 2

(File continues…)

Figure 4. Example of FSM and weighted size.

This reusability factor is applied during FSM and requires only one to two seconds per

data group per functional process, which is negligible knowing that an average size project
requires approximately 1.5 hour to measure.

6.4. Step 4: establish estimation models per technology
To establish an estimation model based on the weighted size, several projects were

measured, weighted, and then compared with actual effort. At mid-2006, the initial estimation
models based on weighted size units (WSU) per technology were established (see Table 7).

Table 7. Initial estimation model based on weighted size per technology.

Technology VFP C# for Windows C# Web

Estimation model (hours/WSU) 3.22 3.86 5.15

These estimation models were not readjusted until recently when it was decided to follow-

up on their accuracy. Three C# projects and two VFP projects were estimated and measured
using the technique described above (see Section 6.6).

6.5. Step 5: adjust effort estimation with risk factors
The analysts and project manager also discovered three risk factors that were influencing

their productivity on certain projects: technology (known or unknown), complexity (low,
medium, high) related to knowledge of business domain and business process of the
customer, and number of other stakeholders involved (none, third party from the client, one or
many vendors).

Contingency is added as a percentage of total estimated effort when risk is perceived. No
contingency is required when the technology is known, the complexity is low, and no third
party or vendor is involved. The sample of projects used in this case study did not require any
contingency, so as the majority of developed projects.

6.6. Step 6: validate effort estimation with actual data
The last step was to enter actual data in the project portfolio spreadsheet: actual functional

size, estimated and actual effort, change requests effort, and weighted size. Then, automated
computations were done for productivity (actual hours per functional size unit) and estimation
models (actual effort per WSU), the latter being monitored to readjust the overall estimation
model on a periodic basis (see Table 8).

Table 8. Actual performance data for a sample of projects.

Pro

ject

Techno-

logy

Funct.

Size

(FFP)

Weighted

size units

(WSU)

Original

effort

estimate

(hours)

Actual

effort

w/o CRs

(hours)

Overrun

%

Produc-

tivity

model

(Hr/FFP)

New

estimation

model

(Hr/WSU)

1 C# Win 218 159.0 598 567.4 -5% 2.6 3.6

2 C# Win 74 53.3 131 109.7 -16% 1.5 2.1

3 C# Win 124 89.5 223 236.9 6% 1.9 2.6

Average for C# Win: 2.0 2.8

Variance for C# Win: 0.3 0.6

4 VFP 47 42.0 102 78.7 -23% 1.7 1.9

5 VFP 66 55.5 155 138.3 -11% 2.1 2.5

Average for VFP: 1.9 2.2

Variance for VFP: 0.1 0.2

7. Preliminary results of the "weighted size” approach
The number of data points was not sufficient to conclude if the weighted size approach is

successful or not to gain accuracy between estimates and actual effort. However, these
preliminary results were observed from the measurement exercise:

� The average productivity for C# Windows projects went from 4.5 to 2.0 hours per
COSMIC-FFP functional size units, which is very good compared to similar projects
found in the ISBSG repository [6]. This can be explained by three factors: i) the
learning curve for the C# technology may not have been over last year when the initial
estimation model was created; ii) six months ago, the manager has dismissed an
employee perceived to be a “net negative producing programmer” [7] and, after that
employee left, the manager perceived an increase of the overall team productivity; iii)
the software process is applied consistently.

� The productivity difference between C# for Windows and VFP projects seems to have
decreased significantly, which may open new business opportunities.

� There seems to be a tendency to overestimate, which is desired to a certain extent, due
to the business model.

8. Conclusion and future work
It is no surprise to observe that inaccurate projects are those for which the team did not

have the discipline of formalizing change requests. Even if it is unrealistic to desire an
estimation model that is 100% reliable, early refinement results for C# projects with less than
16% variance are encouraging. Several other projects were being developed and measured at
the time this article was being written, and the organisation will continue to monitor their
actual performance data in order to readjust the estimation models on a periodic basis.
However, if the weighted size approach does not result in an increased accuracy, it may be
abandoned to continue using the model of hours per COMIC-FFP functional size unit.

9. Acknowledgements
The author wishes to thank Michel Martel, president, and Stéphan Laporte, analyst of

Analystik inc., (michel.martel@analystik.ca; stephan.laporte@analystik.ca) for their precious
collaboration and information sharing. Special thanks to Carmela Caterina, president of the
Montreal SPIN, for her comments that improved the written English of this text.

10. References
[1] Santillo, L., “Error Propagation in Software Measurement and Estimation”, in IWSM/Metrikon

2006 conference proceedings, Potsdam, Berlin, Germany, 2-3 November 2006.
[2] Chrissis, M.B., Konrad, M. and Shrum, S., “CMMI: Guidelines for Process Integration and

Product Improvement”, Addison-Wesley, the SEI Series in Software Engineering, Boston,
2003.

[3] Schwaber, K., “Agile Project Management with Scrum”, Microsoft Press, Redmond, WA,
2004.

[4] Abran, A. e.a., “COSMIC FFP Measurement Manual 2.2”, January 2003,
http://www.lrgl.uqam.ca/cosmic-ffp .

[5] Lesterhuis, A. and Symons, C., “Guideline for sizing business application software using
COSMIC-FFP”, the Common Software Measurement International Consortium, version 1.0,
December 2005, http://www.lrgl.uqam.ca/cosmic-ffp .

[6] International Software Benchmarking Standards Group, http://www.isbsg.org .
[7] Schulmeyer, G.G., “The Net Negative Producing Programmer”,

http://www.pyxisinc.com/NNPP_Article.pdf , consulted on February 18th 2007.

