ÉCOLE DE TECHNOLOGIE SUPÉRIEURE – MONTRÉAL - CANADA

ODC and CMMI: Introducing the Root-Cause Analysis and Orthogonal Defect Classification at Lower Maturity Levels

Luigi Buglione & Alain Abran

1st Int. Conference on Software Process and Product Improvement 6-8 November 2006, Cadiz (Spain)

MENSURA 2006 – Cadiz (Spain) Nov 6-8, 2006 L.Buglione & A.Abran © 2006

Introduction

- ✓ Process Improvement and Possible Models
- Support Processes in the CMMI
 - ✓ Which Processes?
 - ✓ The List
 - ✓ Single or Double Role?

CAR: state-of-the-art

- ✓ The Process
- ✓ The Tools
- ✓ Related Work

Quantitative CAR as a foundation for higher MLs

- ✓ From RCA to ODC Related Work
- ✓ ODC: Strengths & Limitations
- Generalizing and Customizing ODC

Conclusions & Prospects

Introduction

Process Improvement and possible models

- Process Improvement can be "measured" against several schemas, there is no a model absolutely better than others. Two of the most used ones are:
 - ✓ ISO 9001:2000 (applicable to every domain, general requirements)
 - CMMI (typical for Software & Systems Engineering domain)
- Approx. the ML equivalence CMMI-ISO 9001:2000 companies is between CMMI Levels 2 and 3
 - ✓ 1994 Mark Paulk's paper
 - Mutafeljia & Stromberg mapping with coverage evaluations
- A greater attention is usually paid to "Engineering" and "Project" Processes, not to "Support" ones
 - ✓ Goal: achieving and consolidating faster ML2 and building foundation for higher MLs
 - ✓ **Question**: how to do it?

- Introduction •
 - Process Improvement and Possible Models
- **Support Processes in the CMMI**
 - ✓ Which Processes?
 - ✓ The List
 - ✓ Single or Dual Role?

CAR: state-of-the-art •

- ✓ The Process
- ✓ The Tools
- ✓ Related Work

Quantitative CAR as a foundation for higher MLs

- ✓ From RCA to ODC Related Work
- ✓ ODC: Strengths & Limitations
- Generalizing and Customizing ODC

Conclusions & Prospects •

Support Processes in the CMMI Processes: the list

• CMMI classifies 5 processes in the "Support" group:

ML	ΡΑ	Title	PA Purpose	Related GP
ML2	СМ	Configuration Mgmt	establish and maintain the integrity of work products using configuration identification, configuration control, configuration status accounting, and configuration audits	GP2.6
ML2	PPQA	Process & Product Quality Assurance	provide staff and management with objective insight into processes and associated work products	GP2.9
ML2	MA	Measurement & Analysis	develop and sustain a measurement capability that is used to support management information needs	GP2.8
ML3	DAR	Decision Analysis & Resolution	analyze possible decisions using a formal evaluation process that evaluates identified alternatives against established criteria	N.A.
ML5	CAR	Causal Analysis & Resolution	<i>identify causes of defects and other problems and take action to prevent them from occurring in the future</i>	GP5.2

Support Processes in the CMMI Single or Dual Role? (1/2)

- ML2 Support processes play in CMMI a "dual role":
 - ✓ as process area (PA) and as general practice (GP), as in the previous table
- This "dual role" helps organizations in building foundations for better improvements and making faster the achievement of higher MLs
 - ✓ I.e. a good Measurement & Analysis (MA) implementation has positive impacts both on PAs (PMC, PPQA) and GPs (3.2-*Collect Improvement Information* and 4.2-*Stabilize Subprocess Performance*) ratings

Support Processes in the CMMI Single or Dual Role (2/2)

- Because ISO 9001:2000 requires Root-Cause Analysis (RCA) for achieving the certification and it should be equivalent to CMMI ML2-3, an anticipated attention should be paid to Root-Cause Analysis (RCA), and its related CMMI process area (CAR - Causal Analysis & Relationship).
- Some questions to answer:
 - ✓ Q₁: Why CAR was placed at ML5 in the Staged Representation and not before? Is it really put in place mainly by high-level maturity companies?
 - ✓ Q₂: RCA and Measurement: is it possible to use RCA in a more quantitative manner? RCA is typically a TQM qualitative tool and ODC (Orthogonal Defect Classification), even if opens to a quantitative RCA, has some drawbacks. Which effects on Measurement abilities, outcomes and outputs?
 - ✓ Q₃: Are there some possible suggestions also for improving CMMI architecture about this issue? Which effects if CAR would be referred not only to GP5.2 but also as a GP2.x?

MENSURA 2006 – Cadiz (Spain) Nov 6-8, 2006 L.Buglione & A.Abran © 2006

Introduction

Process Improvement and Possible Models

Support Processes in the CMMI

- ✓ Which Processes?
 - ✓ The List
 - ✓ Single or Dual Role?

CAR: state-of-the-art

- ✓ The Process
- ✓ The tools
- ✓ Related Work

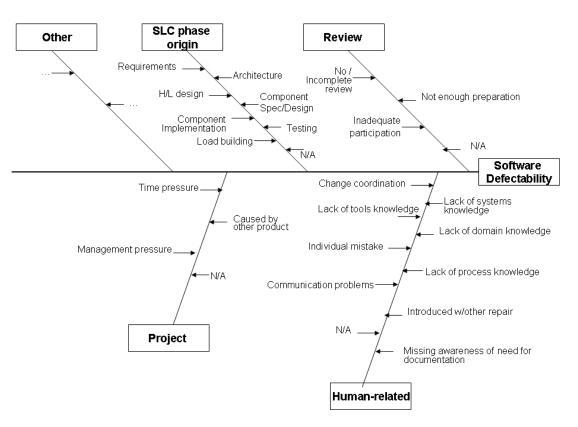
Quantitative CAR as a foundation for higher MLs

- ✓ From RCA to ODC Related Work
- ✓ ODC: Strengths & Limitations
- Generalizing and Customizing ODC

Conclusions & Prospects

CAR – Causal Analysis & Resolution

State-of-the-art: the process


 CAR is a ML5 process, with two Specific Goals (SG) and five Specific Practices (SP):

SG1.	Determine cause of defects		
	SP1.1 - Select Defect Data for Analysis		
	SP1.2 – Analyze Causes		
SG2.	Address cause of defects		
	SP2.1 – Implement the Action proposals		
	SP2.2 – Evaluate the Effect of Changes		
	SP2.3 - Record Data		

CAR – Causal Analysis & Resolution State-of-the-art: the tools

- SP1.2 #2 (Analyze selected defects and other problems to determine their root causes)
 - → Cause-and-effect (fishbone) diagrams

MENSURA 2006 – Cadiz (Spain) Nov 6-8, 2006 L.Buglione & A.Abran © 2006

Elaboration from: Leszak M., Perry D.E. & Stoll D., *A Case Study in Root Cause Defect Analysis*, Proceedings of the 22nd International Conference on Software Engineering (ICSE 2000), Limerick (Ireland), June 4-11 2000, ISBN 1581132069, pp.428-437

10

CAR – Causal Analysis & Resolution Related Works

✓Q₁: Why CAR was placed at ML5 in the Staged Representation and not before? Is it really put in place mainly by high-level maturity companies?

- It has been a "strong" assumption, evolving the "Defect Prevention" KPA from the old Sw-CMM
- Few suggestions in the technical literature were about moving RCA (and CAR) from a qualitative towards a quantitative approach, anticipating its usage to lower MLs
 - Williams (2002) → mapped the CAR SGs against the Juran's 10 points, suggested an intensive usage of qualitative and quantitative TQM tools for each CAR SP
 - Open point: no suggestions about the "how to" on each tool listed in point #4 (Identify root causes)
 - Norausky (2003) → proposed a "distributed usage" of CAR across the five MLs, using an "hybrid implementation approach" of CAR also for companies adopting the staged representation
 - Open point: no detailed suggestions for each ML, only high-level CAR Measurement suggested usage, in particular about the metrics traceability to business drivers at ML1

 \checkmark A₁: Use CAR at lower MLs, and applying it in a quantitative manner

Introduction •

Process Improvement and Possible Models

Support Processes in the CMMI •

- ✓ Which Processes?
 - ✓ The List
 - ✓ Single or Dual Role?

CAR: state-of-the-art •

- ✓ The Process
- ✓ The Tools
- ✓ Related Work

Quantitative CAR as a foundation for higher MLs

- ✓ From RCA to ODC Related Work
- ✓ ODC: Strengths & Limitations
- Generalizing and Customizing ODC

Conclusions & Prospects •

From RCA to ODC - Related Work

 \checkmark Q₂: RCA and Measurement: is it possible to use RCA in a more quantitative manner? RCA is typically a TQM qualitative tool and ODC, even if opens to a quantitative RCA, has some drawbacks. Which effects on Measurement abilities, outcomes and outputs?

- Orthogonal Defect Classification (ODC) was probably the most known technique derived for the Software Engineering domain from RCA
- ODC is a technique proposed by Chillarege et al. in 1992 introducing a standard taxonomy of causes with quantitative elements, moving RCA from a qualitative to a quantitative view.
- Two main attributes:
 - defect types → needed in order to classify the kind of defect detected. There are 8 types initially foreseen to be associated to the related SLC phase: function, interface, checking, assignment, timing/serialization, build/package/merge, documentation, algorithm.
 - defect triggers → defined as the condition that allows a defect to surface, helps in the verification process to understand where the defect has been originated

L.Buglione & A.Abran © 2006

ODC: Strengths & Limitations

• Strengths:

- Evolution of RCA from a qualitative to a quantitative approach
- ✓ Standard taxonomy (types; triggers) adopted → it allows comparability during time and across companies
- ✓ It helps in gathering defect data during time for statistical analysis and - more in general – to reduce resistance for measurement

• Limitations:

- ODC is only about Software Defect Management, where "Defects" typically refers to code defects
- ✓ Typically adopted by organizations with a robust measurement system → its introduction can be limited in organizations with low Maturity Levels (ML), because its possible remote payback period
- Updating of types and triggers does not allow a backward comparability

Generalizing and Customizing ODC (1/2)

A₂: Keep ODC principles and customize it to each implemented PA

 Derive measures with GQM-GQ(I)M each low-level leaf/bone in a Fishbone diagram using our own causes groups and adopt this tool whatever its ML

MENSURA 2006 – Cadiz (Spain) Nov 6-8, 2006

L.Buglione & A.Abran © 2006

Generalizing and Customizing ODC (2/2)

Practical Guidance:

- ✓ Build your own types & triggers for each implemented PA to be refined during time (effects to analyze could be the not (fully) achievement of PAs Specific Goals) → this will allow to reach your own standard taxonomy (even if you could start using standard classifications as 4Ms or 4Ps (People, Process, Procedure, Plans)
- Link measures detected from RCA to their related processes, as a standard element

• Possible Outcomes:

- ✓ Facilitate the adoption of (new) measures effectively needed for removing defects and related causes → it helps to re-think which are the core measures for the organization and their total cost as a *process* and not as an *activity*
- Facilitate the data collection process in the organization, as a foundation for statistical analysis (typically run at ML4)
- ✓ Reduce the CONQ in the M/L term and increase the CONQ/COQ ratio
- Facilitate the proper implementation of other PAs (i.e. PMC, PPQA) and GPs (GP2.8; GP3.2; GP4.2) by more skilled resources

Introduction

Process Improvement and Possible Models

Support Processes in the CMMI

- ✓ Which Processes?
 - ✓ The List
 - ✓ Single or Dual Role?

CAR: state-of-the-art

- ✓ The Process
- ✓ The Tools
- ✓ Related Work

Quantitative CAR as a foundation for higher MLs

- ✓ From RCA to ODC Related Work
- ✓ ODC: Strengths & Limitations
- Generalizing and Customizing ODC

Conclusions & Prospects

Conclusions & Prospects

Main issues discussed

- Root-Cause Analysis (RCA) is a fundamental tool for process improvement
 - ✓ Often used in a qualitative manner, it represents the basic for taking corrective and/or preventive actions
- ODC (Orthogonal Defect Classification) is a quantitative interpretation of RCA, but limited in scope to Defect Management with a standard taxonomy of defect *types* and *triggers*
 - It allows an external comparability (benchmarking), but not helps organizations at lower MLs in starting a data defect collection (note: defect to be meant not as a "code" defect)
- Extending and generalizing the ODC message
 - ✓ It allows to overcome intrinsic ODC limitations
 - ✓ Build specific *types* & *triggers* for each PA
 - Link measures to the organization and project plans, spreading quantitative RCA to all ML levels and across the organization

Conclusions & Prospects

Suggestions and Possible Advantages for CMMI architecture

✓ Q_3 : Are there some possible suggestions also for improving CMMI architecture about this issue? Which effects if CAR would be referred not only to GP5.2 but also as a GP2.x?

• Suggestions:

- ✓ Introduce CAR process area at ML2, as a Basic (rather than Advanced) Support Processes
- ✓ Add a direct reference to CAR also in **GP2.9**, jointly with PPQA

Possible Advantages:

- ✓ Help people in advancing faster in their DAR ability, as mandatory in ISO 9001:2000 (§8.4)
- ✓ RCA would be recognized more and more as a basic Process Improvement principle, yet introduced from lower ML as a foundation for achieving higher ML
- Corroborate the proper implementation of other PAs (i.e. PMC, PPQA) and GP (GP2.8; GP3.2; GP4.2) by more skilled resources

✓A₃: Have a comprehensive approach to improvement and build your path having in mind all mappings among the PI models of interest at the same time

MENSURA 2006 – Cadiz (Spain) Nov 6-8, 2006

L.Buglione & A.Abran © 2006

11

Thank you!

luigi.buglione@computer.org, alain.abran@etsmtl.ca

MENSURA 2006 – Cadiz (Spain) Nov 6-8, 2006 L.Buglione & A.Abran © 2006

