Guide to the Software Engineering
Body of Knowledge

A Straw Man Version

Pierre Bourque, Université du Québec a Montreéal
Robert Dupuis, Université du Québec a Montréal
Alain Abran, Université du Québec a Montréal
James W. Moore, The MITRE Corporation
Leonard Tripp, IEEE Computer Society

'
O
"
Ll
=
T

Karen Shyne, The Boeing Company
Bryan Pflug, The Boeing Company
Marcela Maya, Université du Québec a Montréal
Guy Tremblay, Université du Québec a Montréal

September 1998

UQAM

Guide to the Software Engineering Body of Knowledge — A Straw Man Version i

Executive Summary
Consensus on a Core Body Knowledge Is Crucial

Software engineering has not reached the status of a legitimate engineering discipline and a recognized
profession. Since 1993, the IEEE Computer Society and the ACM have been actively promoting software
engineering as a profession, notably through their involvement in the Joint IEEE Computer Society and
ACM Steering Committee for the Establishment of Software Engineering as a Profession.

Achieving consensus by the profession on a core body of knowledge is a key milestone in all disciplines
and has been identified by the Steering Committee as crucial for the evolution of software engineering
toward a professional status. This report, written under the auspices of this committee, is the first step in
a four-year project designed to reach this consensus.

Focus on Generally Accepted Knowledge

The software engineering body of knowledge is an all-inclusive term that describes the sum of knowledge
within the profession of software engineering. Since it is usually not possible to put the full body of
knowledge of even an emerging discipline, such as software engineering, into a single document, there is
a need for a Guide to the Software Engineering Body of Knowledge. This Guide will seek to identify and
describe that subset of the body of knowledge that is generally accepted, even though software engineers
must not only be knowledgeable in software engineering, but also of course in other, related disciplines.

Guide to the Software Engineering Body of Knowledge Project
The objectives of the Guide to the Software Engineering Body of Knowledge project are therefore to:
» characterize the contents of the Software Engineering Body of Knowledge
* provide a topical access to the Software Engineering Body of Knowledge;
* promote a consistent view of software engineering worldwide;

» clarify the place of, and set the boundary of, software engineering with respect to other disciplines such
as computer science, project management, electrical engineering and mathematics;

* provide a foundation for curriculum development and individual certification and licensing material.

The intended audience for the Guide to the Software Engineering Body of Knowledge includes: private
and public organizations, practicing software engineers, makers of public policy, professional societies,
students and educators, as well as researchers.

A three-phase approach is proposed to develop the Guide to the Software Engineering Body of
Knowledge. These three phases will respectively produce the “Straw Man”, “Stone Man” and “Iron Man”
versions of the Guide.

Phase 1: Straw Man Version

The objectives of the first phase are to define the strategy, to deliver what is referred to as the Straw Man
version of the Guide, and to gather momentum in the profession for the project. The present report
constitutes this Straw Man version.

The main goal of this initial report is to propose a list of Knowledge Areas for the Guide to the Software
Engineering Body of Knowledge (SWEBOK). This report also proposes a draft list of the disciplines that
interact with software engineering. As its name implies, this Straw Man version is intended to be
challenged and to stimulate a vigorous debate.

Knowledge Areas are the major components of a discipline, or sub-fields of study. Related Disciplines are
the other disciplines with which software engineering has a non-empty intersection or shares a common
boundary.

© IEEE Computer Society September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version ii

In order to propose Knowledge Areas and Related Disciplines for “generally accepted” knowledge and to
do so based on recognized, public and verifiable sources of information, it was decided that the tables of
contents of general software engineering textbooks, the curricula of undergraduate and graduate
programs in software engineering, and the admission criteria for graduate programs would constitute the
input to our analysis. A total of 24 textbooks and 29 programs were examined.

For the purposes of this Straw Man version, a potential knowledge area had to be mentioned in the table
of contents of at least one quarter of the textbooks sampled to qualify as a proposed Knowledge Area.

The ISO/IEC 12207 standard on Software Life Cycle Processes is used as the basis and vocabulary for
the classification of the different topics related to the life cycle. A number of other topics not related to the
life-cycle were also considered.

The list of proposed Knowledge Areas based on ISO/IEC 12207 is:

* Development Process * Configuration Management
* Requirements Analysis * Quality Assurance

* Detailed Design * Verification and Validation
* Coding * Improvement Process

* Testing

¢ Maintenance Process

The list of proposed Knowledge Areas that do not converge well with ISO/IEC 12207 is:

* Software Development Methods * Software Development Environments
- Object Oriented » Software Engineering Overview & Definition
- Formal Methods * Measurement/Metrics
- Prototyping * Software Reliability

The list of proposed Related Disciplines is:

* Computer Science * Management

* Project Management * Science

* Electrical Engineering * Other Engineering Disciplines

* Mathematics * Cognitive Sciences

¢ Telecommunications/Networks

Phase 2: Stone Man Version

The deliverables of the second phase (Stone Man) under the stewardship of the Industrial Advisory Board
are:

* an approved list of Knowledge Areas of software engineering;
* an approved list of topics and relevant reference materials for each Knowledge Area;

* an approved list of disciplines related to Software Engineering, and the Knowledge Areas and topics
lying at the junction of Software Engineering and one or more of these Related Disciplines.

To ensure relevance of the Guide, to continue building consensus and momentum for the Guide and to
encourage its quick uptake in the marketplace, three components are key to the proposed strategy of the
Stone Man phase: an Industrial Advisory Board, a series of specialized subcommittees and a broad
comment-gathering and consensus-building process.

The Industrial Advisory Board will include key representatives from industry, major professional societies,
international standards-setting bodies and academia, as well as authors of widely sold textbooks on

© IEEE Computer Society September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version iii

software engineering. It will be responsible, among other things, for the overall strategy of the project, for
the selection criteria for the Knowledge Areas and the Related Disciplines, and the selection criteria for
topics included in each Knowledge Area, for the selection of the subcommittee chairs for each Knowledge
Area and for promoting the Guide to the SWEBOK.

Phase 3: Iron Man Version

A subsequent Iron Man version should be completed roughly two years after the Stone Man version. The
development of this version will once again probably involve an Industrial Advisory Board and various
expert panels. However, an even more exhaustive review and consensus-building process to gather
comments and insights from members of the profession will have to be defined for this phase of the
project.

Involvement By All Parties is Critical

Many long hours of work, debate and consensus-building will be required to develop the Stone Man and
subsequent Iron Man versions of the Guide to the Software Engineering Body of Knowledge. Achieving
consensus on the core body of knowledge is a key milestone in all disciplines and is pivotal for the
evolution of software engineering toward a professional status. Involvement by all parties, industry,
professional societies, standards-setting bodies and academia, is critical to ensure the relevancy and the
credibility of results, and for a quick uptake of the results.

© IEEE Computer Society September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version

TABLE OF CONTENTS

EXECULIVE SUIMIMAIY ...ttt ettt oottt e e et ettt oo e e e e e ettt b oo a2 e e e e e e bbb e e e e e e e eeesbba e e e aaaaeenbbnanaaeeas i
ACKNOWIBAGMENTS ...ttt oottt oo e e et et ettt oo e e e e e e e e bbbt e e e e eeeeabba e e e eeaeeeenbnnnns 1
Lo INEFOTUCTION .. 2
2. The Guide to the Software Engineering Body of Knowledge Project............ccooooiiiiiiiiiiiniiiiiiieiiieee, 3
3. Context and RelatioNSNIPSu.. et 8
4. Development Methodology for Identifying Knowledge Areas and Related Disciplines.............c.......... 17
5. Prop0oSed KNOWIEAGE ATBASuuuiiieiiieiiiii ettt e e e e e ettt e e e e e e e e bbb r e e e e e e e eaaban e aaas 23
6. Proposed Related DISCIPINESo ittt e e e ettt e e e e e e e aaba e aas 26
7. SUMMATY QN0 NEXE SEEPSceieitiii ettt e ettt e e et et ettt e e e e e e et tbbaa e e e e e e e eetbba e e e e aaeeesnnnn e aeaas 27
8. REIEIBINCES.o 30
LS IR Yo o= g Lo [(o7 S TSP 32
Appendix A. List of General Textbooks and Tutorials on Software Engineeringccccveeenen. 33
Appendix B. URLs of Undergraduate and Graduate Programs in Software Engineering............... 34
Appendix C. General Textbooks and Tutorials on Software Engineering - Classification
of Table of Contents Entries According to Potential Knowledge Areas............ccc....... 37
Appendix D. Undergraduate Programs in Software Engineering - Classification of Courses
According to Potential Knowledge Areas...........cooveiiiiiiiiiiiiiieeeeeeiie e 54
Appendix E. Undergraduate Programs in Software Engineering - Classification of Courses by
Related DISCIPIINEueii et e e et e eaaaeaes 59
Appendix F. Graduate Programs in Software Engineering - Admission Requirements
by Related DiISCIPINEcooiiiiiiiii e e e e e e 64
Appendix G. Graduate Programs in Software Engineering - Classification of Courses
According to Potential Knowledge Areas...........cooveiiiiiiiiiiiiiieeeeeeiiiee e 69
Appendix H. Graduate Programs in Software Engineering - Classification of Courses
by Related DiISCIPINEoooiiieiiii et e e e e 84
Appendix |. Draft Classification of Knowledge on Formal Methods Based on the Proposed
FoUr-Category SCReMIA.oooiiiiiii et aeeeees 96
Appendix J. Additional Information on Other Body of Knowledge Proposalscccoeeevvnnenn. 105

© IEEE Computer Society

September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version 1

Acknowledgments

The authors would like to thank the following reviewers for providing us with insightful comments and
suggestions based on a draft version of this document. These reviewers are in alphabetical order: Denis
Bourdeau (Bell Canada), Gilles Gauthier (Université du Québec a Montréal), John Harauz (Ontario
Hydro), David Longstreet (Longstreet Consulting), Stephen MacDonnell (University of Otago), Serge
Oligny (Université du Québec a Montréal), Lyn VanHoozer (The MITRE Corporation), Dolores Wallace
(National Institute of Standards and Technology) and Laurie Werth (University of Texas at Austin). This
does not imply, however, that these reviewers or their organizations agree with the positions and
proposals put forward in this document.

Funding for this work was provided by the IEEE Computer Society and the Software Engineering
Management Research Laboratory of the Université du Québec a Montréal. This laboratory is supported
through a partnership with Bell Canada. Additional funding for the laboratory is provided by the Natural
Sciences and Engineering Research Council of Canada.

© IEEE Computer Society September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version 2

1. Introduction

In spite of the millions of software professionals worldwide and the ubiquitous presence of software in our
society, software engineering has not reached the status of a legitimate engineering discipline and a
recognized profession.

Since 1993, the IEEE Computer Society and the ACM have been actively promoting software engineering
as a profession and a legitimate engineering discipline, notably through its involvement in the Joint IEEE
Computer Society and ACM Steering Committee for the Establishment of Software Engineering as a
Profession. A draft version of accreditation criteria for software engineering university programs [1] and a
draft Code of Ethics for software engineers [2] have already been produced.

Achieving consensus by the profession on a core body of knowledge is a key milestone in all disciplines
and has been identified by the Steering Committee as crucial for the evolution of software engineering
toward a professional status. This report, written under the auspices of this committee, is the first step in
a four-year project designed to reach this consensus.

In other engineering disciplines, the accreditation of university curricula and the licensing and certification
of practicing professionals are taken very seriouslyl. These activities are seen as critical to the constant
upgrading of professionals and, hence, the improvement of the level of professional practice. Recognizing
a core body of knowledge is pivotal to the development and accreditation of university curricula and the
licensing and certification of professionals.

The main goal of this initial report is to propose a draft list of Knowledge Areas for the Guide to the
Software Engineering Body of Knowledge (SWEBOK). This report also proposes a draft list of the
disciplines that interact with software engineering. As its name implies, this Straw Man version is intended
to be challenged and to stimulate a vigorous debate.

The report begins with a statement of the objectives of the project, its intended audience and the
proposed three-phase development and consensus-building for producing the deliverables. Chapter 3
discusses in more detail the problem being addressed and the reasoning leading up to it, other body of
knowledge proposals, as well as the intended impact of the deliverables downstream. It is followed by a
description in Chapter 4 of the methodology used to identify the proposed lists of Knowledge Areas and
Related Disciplines. Knowledge Areas and Related Disciplines are then proposed in Chapters 5 and 6.
The report closes with some brief concluding remarks and a discussion on the next steps

' For a more detailed discussion on the accreditation of university engineering curricula and the licensing and certification of

practicing engineers, see the websites of the Accreditation Board for Engineering and Technology at www.abet.org or the
Canadian Council of Professional Engineers at www.ccpe.ca

© IEEE Computer Society September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version 3

2. The Guide to the Software Engineering Body of Knowledge
Project

Body of Knowledge

The software engineering body of knowledge is an all-inclusive term that describes the sum of knowledge
within the profession of software engineering. As with other professions such as law, medicine and
accounting, the body of knowledge rests with the practitioners and academics who apply and advance it.

Guide to a Body of Knowledge

Since it is usually not possible to put the full body of knowledge of even an emerging discipline, such as
software engineering, into a single document, there is a need for a Guide to the Software Engineering
Body of Knowledge. This Guide will seek to identify and describe that subset of the body of knowledge
that is generally accepted or, in other words, the core body of knowledge of the discipline.

Software engineering body of knowledge and

curriculum are not the same

Software engineers must not only be knowledgeable in what is specific to their discipline, but they also, of
course, have to know a lot more. The goal of this initiative is not, however, to inventory everything that
software engineers should know, but to identify what forms the core of software engineering.

It is the responsibility of other organizations and initiatives involved in the licensing and certification of
professionals and the development and accreditation of curricula to define what a software engineer must
know outside software engineering. We believe that a very clear distinction must be made between the
software engineering body of knowledge and the contents of software engineering curricula.
Project Objectives

The objectives of the Guide to the Software Engineering Body of Knowledge project are therefore to:

characterize the contents of the Software Engineering Body of Knowledge;

provide a topical access to the Software Engineering Body of Knowledge;

promote a consistent view of software engineering worldwide;

clarify the place of, and set the boundary of, software engineering with respect to other disciplines
such as computer science, project management, electrical engineering and mathematics;

provide a foundation for curriculum development and individual certification and licensing material.

Intended Audience
The intended audience for the Guide to the Software Engineering Body of Knowledge includes:

public and private organizations wishing to use and promote a consistent view of software engineering
internally, notably when defining education and training, job classification and performance evaluation
policies;

practicing software engineers wishing to enhance their professional skills;

makers of public policy engaged in defining software engineering licensing rules and guidelines for
professionals: consensus on a Guide to the Software Engineering Body of Knowledge is crucial to

ensure the coherence of licensing and accreditation guidelines and policies across national and state
boundaries;

© IEEE Computer Society September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version 4

professional societies engaged in defining software engineering university program accreditation
guidelines, and certification rules and guidelines for professionals;

software engineering students learning the discipline;
educators and trainers engaged in defining curricula and course content;

researchers looking for an agreed-upon framework when discussing their work.

A Three-Phase Development and Consensus-Building Approach

The three-phase approach outlined in Figure 1 is proposed to develop the Guide to the Software
Engineering Body of Knowledge. Total duration of the three phases is expected to be four years. These
three phases will respectively produce the “Straw Man”, “Stone Man” and “lron Man” versions of the
Guide.

Two principles underlie this three-phase approach:
- transparency: the development process is itself published and fully documented;

- consensus-building: the development process is designed to build, over time, consensus in industry,
among professional societies and standards-setting bodies and in academia.

It is in this spirit that communication channels are constantly kept open between our project and the Joint
Task Force on Software Engineering Curriculum which is also under the auspices of the Joint IEEE
Computer Society and ACM Steering Committee for the Establishment of Software Engineering as a
Profession.

A startup phase to develop an initial version of the Guide began at the outset of 1998. The objectives of
this phase are to define the strategy, to deliver what is referred to as the Straw Man version of the Guide,
and to gather momentum in the profession for the project. The present report constitutes this Straw Man
version. As will be described in detail in Chapter 4, the adopted methodology used for this version is
based on an analysis of a large number of software engineering textbooks, undergraduate and graduate
software engineering curricula and graduate admission requirements. Additionally, the framework used to
analyze these textbooks and academic programs is a joint ISO/IEC and IEEE standard which has itself
been adopted through a rigorous and international consensus building, review and balloting process. In
essence, one can say that the Straw Man version tries to identify where there is already consensus.

The Straw Man version will serve as the primary input for the subsequent “Stone Man” phase of the
project expected to end by mid-1999. The deliverables of the Stone Man phase of this project will be:

* a list of Knowledge Areas of software engineering (Knowledge Areas are the major components of a
discipline, or subfields of study).

* alist of topics and relevant reference materials for each Knowledge Area;

* a list of disciplines related to Software Engineering, and the Knowledge Areas and topics at the
junction of Software Engineering and one or more of these Related Disciplines; however, the Stone
Man version will not point to any reference materials from a Related Discipline unless it is specifically
adapted to software engineering.

To ensure relevance of the Guide, to continue building consensus and momentum for the Guide and to
encourage its quick uptake in the marketplace, three components are key to the proposed strategy of this
Stone Man phase. They are, as shown in Figure 2, an Industrial Advisory Board, a series of specialized
subcommittees and a broad comment-gathering and consensus-building process.

The Industrial Advisory Board will include key representatives from industry, major professional societies,
international standards-setting bodies and academia, as well as authors of widely sold textbooks on
software engineering. The draft definition of the responsibilities for the Industrial Advisory Board consists
of the following:

* Review and approve the scope and development strategy of the Guide to the Software Engineering
Body of Knowledge;

© IEEE Computer Society September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version 5

* Review and approve the selection criteria for Knowledge Areas;

* Review and approve the list of proposed of Knowledge Areas;

* Review and approve the selection criteria for Related Disciplines;

* Review and approve the proposed list of Related Disciplines;

* Review and approve the selection criteria and the list of topics for each Knowledge Area;
* Review and approve the reference material selection criteria;

* Review and approve the list of subcommittee Chairs;

* Review and approve a broad comment-gathering and consensus-building process for the Stone Man
version;

* Oversee the broad comment-gathering and consensus-building process for the Stone Man version;
* Assist in promoting the Guide to the Software Engineering Body of Knowledge.

A number of subcommittees made up of subject matter experts will be established during the Stone Man
phase and these will be responsible for selecting key reference material in the existing software
engineering literature based on predefined reference selection criteria. These references could be book
chapters, journal articles, public reports from industry, etc. The incorporation of these subcommittees in
the design of the approach is an additional step in building consensus.

To inform software engineering professionals about the Guide, to promote it, to continue building
consensus and to gather comments from a broad sample of professionals, a broad comment-gathering
and consensus-building process will also be completed electronically during the Stone Man phase among
the membership of the Computer Society and possibly other professional societies. The Industrial
Advisory Board will ensure that due process is followed regarding this consultation and comment-
gathering step.

A subsequent Iron Man version should be completed roughly two years after the Stone Man version. The
development of this version will once again probably involve an Industrial Advisory Board and various
expert panels. However, an even more exhaustive review and consensus-building process to gather
comments and insights from members of the profession will have to be defined for this phase of the
project. This review and consensus-building process should be somewhat akin to the already existing
software engineering standards development and review process.

To facilitate its wide dissemination, all versions will be available at no cost on the Internet.

© IEEE Computer Society September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version

Guide to the
SWEBOK

(Straw Man Version)

Guide to the SWEBOK

(Stone Man Version)

Approach:
- Industrial Aidvisory Board A
- Expert Panels
- Broad Comment-Gathering Guide to the SWEBOK
and Consensus-Building
Process (Iron Man Version)
Approach:
- Expert panels
: - Industrial Advisory Board
: - Exhaustive Comment-
Gathering and Consensus-
Building Process
1998 : 1999 : 2000 : 2001

Figure 1 A Three-Phase Approach for Developing the Guide to the SWEBOK

© IEEE Computer Society September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version

Completeness and
Cohesiveness Review
of In-Progress Stone
Man Version

Straw Man Version

Industrial Advisory Board —» Stone Man Version

Knowledge Areas and
Related Disciplines

Subcommittee of Specialists

Broad Consensus-Building
Comment-Gathering Process

A 4

Topics identified and
reference materials

selected for each
Knowledge Area

Figure 2 Proposed Strategy for Developing the Stone Man Version

© IEEE Computer Society

September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version 8

3. Context and Relationships

What is software engineering?

The IEEE Computer Society defines software engineering as”:

“(1) The application of a systematic, disciplined, quantifiable approach to the development, operation, and
maintenance of software; that is, the application of engineering to software.

(2) The study of approaches as in (1).” [3]

What is a recognized profession?

For software engineering to be known as a legitimate engineering discipline and a recognized profession,
consensus on a core body of knowledge is imperative. This fact is well illustrated by Starr [4] when he
defines what can be considered a legitimate discipline and a recognized profession. In his Pulitzer-prize-
winning book on the history of the medical profession in the USA, he states that:

“the legitimation of professional authority involves three distinctive claims: first, that the knowledge and
competence of the professional have been validated by a community of his or her peers; second, that this
consensually validated knowledge rests on rational, scientific grounds; and third, that the professional’s
judgment and advice are oriented toward a set of substantive values, such as health. These aspects of
legitimacy correspond to the kinds of attributes — collegial, cognitive and moral — usually cited in the term
“profession.”

The software engineering profession is still immature

The term “software engineering” has now been in use for 30 years, since it was officially coined at an
October 1968 conference held in Garmisch, Germany [5]. Since then, considerable progress has been
made. Evidence of this progress can be found in the list of 24 general software engineering textbooks
found in Appendix A. Additionally, Appendix B lists 5 undergraduate and 24 graduate programs now
being offered in software engineering and that were found described on the World Wide Web. A multitude
of conferences and workshops are given on the topic of software engineering yearly. As well, the
discipline has now accumulated a significant number of national and international standards [6].

This progress does not, of course, imply that software engineering is, as currently practiced by individuals
or by organizations, at a level sufficient to ensure consistent and reliable outcomes. The industry is still
plagued by significant cost and schedule overruns. Unreliable software continues to be delivered, often
with dire consequences. Projects are regularly canceled or deliver only a subset of the expected benefits.
Maintenance costs, best exemplified by the Year 2000 bug, are very often prohibitive .

In 1996, Ford and Gibbs [7] wrote an in-depth report on the level of maturity of the software engineering
profession. In order to discuss the maturity of a profession in a more objective and constructive manner

Of course, there are many other definitions of software engineering. Since this effort originates from a joint committee of the
ACM and the IEEE Computer Society and since this definition was agreed upon by a wide consensus within the Computer
Society, it seems reasonable to start from it. The Industrial Advisory Board may find it inadequate for the purposes of the Guide
to the Software Engineering Body of Knowledge or this definition may prove to be insufficient later on in the project

® p.15.

© IEEE Computer Society September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version 9

and to better predict its future evolution, they begin by proposing a model of its maturity in terms of eight
infrastructure components. These components are:

- Initial professional education system;

- Accreditation of professional education programs;

- Skills development mechanisms for professionals entering the practice;

- Certification of professionals administered by the profession;

- Licensing of professionals administered by government authorities;

- Professional development programs to maintain currency of knowledge and skills;
- Code of ethics;

- Professional society or societies.

Their report states that nearly all these components have existed for many years and are being continually
improved for more established professions such as medicine, law, engineering, architecture and
accounting. They then analyze the software engineering profession using this eight-component taxonomy
and conclude that only the professional development and professional society components have
advanced past the ad hoc level. They therefore infer that the software engineering profession is still
immature.

Increasing interest in program accreditation, certification and licensing

There is without any doubt increasing interest in university program accreditation and the licensing and the
certification of software professionals. The Cutter IT Journal published by Ed Yourdon recently devoted
an entire issue to the certification and licensing of software professionals [8]. In 1996, the Institution of
Engineers, Australia, began granting full accreditation to undergraduate software engineering programs
[9]. Some authors have even stated recently that we in the software industry had better take these issues
very seriously, otherwise government officials will do it themselves. The following citations from these
authors illustrate their point of view well:

“If the profession does not provide an effective mechanism such as certification to assure that its
practitioners are doing everything possible to promote safety and security, then government will try to do it
with licensing.” [7]

“In my opinion, the licensing or certification of at least some software engineering specialties (e.g. safety-
critical systems, secure systems) is inevitable. In the current climate, licensing will probably emerge first.
The only decision that we need to make is whether we want to be part of the solution or part of the
problem” [10]

“If the software community cannot organize itself to become a recognized profession, we will have this
done for us by legislatures and others without the necessary technical expertise and understanding of the
issues” [11]

“If the software engineering community cannot rise to the level of becoming a recognized profession and an
engineering discipline, we face an uncertain future with ever-mounting prospects of unfriendly legislation
and harmful government actions.” [12]

“... but society might believe that severe regulation and licensing of software activities are the only way to
avoid a repetition of the Year 2000 catastrophe ."[13]

© IEEE Computer Society September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version

10

It is important to note that on June 17, 1998, the Texas Board of Professional Engineers unanimously
approved a proposal to recognize software engineering as a legitimate engineering discipline and to begin
licensing professional engineers in this area”.

Consensus on a core body of knowledge is an inescapable first step

Figure 3 shows that to correctly address the development of software engineering curricula, the
accreditation of professional education programs and the licensing and certification of professionals,
consensus by the profession on a core body of knowledge is an inescapable step. The necessity of a
consensus on a core body of knowledge when discussing professional education program accreditation
and the licensing or certification of professionals is well illustrated by these two citations:

“The discipline of software engineering is still immature, but pressures from regions where engineers are
licensed will add urgency to this issue. Clearly, some judgment about core material is required to perform

an accreditation...” [9]

“If we accept that licensing is inevitable, then we believe it is important that the profession be prepared to
advise the state legislatures about the nature of software engineering and the appropriate contents of a

licensing examination.” [7].

&
()
<
Q
&
S

Development of
Software Engineering
Curricula

Consensus on a Core
Body of Knowledge

Development of Certification /
Licensing Criteria and Exams

Influences

O\
9(\\\
A\
<9

Development of University
Program Accreditation Criteria

Figure 3 Key interrelationships for a core body of knowledge

See http://www.main.org/peboard/sofupdt.htm

© IEEE Computer Society

September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version 11

Computer science is the underlying discipline of software engineering

History has shown that a professional engineering discipline emerges when there is a sufficient scientific
basis to enable a core of educated professionals to apply not only craft, experience and skill, but also
theory to the analysis of problems and synthesis of solutions [14]. For most engineering disciplines, this
emergence occurred in the 18™ and 19" centuries with the increased scientific understanding of our
physical world. Based on this criterion, Shaw [14] argues that, though software engineering has not yet
matured to the state of a professional engineering discipline, this is an achievable goal. Baber [15] argues
that software engineering is currently in a “pre-engineering” phase of its development, in many ways
similar to the “pre-engineering” phases of shipbuilding, bridge construction and electrical technology. The
availability and regular use by professionals of predictive models that have a scientific and mathematical
basis is a distinguishing characteristic of “engineering” from “pre-engineering” practice.

Computer science has also evolved significantly over the past decades. Advances in the areas of
algorithm design, compilers, data structures, database management systems, operating systems and
programming languages, among others, testify to the ever-increasing depth and breadth of knowledge in
computer science.

Parnas [16] is of the opinion that it is notably because of the maturity of computer science that we can now
offer software engineering university programs. In fact, he argues that due to distinct fundamental goals, it
is in the interests of both communities to separate the disciplines. Precedents for this position have been
established in other engineering disciplines, such as in the separation of physics and electrical
engineering.

When discussing the relationship of software engineering to its underlying science, Maibaum [17] states:

“It is clear that the important symbiotic relationship between analysis, physics and engineering that we have
experienced over more than 200 years will be repeated in the next century between logic, theoretical
computer science and software engineering.”

Distinct fundamental goals of computer science and software engineering

The fundamental goals of computer science and software engineering differ, as do the fundamental goals
of science and engineering.5 Science as a whole seeks to better understand and explain various
phenomena. In essence, knowledge is the product of science. In his seminal book entitled “What
Engineers Know and How They Know It” [20], Vincenti declares “For engineers, in contrast to scientists,
knowledge is not an end in itself or the central objective of its profession.”6 He then goes on to say that,
for engineering, science is “a means to a utilitarian end.” Brooks describes this difference in goals very
clearly by stating: “A scientist builds in order to learn; an engineer learns in order to build.”” In essence,
artifacts rather than knowledge are therefore the product of engineering, be they bridges, ships, airplanes,
oil refineries, computer chips or software.

An illustration of this difference in goals is the importance given to professional education program
accreditation in engineering and in science. On this issue, Parnas [16] states:

“The work of scientists will be usually judged by other scientists, but engineers often deal with customers
who are neither engineers nor scientists. Thus, while nobody has ever felt it necessary to hold science

As one can debate the true engineering underpinnings of software engineering by discussing, for instance, its use of quantitative
methods, one could also debate the true scientific underpinnings of computer science by discussing, for instance, its use of the
scientific method. This report will leave these worthy debates to others. For an excellent discussion of the application of the
scientific method in computer science and in software engineering, see [18] and [19].

p. 6

Cited on p. 21 of [7].

© IEEE Computer Society September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version 12

programmes to rigid standards, accreditation has always been an important consideration for engineering
programmes.”

Computer science therefore seeks to better understand and to extend our knowledge in the area of
computing. Extending our knowledge of software or computing is not the fundamental goal of software
engineering, but rather applying this knowledge to building software.

Shaw [14] declares that although there are many definitions of engineering they all share these common
elements: creating cost-effective solutions to practical problems by applying scientific knowledge to
building things in the service of mankind. She then states that, for software, the problem is, appropriately,
an engineering problem.

The definition given by the ACM/IEEE Computer Society Task Force on the Core of Computer Science for
computing [21] is different from the definition of software engineerings. The Task Force states that:

“The discipline of computing is the systematic study of algorithmic processes that describe and transform
information: their theory, analysis, design, efficiency, implementation and application. The fundamental
question underlying all of computing is “What can be (efficiently) automated?”

Engineering is much more than applied science

Vincenti in [20] argues at length that engineering is much more than applied science. The following quote
from the opening paragraph of his book illustrates his argument:

“Engineering knowledge, though pursued at great length and expense in schools of engineering, receives
little attention from scholars in other disciplines. Most such people, when they pay heed to engineering at
all, tend to think of it as applied science. Modern engineers are seen as taking over their knowledge from
scientists and, by some occasionally dramatic but probably intellectually uninteresting process, using this
knowledge to fashion material artifacts. From this point of view, studying the epistemology of science
should automatically subsume the knowledge content of engineering. Engineers know from experience
that this view is untrue..."

Vincenti categorizes the elements of engineering design knowledge in the following manner:
- Fundamental design concepts;
- Criteria and specifications;
- Theoretical tools;
- Quantitative data;
- Practical considerations;
- Design instrumentalities.

He then goes on to classify engineering knowledge-generating activities into seven categories, of which
only one is directly linked to the underlying science. The categories are:

- Transfer from science;

As cited on p. 8, the IEEE Computer Society definition of software engineering is “(1) the application of a systematic, disciplined,
quantifiable approach to the development, operation, and maintenance of software; that is, the application of engineering to
software. (2) The study of approaches as in (1).”

O .3

© IEEE Computer Society September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version 13

- Invention;

- Theoretical engineering research;

- Experimental engineering research;
- Design practice;

- Production;

- Direct trial.

These two lists illustrate well that an engineering discipline has a body of knowledge different from the
body of knowledge of its underlying science. They obviously interact heavily and often have overlapping
content. However, their respective categories of knowledge and types of knowledge-generating activities
differ greatly. As discussed in Chapter 7, an adaptation of Vincenti’s classification schema for engineering
design knowledge is proposed as a common framework for structuring topics and reference materials
within Knowledge Areas.

Other body of knowledge proposals

A number of groups, professional societies and individuals have proposed a number of views regarding
the software engineering body of knowledge. These proposals are described in more detail in Appendix J.

The Joint Steering Committee of the IEEE Computer Society and the ACM for the Establishment of
Software Engineering as a Profession established a task force in 1996 to conduct exploratory work on the
issue of a software engineering body of knowledge. The task force designed and conducted a pilot survey
on a sample of tasks that could be considered to be within the scope of software engineeringm. The
survey asked whether each task described would be expected to be performed by a “novice software
engineer”, an “expert software engineer”, a “software engineering specialist” or a “manager” in the
organization.

Certain proposals are incorporated into certification programs, either for a broader field as is the case with
the Certified Computing Professional program of the Institute for Certification of Computer Professionals,
or a more specialized field related to software engineering such as the Software Quality Engineers
program of the American Society for Quality, and the Certified Quality Analyst and Certified Software Test
Engineer programs of the Quality Assurance Institute.

Other proposals are being made within the context of developing software engineering curricula. Parnas
for instance, while describing a new undergraduate program in the field, proposes a list of knowledge
areas related to tasks performed by software engineers. The Working Group on Software Engineering
Education and Training, which includes members from industry and academia, proposed a set of
guidelines last spring for software education which included their view of the software engineering body of
knowledge areas and knowledge components. The Australian Computer Society also includes ‘Software
Engineering and Methodologies’ as a Knowledge Area within its Core Body of Knowledge for Information
Technology Professionals. Finally, a collaborative effort of the ACM and other organizations recently
published a model for undergraduate degree programs in information systems entitled 1S'97 which
included many software engineering elements.

These proposals regarding the software engineering body of knowledge cannot be used in their totality
either, because:

* the focus is more on curriculum development than on the core body of knowledge of software
engineering itself;

* the focus is not directly on software engineering but rather on perhaps broader or narrower disciplines
such as computing, information technology, information systems, software quality engineering and test
engineering;

* the consensus building process is not documented.

1 The report on the survey’s results can be found at computer.org/tab/seprof/survey.htm

© IEEE Computer Society September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version 14

However, these proposals are an excellent input to the Industrial Advisory Board to ensure the soundness
of the list of Knowledge Areas and Related Disciplines proposed in the Straw Man version of the Guide to
the Software Engineering Body of Knowledge. Additionally, they should be examined when identifying
topics and selecting reference materials for the Stone Man version.

Consensus on a body of knowledge is a must

The Joint IEEE Computer Society and ACM Steering Committee for the Establishment of Software
Engineering as a Profession has recognized that the body of knowledge of the emerging software
engineering discipline, as for other disciplines of engineering, is an autonomous body of knowledge
distinct from that of computer science. This committee has identified that consensus by the profession on
this body of knowledge is key to the maturation of the discipline, and improvement in the level of
professional practice.

Offering a much more detailed and complete view, Figure 4 enables us to understand better how this
Guide to the Software Engineering Body of Knowledge may eventually impact education and training,
enterprise human resources management, professional development, professional societies and licensing
boards in the field of software engineering.

© IEEE Computer Society September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version

15

Research
Investigations

Computer
Science

e

~
e —
A

Other Fields upon
which SWEBOK relies

Project
Management

L
oo
——
S —

Subjei

Electrical
Engineering

o
—
—

Mathematics
-

S—————r
D —— |
Telecommunications/
Networks

—

e~ 4
N — |
]

Management
-

£
N —
Science

~ 7

—
. 3
e

Other

Engineering
—
e
N
N ——

Cognitive

Sciences

Influences ————

acquire

Initial Education |«

Software
Engineering
Body of Knowledge

The Interrelationships of the Software Engineering Body of Knowledge Stakeholders
Context Diagram

Enterprise

Education Professional Professional Licensing
= Human Resources —
and Training Development Socjeties Boards
Management
Establishes Standards / Curriculum Accreditation
=
Influences

T
Influences

organized as

Ct matter Curriculum

taught through

Delivery
Mechanisms

assured through

impart

Knowledge

verified through

Examinations

A

Enterprise Strategies

Defines basic Provides
Imparted through skilsfor framework for
‘ Education & ‘ Job Classifications ‘ Learning ‘
Training
I T
erences focuses

provides

e

Assignments

Compensation

sets expectations for

as

set
cont

the
xt of

Performance

measured by

performed within

rewards

institutionalized
through

Skills Requirements

Skill Inventory
Skill
Requirements Total Skill
Met Capabilities -
I
Establishes
Professional Practices
through
f learning

through application

prescribe

7

Influences

Lay the Groundwork for

Workforce Skills ~ |4—€0nances

Influences

Code of ethics (developed
by Professional Society)

Professional Society Manages

Certification

Standards community should ensure:

Underlying Scientific
Concepts

provide basis for

Fundamental
Principles

enable
¥

Proven Techniques
(empirically validated)

T
allow consensus on

Standardized Best
Practices

(universally recognized)

provide basis for

Maturing Discipline

Industry/Academic
Survey

test questions

e e

Standardized
across the
nation

Consistent
licensing [«—
criteria

civi Monitoring/
Penalties Enforcement
Accredited Evaluation /
education Review o E—

Specific
Project
Experience

Licensed in
another
state

Yearsin
profession

and Advances

—

(Database)

SWE =
Software
Engineering

© IEEE Computer Society

September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version 17

4. Development Methodology for Identifying Knowledge
Areas and Related Disciplines

Introduction

This chapter describes the methodology used for identifying the Knowledge Areas and Related
Disciplines. Knowledge Areas are the major components of a discipline, or sub-fields of study. Related
Disciplines are the other disciplines with which software engineering has a non-empty intersection or
shares a common boundary.

Criteria used in selecting our identification methodology

The following criteria were used in defining the methodology for identifying Knowledge Areas and Related
Disciplines:

* The identification methodology had to be based on public and verifiable sources of information and had
to follow a well-documented and reproducible procedure. The authors have tried to make as few
editorial decisions as possible.

* The identification methodology had to be as inclusive as possible. For this Straw Man version, it was
deemed better to suggest too many Knowledge Areas and Related Disciplines and for them to be
abandoned later than the reverse.

Focus is on generally accepted knowledge

As stated earlier, the software engineering body of knowledge is an all-inclusive term that describes the
sum of knowledge within the profession of software engineering. However, the Guide to the Software
Engineering Body of Knowledge seeks to identify and describe that subset of the body of knowledge that
is generally accepted or, in other words, the core body of knowledge. To better illustrate what “generally
accepted knowledge” is relative to other types of knowledge, Figure 5 proposes a draft four-category
schema for classifying knowledge. As an example, Appendix | proposes a classification of the knowledge
on formal methods based on this schema.

© IEEE Computer Society September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version 18

Generally Accepted

Established traditional practices used by
many organizations

Advanced

Innovative practices tested and used only by
some organizations

Specialized

Research

Practices used only for certain types
of software

Concepts still being developed and
tested in research organizations

» Figure 5 Categories of knowledge in the SWEBOK

The Project Management Institute in its Guide to the Project Management Body of Knowledgell [22]
defines “generally accepted” knowledge for project management in the following manner:

“Generally accepted means that the knowledge and practices described are applicable to most projects
most of the time, and that there is widespread consensus about their value and usefulness. Generally
accepted does not mean that the knowledge and practices described are or should be applied uniformly on
all projects; the project management team is always responsible for determining what is appropriate for any
given project.”2

11
12

This guide is currently adopted as an IEEE standard. See Chapter 7 of [6].
p.3

© IEEE Computer Society September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version 19

Knowledge Area and Related Discipline identification methodology

In order to propose Knowledge Areas and Related Disciplines for “generally accepted” knowledge and to
do so based on recognized, public and verifiable sources of information, it was decided that the tables of
contents of general software engineering textbooks, the curricula of undergraduate and graduate
programs in software engineering, and the admission criteria for graduate programs would constitute the
input to our analysis. Certainly, no one can question that general textbooks and academic curricula are
an excellent source of information for better understanding any discipline.

Undergraduate

Programs in Software
Engineering - Curricula

Preliminary List of

Graduate Programs in

Related Disciplines

Software Engineering - (Computer Science
Admission Criteri a and others)
Graduate Programs in
Software Engineering - List of Related
Curricula Disciplines
— Preliminary List of
Textbooks in Software ' Software Engineering >
Engineering —— Knowledge Areas
TT Proposed
Software
ISO/IEC 12207 Engineering
Information Knowledge Areas
Technology - Software
Life Cycle Processes

Selection Criteria:

- Knowledge Area must be
discussed in Software
Engineering general text
books

- If Knowledge Area comes
from another area, it is
included if specifically
adapted to Software
Engineering

Figure 6 Knowledge Area and Related Discipline Identification Methodology

In fact, it is proposed that a Knowledge Area must be discussed in a significant number of general
software engineering textbooks to be considered as “generally accepted”.

General software engineering textbooks may not be the only source of generally accepted knowledge.
However, textbooks are expected to contain a synthesis of what is currently considered to be the best
thinking in a given field. The Industrial Advisory Board will decide if this collection of documents is
sufficient or if a wider spectrum should be considered. Additionally, the various subcommittees involved in
producing the Stone Man version will certainly not limit themselves to general software engineering
textbooks when identifying topics and selecting reference materials within each Knowledge Area.

© IEEE Computer Society September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version 20

Additionally, it is proposed that if a Knowledge Area and subsequent subtopics are related to a discipline
other than software engineering, they have to be specifically adapted to software engineering to be
included in the Guide to the Software Engineering Body of Knowledge. For example, statistics are used in
software engineering, but there is no specific type of statistics for this discipline. By contrast, project cost
estimation is different in software engineering from that in electrical engineering. Another example would
be formal methods, which have a strong relationship with computer science and even mathematics, but
are specifically created to solve software engineering problems.

The general methodology used to identify the software engineering Knowledge Areas and Related
Disciplines is illustrated in Figure 6. The left-hand portion shows that information was first gathered from
recognized, public and verifiable source: general software engineering textbooks and academic
programs. The middle portion shows that this material was synthesized into lists of Knowledge Areas and
Related Disciplines. The right hand portion shows that these were organized using another well
recognized standard, ISO/IEC 12207 [23], wherever applicable.

Collected information
Using the Internet, the following information was collected:

* The tables of contents of general textbooks™ in software engineering, which present the authors’
opinions on what the boundary of software engineering is and on how to classify the topics into
candidate Knowledge Areas. However, these books seldom explicitly identify the Related Disciplines,
even though these implicitly reveal the authors’ opinions of where the discipline ends.

* The curricula of undergraduate and graduate programs in software engineering, which are another
public source of information for identifying Knowledge Areas. They also provide an excellent basis for
setting the boundary of software engineering and identifying the Related Disciplines. Software
engineering curricula include not only courses in software engineering, but also courses in the other
disciplines in which a software engineer should be educated. This is especially true at the
undergraduate level. Graduate programs are generally much more focused on the discipline itself.
Information on compulsory and elective courses was collected separately, since it was believed that
compulsory courses would be a better basis for identifying the core body of knowledge than electives
and because of the widely varying nature of elective courses due notably to which faculty and
department offered the program.

* Admission criteria to graduate software engineering programs also indicate what the institutions think
students should know outside software engineering. This information is useful for identifying the
Related Disciplines and for setting the boundary of software engineering.

A total of twenty-four (24) general textbooks, five (5) undergraduate programs and twenty-four (24)
graduate programs in software engineering were found and examined. For the undergraduate and
graduate programs, only those having the list of required courses on the website were retained. There is
no reason to believe that there would be any substantial differences between programs which have a
website and those which don’t. These programs are offered by universities in the United States, Canada,
the United Kingdom, Australia and Sweden. Appendix A lists the general textbooks used for this report
and Appendix B lists the URLs of the retained undergraduate and graduate programs.

ISO/IEC 12207

Initially, it was expected that various approaches — even paradigms — would be found by analyzing the
tables of contents of general software engineering textbooks, but such was not the case. It was found that
textbooks generally present most of the subject matter of software engineering around a life-cycle model.
Often, more advanced material or material pertinent to the entire life cycle and not to one particular phase
is presented in additional chapters.

¥ These table of contents were gathered from www.amazon.com

© IEEE Computer Society September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version 21

However, since these textbooks do not necessarily share a common life-cycle model, it was decided that
the ISO/IEC 12207 standard on Software Life Cycle Processes E23] be used as the basis and vocabulary
for the classification of the different topics related to the life cycle .

ISO/IEC 12207 was chosen for the following reasons:

* Itis considered the key standard regarding the definition of life cycle process and has been adopted by
the two main standardization bodies in software engineerin%: ISO/IEC JTC1 SC7 and the IEEE
Computer Society Software Engineering Standards Committee™.

* It has been designated as the pivotal standard around which the Software Engineering Standards
Committee (SESC) is currently harmonizing its entire collection of standards [6].

* It is designed to be independent of any specific software development method or life-cycle model.
Regarding ISO/IEC 12207, Moore states in [6] that:

“The standard is intended to be independent of development technologies and methodologies and useful
for any form of life cycle model, for example, waterfall, incremental, spiral, etc. In fact, one of the specified
responsibilities of the supplier's role is to select the life cycle model and map the requirements of the
standards to that model.”6

* It covers the entire life cycle from concept to retirement.

* It provides roles for the acquirer, supplier, developer, maintainer and operator.

Intermediate Steps: Inventory of prepared tables
In the course of writing this report, several tables were prepared:

* General textooks on software engineering. First, a list of the topics covered by the various authors was
produced. The majority of the books present the different topics using a software life-cycle approach.
Within each category the specific topics were listed according to the number of books covering the
given topic. The resulting table is presented in Appendix C.

* Undergraduate and graduate programs in software engineering. First, a list of the courses offered by
the different programs was produced. A differentiation between required courses (those which the
institutions consider to be the core knowledge) and optional courses was made. The courses were
then classified according to two criteria: the software life-cycle processes, as described by ISO/IEC
12207, and the disciplines to which the courses were related. A total of five (5) tables were produced:

- Undergraduate Programs in Software Engineering -
Classification of Courses According to Potential Knowledge Areas
in Appendix D.

" The authors are aware that ISO/IEC TR-15504 Information Technology Software Process Assessment also defines life cycle

processes. However, ISO/IEC 12207 was preferred over ISO/IEC 15504 for the purposes of this Straw Man version since it has
been adopted by both IEEE/EIA and ISO/IEC and because it has the status of a standard while ISO/IEC TR-15504 has the
status of a Technical Report Type 2. However, the Industrial Advisory Board may wish to consider as potential Knowledge
Areas the following additional processes defined in 15504 but not included in 12207[24]:

- Primary processes: Requirements elicitation process
- Support processes: Measurement process
Reuse process
- Organizational processes: Quality management
Risk management process
Organizational alignment process
IEEE/EIA is an adaptation of ISO/IEC 12207 with the same number and name.
p. 197

15
16

© IEEE Computer Society September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version 22

- Undergraduate Programs in Software Engineering -
Classification of Courses by Related Discipline in Appendix E

- Graduate Programs in Software Engineering -
Admission Requirements by Related Discipline in Appendix F

- Graduate Programs in Software Engineering -
Classification of Courses According to Potential Knowledge Areas
in Appendix G

- Graduate Programs in Software Engineering -
Classification of Courses by Related Discipline in Appendix H.

© IEEE Computer Society September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version 23

5. Proposed Knowledge Areas

Using the methodology described in the previous chapter, a compilation of topics included in the tables of
contents of general textbooks and in university software engineering curricula is presented in Tables 1, 2
and 3. These tables, compiled from Appendix C, Appendix D and Appendix G, show the number of
textbooks that cover a given topic at the Table of Contents level, and the number of programs that include
required and elective courses on this topic.

As stated earlier, a proposed Knowledge Area must be covered in a significant number of textbooks to be
considered as “generally accepted”. For the purposes of this Straw Man version, this significant number is
set at 6, or one quarter of the textbooks listed in Appendix A. Potential Knowledge Areas meeting this
requirement and that converge well with the ISO/IEC 12207 standard are shaded in Table 1.

However, a number of topics do not converge well with ISO/IEC 12207. The list of potential Knowledge
Areas that do not converge well with the ISO/IEC 12207 standard but that meet the requirement for
“generally accepted” are shown in Table 2. The list of potential Knowledge Areas that do not converge
well with the ISO/IEC 12207 standard and that do not meet the requirement for “generally accepted” are
shown in Table 3.

Since university programs of different types (undergraduate and graduate, professional and research,
etc.) were surveyed, it was decided not to include this information in the selection criterion for considering
a Knowledge Area as “generally accepted”. Additionally, a limited number of courses are often offered in
one program, especially the graduate level. This information, however, may be useful to the Industrial
Advisory Board in their review and approval of Knowledge Areas.

The following two elements where taken into consideration in setting the significant number at 6, or one-
quarter of the textbooks:

- As discussed earlier, the identification methodology had to be as inclusive as possible and it was
deemed better to suggest too many Knowledge Areas than too few.

- many topics are covered in a textbook without them being included in the table of contents; a
more detailed analysis of the textbooks would surely be most insightful and would better
represent each book.

Also, these limitations must be kept in mind in interpreting the proposed list of Knowledge Areas:

- The survey of the textbooks only considered tables of contents of textbooks written in English
and accessible through the Internet. This means that it is quite possible that many excellent
textbooks not listed on the website of the online library were omitted from this analysis,
especially textbooks in languages other than English. This is because the objective here was
not to exhaustively survey all general software engineering textbooks, but rather to collect a
representative sample of them.

- Many excellent university programs not found or not described on the Internet have surely been
omitted from this analysis, especially programs taught in languages other than English.

- Analysis of university software engineering programs was based on course titles only. Once
again, a more detailed analysis of the course syllabuses would surely be most insightful.

- There is occasionally overlap, and some topics belonging to more than one category are
counted more than once. For instance, Formal Methods is sometimes presented in the
appendices as a separate topic, and sometimes it is included within the life-cycle classification
(e.g. Formal methods/specification languages, Object-oriented topics, etc.). This information is
presented this way to better evaluate the coverage of these topics not to create redundancy.

- The importance of some specialized topics (e.g. Fault-tolerant software, Real-time software,
etc.) may be underestimated since the analysis is based on general software engineering
textbooks.

© IEEE Computer Society September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version 24

Process Class Life Cycle Processes Textbooks |Programs(29) with [Programs(29) with
and Activities (24) Required Optional Courses
Courses™’
Primary Software Acquisition 2 2
Software Supply
Development Process 11 (general)™ 9 (general)
Requirements 22 22 10
Analysis® %
Architectural 2
Design
Detailed Design® 23 14 14
Cading 18 4 12
Integration 4
Testing 16 9 7
Installation 3
Acceptance Support 3
Operation Process
System Operation 2
User Support
Maintenance 14 4 5
Process®
Supporting Documentation
Configuration 10
Management
Quality Assurance 15 11 7
V&V 12 9 7
Joint Review 5
Audits 3
Problem Resolution
Processes
Organizational Management Process 20 20 10
Infrastructure
Process
Improvement 16 5 2
Process
Training Process

Table 1 Proposed Knowledge Areas based on ISO/IEC 12207

17

18

19

20

21

22

23

Includes 24 graduate and 5 undergraduate programs

Courses discussing the development process in general

The activity entitled Process Implementation is omitted from this table since no book chapters or courses refer directly to this
activity.

Since in this report we did not wish to engage in the worthy debate of distinguishing “systems engineering” from “software
engineering”, the activity entitled “systems requirements analysis” is not listed in this table.

Please note that many of the topics in the tables of contents and course titles that we assigned to detailed design could arguably
be assigned to architectural design. A more detailed analysis of the textbook chapters themselves and the course syllabuses
would enable a better assignment of these topics and often resolve the differences in vocabulary.

The material in the textbooks is never organized according to the ISO/IEC 12207 classification of activities for maintenance and
therefore no analysis is performed at the activity level for maintenance.

Proposed Knowledge Areas considered as generally accepted are shaded. A proposed Knowledge Area must be covered in a
significant number of textbooks to be considered as “generally accepted”. For the purposes of this Straw Man version, this
significant number is set at 6, or one quarter of the textbooks listed in Appendix A.

© IEEE Computer Society September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version 25
Potential Knowledge Areas Textbooks (24) Programs(29) Programs(29)
with with
Required courses | Optional courses
Software Development Methods 14 2
Object Oriented 14 4 14
Formal Methods 9 11 7
Prototyping 9
Software Development 13 1 3
Environments
Software Engineering Overview & 11 11 5
Definition
Measurement/Metrics 9 4 9
Software Reliability 6 1 5

Table 2 Potential Knowledge Areas for non-ISO 12207 Topics That Meet the Selection Criteria

for “Generally Accepted”

Potential Knowledge Areas Textbooks (24) Programs(29) Programs(29)

with with
Required courses | Optional courses

Software Products 5

Software Reuse 5 2 4

Real-Time/Embedded Software 4 2 7

Reengineering 4 2

Human Factors 3 5 10

Standards 3

Fault-Tolerant Software 2

Ethics 1 1

Legal Aspects 2

Software Security/Safety 2 7

Table 3 Potential Knowledge Areas for non-ISO 12207 Topics That Do Not Meet The Selection
Criteria for “Generally Accepted”

© IEEE Computer Society

September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version 26

6. Proposed Related Disciplines

Based on a synthesis of the courses taught in undergraduate and graduate programs in software
engineering and on the admission criteria for graduate programs, Table 4 proposes a list of Related
Disciplines for software engineering. The complete list of courses and the details of the admission criteria
are listed in Appendix E, Appendix H and Appendix F.

Table 4 is sorted in order of number of required courses in the discipline, then by number of graduate
programs requiring knowledge in the discipline as an admission criterion, followed by the number of
programs containing optional courses in the discipline.

Table 4 shows a strong bias toward Computer Science in the list of elective courses. This is probably
explained by the fact that most software engineering programs are offered by Computer Science
departments. It follows that the electives offered are very often a subset of the courses offered by these
departments. Consequently, the relatively small number of courses in electrical engineering and in “other
engineering disciplines” is probably due to the fact that few of these programs are taught in engineering
schools.

When interpreting the list of proposed Related Disciplines, the reader must always keep in mind the
following limitations:

* Many excellent university programs were not an input to this survey, especially those not taught in
English. The purpose of this survey is to build a representative sample of university programs in
software engineering, not to establish a definitive list of university programs.

* Analysis of software engineering university programs was based on course titles only, and an analysis
of their syllabuses would surely provide additional insight. However, such a further analysis was not
within the scope of this Straw Man phase.

Proposed Related Disciplines Core Courses Admission Criteria Elective Courses
Number of Number of Number of
programs/Number programs /24 programs/Number of
of courses courses
(out of 29 under- (graduate (out of 29
graduate and programs only) undergraduate and
graduate graduate programs)
programs)
Computer Science™ 19/67 17 23/190
Project Management 19/24 10/14
Electrical Engineering 9/13 3 7/12
Mathematics 8/21 11 4/9
Telecommunications/Networks 7/12 1 11/29
Management 4/11 9/25
Science 1/4
Other Engineering Disciplines 1 1/4
Cognitive Sciences 2/2

Table 4 Proposed List of Related Disciplines

2 The list of topics included in Computer Science is listed in the Appendices. Although there is always room for interpretation, this

list is similar to the one used by Glass [25], for instance, which is derived from the CS Curriculum of the ACM/IEEE-CS Joint
Task Curriculum Task Force. For some, Software Engineering includes everything related to the development of software,
including programming languages, for example. This is not the view here, the precise goal being rather to distinguish between
Computer Science and Software Engineering.

© IEEE Computer Society September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version 27

7. Summary and Next Steps

Given the pervasive presence of software in our society and the increased concerns over the necessity for
certification and licensing, consensus on a Guide to the Software Engineering Body of Knowledge is a
must. It is critical that leadership on this important issue be on a worldwide scale, otherwise future
university program accreditation guidelines and certification and licensing rules for professionals will differ
widely.

A three-phase project has been initiated to develop the Guide to the Software Engineering Body of
Knowledge. This report is the result of the first phase and was written with the premise that such a Guide
must contain “consensually validated” knowledge and practices and rest on rational grounds.
Consequently, it is based on the analysis of general software engineering textbooks and university
programs offered in the field. The compilation was carried out as objectively as possible and in a
reproducible manner. The process produced a list of potential Knowledge Areas and Related Disciplines.

The list of proposed Knowledge Areas based on ISO/IEC 12207 is:
* Development Process
- Requirements Analysis
- Detailed Design
- Coding
- Testing
* Maintenance Process
* Configuration Management
* Quality Assurance
* Verification and Validation
* Improvement Process
The list of proposed Knowledge Areas that do not converge well with ISO/IEC 12207
* Software Development Methods
- Object Oriented
- Formal Methods
- Prototyping
* Software Development Environments
» Software Engineering Overview & Definition
* Measurement/Metrics
* Software Reliability
The list of proposed Related Disciplines is:
* Computer Science
* Project Management
* Electrical Engineering
* Mathematics

¢ Telecommunications/Networks

© IEEE Computer Society September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version 28

* Management

* Science

* Other Engineering Disciplines
* Cognitive Sciences

This report, which is intended to jump start the second, or Stone Man phase, will most certainly stimulate
a lively debate within the Industrial Advisory Board. The deliverables of the Stone Man phase are:

* alist of Knowledge Areas of software engineering;
* alist of topics and relevant reference materials for each Knowledge Area;

* a list of disciplines related to Software Engineering, and the Knowledge Areas and topics lying at the
junction of Software Engineering and one or more of these Related Disciplines.

To ensure the completeness and cohesiveness of the Stone Man version, a common framework is
required for structuring Knowledge Areas. The identification methodology used in the Straw Man version
for proposing Knowledge Areas and Related Disciplines must be expanded to be appropriate for
identifying topics and selecting reference materials within each Knowledge Area. This is due notably to:

* the varying level of granularity of the tables of contents of textbooks;

* the widely ranging age of these textbooks;

* the widely varying types of university programs surveyed for this report;
* the different number of courses offered within each program;

* the fact that course titles and table of contents entries were analyzed rather than course syllabuses
and textbooks chapters.

It is therefore suggested that a list of topics be drafted for each subcommittee based on an synthesis of
the six most recent general software engineering textbooks listed in Appendix A®. These draft lists of
topics would be classified using an adapted version of the schema proposed by Vincenti [20]for
engineering design knowledgeze. Each subcommittee would then be asked to review and improve the list
of proposed topics and select reference materials for each topic. The subcommittees would return an
updated version of the list of proposed topics for a given Knowledge Area and pertinent reference
materials classified using the adapted Vincenti categories.

The Vincenti categories of engineering design knowledge are proposed as a framework for organizing
topics and reference materials because:

* they are based on a detailed historical analysis of an established branch of engineering: areonautical
engineering;

* they are viewed by Vincenti as applicable to all branches of engineering”;

% These textbooks are Behforooz and Hudson, 1996, Jalote, 1997, Pfleeger, 1998, Pressman, 1996, Sommerville, lan, 1995 and

Dorfman and Thayer, a general tutorial on software engineering.

As cited in Chapter 3 and proposed by Vincenti, the categories of engineering design knowledge are:

- fundamental design concepts;

- criteria and specifications;

- theoretical tools;

- quantitative data;

- practical considerations;

- design instrumentalities.

In the introduction to the chapter that proposes the categories of engineering design knowledge, Vincenti states on p. 200:
“Although the cases all come from aeronautics, the generalizations of this chapter are intended to be more universal. Design in
other branches of engineering (mechanical, electrical, etc.) though different in detail, proceeds in much the same fashion. It
therefore involves the same broad categories of knowledge and activities that generate it. The specifics from my experience and
the studies of others supply illustrative evidence for this fact. As stated in chapter 1, | believe the generalizations to the other
branches will call for addition and modification rather than fundamental revision.”

26

27

© IEEE Computer Society September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version 29

* gaps in the software engineering body of knowledge within certain categories as well as efforts to
reduce these gaps over time would be made apparent;

* due to generic nature of the categories, knowledge within each knowledge area could evolve and
progress significantly while the framework itself would remain stable;

Many long hours of work, debate and consensus building will be required to develop the Stone Man and
subsequent Iron Man versions of the Guide to the Software Engineering Body of Knowledge. Achieving
consensus on the core body of knowledge is a key milestone in all disciplines and is pivotal for the
evolution of software engineering toward a professional status. Involvement by all parties, industry,
professional societies, standard setting bodies and academia, is critical to ensure the relevancy and the
credibility of results, and for a quick uptake of the results.

Later on p. 236, he states, after presenting a summary table of knowledge categories and knowledge-generating activities: “I
believe the table and the ideas behind it apply to design in all branches (aeronautical, mechanical, electrical, etc.), of modern
engineering. | believe, in addition, though | haven’t thought about the matter in depth, that they can also be adapted without
major difficulty to the engineering that occurs in production and operation.”

© IEEE Computer Society September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version 30

8. References

[1]
[2]

[3]

[4]
[5]

[6]

[7]

[8]

9]

[10]

[11]

[12]

[13]

[14]
[15]

[16]

[17]

[18]
[19]

[20]

[21]

[22]

“Draft Software Engineering Accreditation Criteria,” IEEE Computer, vol. 31, pp. 73-75, 77, 1998.

D. Gotterbarn, K. Miller, and S. Rogerson, “Software Engineering Code of Ethics, version 3.0,” IEEE
Computer, pp. 88-92, 1997.

“IEEE Standard Glossary of Software Engineering Terminology,” IEEE, Piscataway, NJ std 610.12-
1990, 1990.

P. Starr, The Social Transformation of American Medicine: BasicBooks, 1982.

P. Naur and B. Randell, “Software Engineering,” presented at Report on a Conference sponsored
by the NATO Science Committee, Garmisch, Germany, 1968.

J. W. Moore, Software Engineering Standards, A User's Road Map. Los Alamitos: IEEE Computer
Society Press, 1998.

G. Ford and N. E. Gibbs, “A Mature Profession of Software Engineering,” Software Engineering
Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, Technical CMU/SEI-96-TR-004,
January 1996.

“Special Issue on IT Licensing and Certification,” in Cutter IT Journal, vol. 11, 1998, pp. 30.

P. Dart, L. Johnston, C. Schmidt, and L. Sonenberg, “Developing an Accredited Software
Engineering Program,” IEEE Software, vol. 14, 1997.

N. R. Mead, “Are We Going to Fish or Cut Bait? Licensing and Certification of Software
Professionals,” Cutter IT Journal, vol. 11, pp. 4-8, 1998.

L. Werth, “Certification and Licensing for Software Professionals and Organizations,” presented at
11th Conference on Software Engineering Education and Training (CSEE&T '98), Atlanta, Georgia,
1998.

C. Jones, “Software Challenge - Legal Status of Software Engineering,” Computer, vol. 28, pp. 98-
99, 1995.

E. Yourdon, “Why Do We Need Licensing? It's Not As If We've Killed Anyone...,” Cutter IT Journal,
vol. 11, pp. 26-30, 1998.

M. Shaw, “Prospect for an Engineering Discipline of Software,” IEEE Software, pp. 930-940, 1990.

R. L. Baber, “Comparison of Electrical "Engineering" of Heaviside's Times and Software
"Engineering" of Our Times,” IEEE Annals of the History of Computing, vol. 19, pp. 5-17, 1997.

D. L. Parnas, “Software Engineering Programmes are not Computer Science Programmes,”
McMaster University, Hamilton, Ontario CRL Report no. 361, April 1998.

T. Maibaum, “What We Teach Software Engineering in the University: Do we Take Engineering
Seriously?,” ACM SIGSOFT, Software Engineering Notes, vol. 22, pp. 40-50, 1997.

W. F. Tichy, “Should Computer Scientists Experiment More?,” Computer, vol. 31, pp. 32-40, 1998.

M. V. Zelkowitz and D. Wallace , “Experimental Models for Validating Technology,” Computer, vol.
31, pp. 23-31, 1998.

W. G. Vincenti, What Engineers Know and How They Know It - Analytical Studies from Aeronautical
History. Baltimore and London: Johns Hopkins, 1990.

P. J. Denning, D. E. Comer, D. Gries, M. C. Mulder, A. Tucker, A. J. Turner, and P. R. Young,
“Computing as a Discipline,” Communications of the ACM, vol. 32, pp. 9-23, 1989.

W. R. Duncan, “A Guide to the Project Management Body of Knowledge,” Project Management
Institute, Upper Darby, PA 1996.

© IEEE Computer Society September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version 31

[23]

[24]

[25]

[26]

“Information Technology - Software Life Cycle Processes,” International Standard, Technical
ISO/IEC 12207:1995(E), 1995.

T. P. Rout, “Issues in the Development of an International Standard for Software Process
Assessment,” Software Process Newsletter, vol. 10, pp. 1-6, 1997.

R. Glass, “A Comparative Analysis of the Topic Areas of Computer Science, Software Engineering,
and Information Systems,” Journal of Systems Software, vol. 19, pp. 277-289, 1992.

T. B. Hilburn, D. J. Bagert, S. Mengel, and D. Oexmann, “Software Engineering Across Computing
Curricula,” 3" Annual Conference on Integrating Technology into Computer Science Education -
ITICSE'98, pp. 4, 1998.

© IEEE Computer Society September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version

9. Appendices

32

© IEEE Computer Society September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version 33

Appendix A. List of General Textbooks and Tutorials on Software Engineering

Behforooz, Ali and Frederick J. Hudson, 1996, Software Engineering Fundamentals, Oxford University
Press.

Bell, Dough, lan Morrey and John Pugh, 1992, Software Engineering, 2" Edition, Prentice Hall.
Blum, Bruce I., 1992, Software Engineering: A Holistic View, Oxford University Press.
Conger, Sue A., 1993, The New Software Engineering, Course Technology.

Dorfman, Merlin and Ricahrd H. Thayer, Editors, 1996, Software Engineering, IEEE Computer Society
Press, Los Alamitos, California.

Fairclough, Jon, Editor, 1995, Software Engineering Guides, Prentice Hall.
Fairley, Richard E., 1985, Software Engineering Concepts, McGraw Hill.
Ford, Neville J. and Mark Woodroffe, 1993, Introducing Software Engineering, Prentice Hall.

Ghezzi, Carlo, Mehdi Jazayeri and Dino Mandrioli, 1991, Fundamentals of Software Engineering,
Prentice Hall.

Humphrey, Watts S., 1995, A Discipline for Software Engineering, Addison-Wesley.

Ince, D., 1989, Software Engineering, International Thomson Computer Press.

Jalote, Pankaj, 1997, An Integrated Approach to Software Engineering, Springer Verlag, New York.
Jones, Gregory W., 1990, Software Engineering, John Wiley & Sons.

Mazza, C., J. Faircoulgh, B. Melton, D. de Pablo, A. Sheffer and R. Stevens, 1994, Software
Engineering Standards, Prentice Hall.

Pfleeger, Shari Lawrence, 1998, Software Engineering: Theory and Practice, Prentice Hall, New Jersey.
Pressman, Roger S., 1988, Software Engineering, A Beginner's Guide, McGraw Hill.

Pressman, Roger S., 1996, A Manager's Guide to Software Engineering, McGraw Hill.

Pressman, Roger S., 1996, Software Engineering: A Practitioner's Approach, 4™ Edition, McGraw Hill.
Sage, Andrew P. and James D. Palmer, 1990, Software Systems Engineering, John Wiley & Sons.

Sallis, Philip, Tate Graham and Stephen McDonnell, 1995, Software Engineering: Practice,
Management, Improvement, Addison-Wesley.

Schach, Stephen R, 1993, Software Engineering, 2" Edition, McGraw-Hill.
Sommerville, lan, 1995, Software Engineering, 5™ Edition, Addison-Wesley.

Thayer, Richard H. and Andrew D. McGettrick, Editors, 1993, Software Engineering: A European
Perspective, IEEE Computer Society Press, Los Alamitos, California.

Van Vliet, Hans and Vrije Van Vliet, 1993, Software Engineering: Principles and Practice, John Wiley &
Sons.

© IEEE Computer Society September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version

Appendix B. URLs of Undergraduate and Graduate Programs in Software Engineering

We found five undergraduate programs in software engineering at four universities:

The University of Birmingham offers two distinct programs, one entitled Software Engineering and the

other Software Engineering with Business Studies - Birmingham, United Kingdom.

www.cs.bham.ac.uk/degreeregs/

University of London - Imperial College of Science, Technology and Medicine Birmingham, United
Kingdom

www.doc.ic.ac.uk/teaching/under/comp/regulations/mengse.htmi

University of New South Wales, Australia

www.cse.unsw.edu.au/school/teaching/courses/bese.htmi

University of Ottawa - Ottawa, Canada
No URL available

We found 24 graduate programs at 23 universities:

Andrews University - Berrien Springs, MIl, USA
MSc in Software Engineering

http://www.andrews.edu/CS/cis-ms.html

Carnegie Mellon University - Pittsburgh, PA,USA
Master of Software Engineering

http://www.cs.cmu.edu/afs/cs/project/mse/www/

Concordia - Montreal, QC

Master in Computer Science - Software Engineering Option
http://www.cs.concordia.ca/Graduate Info/Graduate_Programs_M.html
DePaul University - Chicago, IL,USA

MSc in Software Engineering (One concentration in Software Development, the other in Software
Management)

http://www.cs.depaul.edu/programs/Segrad.html

Embry-Riddle University - Daytona Beach, FL,USA
Master of Software Engineering

http://www.db.erau.edu/catalog/graduate/mse.html

© IEEE Computer Society

September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version

Flinders University of South Australia, Australia
Master of Software Engineering

http://www.cs.flinders.edu.au/

Kansas State University - Manhattan, KS, USA
Master of Software Engineering

http://www.ksu.edu/grad/catalog/cis.htm

Monmouth University, West Long Branch, NJ, USA
MS in Software Engineering

http://www.monmouth.edu/muse/stinfc97.html

National Technological University - Fort Collings, CO, USA
MS in Software Engineering

http://www.ntu.edu/2/software.htm

National University - La Jolla, CA, USA

MS in Software Engineering
http://www.nu.edu/catalog/somt/msse.html
Seattle University - Seattle, WA, USA

Master of Software Engineering

http://www.seattleu.edu/~mse/mse97.html

Southern Methodist University - Dallas, TX, USA
MS in Software Engineering

http://www.seas.smu.edu/disted/se/

Texas Christian University - Fort Worth, TX, USA
Master of Software Engineering

http://www.cs.tcu.edu/grad/grad.html

Université du Québec a Montréal - Montreal, QC, Canada
M.Sc.A. in Software Engineering
http://www.regis.ugam.ca/Programmes/3821.html
University of Calgary - Calgary, AL, Canada

MSc with Specialization in Software Engineering
http://ksi.cpsc.ucalgary.ca/SERN/SEMSc.html
University of Colorado - Colorado Springs, CO, USA

Master of Engineering - Option in Software Systems Engineering

http://mepo-b.uccs.edu/software.html

35

© IEEE Computer Society

September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version

University of Houston - Clear Lake - Houston, TX, USA
MS in Software Engineering

http://www.cl.uh.edu/nas/applied/graduate/MSoftEngg.html

University of Karlskrona/Ronneby - Sweden
MS in Software Engineering

http://www.hk-r.se/for/internationell/master.htm

University of Maryland - College Park, Maryland, USA
Master of Software Engineering

http://www.cs.umd.edu/Grad/mswe.html

University of Missouri-Kansas City, USA
MS in Computer Science - Software Engineering Concentration

http://www.umkc.edu/umkc/catalog/html/cmp-sc/0000.html

University of Scranton - Scranton, PA, USA

MS in Software Engineering
http://academic.uofs.edu/department/gradsch/gsofteng.htm
University of St. Thomas - Minneapolis, Minnesota, USA

MS in Software Engineering
http://www.gps.stthomas.edu/ms.html

University of Stirling - Stirling, Scotland, United Kingdom

MS in Software Engineering

http://www.cs.stir.ac.uk/~sbj/se-leaflet.html

36

© IEEE Computer Society

September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version 37

Appendix C.
General Textbooks and Tutorials on Software Engineering - Classification of Table of Contents
Entries According to Potential Knowledge Areas

© IEEE Computer Society September 1998

38

Guiae 10 the Sorware Engineering boay or Kknowiedge — A Straw ivian version

Rared '3 preydry

G86T "uer - sidaouo) Buussuibug aremyos

uewssald 'S Jaboy

886T "god - apIino sJauulbag v ‘Buussulbug aremyos

20Ul 'd

686T - Bulaauibug aremyos

lawed @ sawer pue abes 'd maipuy

066T Yore - buusauibug swalsAs aremyos

sauor ‘M Alobaio

066T Yore - buusauibug aremyos

lJoLpUBK oulg pue Lakezer IpYsiy ‘1zzays oped

T66T "uer - Buussuibug a1emyos Jo speluswepuny

ybnd uyor pue Aaiop ue| ‘[lag ybnog

266T Ae\ - Buaauibug aremyos

wn|g ‘| aonig

266T 190 - M3IA 21SIoH V : Buussuibug aremyos

19IIA UeA 8lUA pue 18I\ Uep sueH

€66T |Udy - @on0eld pue sajdiduld : Buusauibug aremyos
YOURSDIN "Q MBIpuy pue Jakeyl ‘H preyory

€66T 'Bny - aAnoadsiad ueadoing v : Buusauibug aremyos
Jabuo) v ans

€667 "09Q - buussulbug aremyos maN ayL

yoeyos 'y usydals

€66T - uonip3 puz- Buusauibul aremyos

9JJ0IPOOAA MIBN pue pio4 " 3|IASN

7667 100 - Bunssulbuz aremyos BuigNBRSIY

"d ‘18lays 'V ‘ojged ap "d ‘uolsN ‘g ‘ubinoaured ‘r ‘ezzel 'O
66T - spiepuels Buussuibug aremyos

AaiydwnH 'S spem

G66T "uer - Buusauibug aremyos oy aundiosiq v

Jlouogoey usydals pue ae] weyels ‘sies dijiyd

G66T - Juawanoidw quswabeuey ‘9onoeld : Buussuibug aremyos
ubnojoired uor Aq payp3

G66T - SepIng Buussulbug aremyos

3|IAJBWIWOS ue|

G66T - uonip3 uyis - bulesuibuz aremyos

uewssald 'S Jaboy

966T Yo\ - Buussuibug aremyos o3 aping sabeuep v
uospnH 'C Youspald pue zooioyag I|v

966T AINC - sfeuswepun4 Buuasuibu] aresspg

'S 18boy 966T
Bny - uonip3 Yy - yorouddy sJauonnoeld v : Buussuibug aremyos

Jakey] "H pJyedly pue uewyloq ulsN Aq paup3

966T "das - Buuaauibug aremyos

aloer fexued

/66T - buuaauibug aremyjos o1 yoeouddy parelbaiu] uy

labas)id souaime Leys
866T YoIen - aonoeld pue Aloay) : BuussuiBul aremyos

Introduction to Software Engineering

Software Engineering Overview
Software Problem/Crisis

Software Engineering Principles
ISO/IEC 12207 Primary Processes

Acquisition Process

Software/System and Hardware Procurement

Development Process

System/Software Requirements Analysis

Requirements/Problem/Systems Analysis - Analysis

Object-Oriented Analysis

Analysis Modeling
Structured Analysis

Data-Oriented Analysis

Function-Oriented Analysis

Informal Approach

Method-Based Analysis

Process-Oriented Analysis

View Point-Oriented Analysis

Other
Requirements Specification

September 1998

© IEEE Computer Society

3Y

Guiae 10 the Sorware Engineering boay or Kknowiedge — A Straw ivian version

Rared '3 preydry

G86T "uer - sidaouo) Buussuibug aremyos

uewssald 'S Jaboy

886T "god - apIino sJauulbag v ‘Buussulbug aremyos

20Ul 'd

686T - Bulaauibug aremyos

lawed @ sawer pue abes 'd maipuy

066T Yore - buusauibug swalsAs aremyos

sauor ‘M Alobaio

066T Yore - buusauibug aremyos

lJoLpUBK oulg pue Lakezer IpYsiy ‘1zzays oped

T66T "uer - Buussuibug a1emyos Jo speluswepuny

ybnd uyor pue Aaiop ue| ‘[lag ybnog

266T Ae\ - Buaauibug aremyos

wn|g ‘| aonig

266T 190 - M3IA 21SIoH V : Buussuibug aremyos

19IIA UeA 8lUA pue 18I\ Uep sueH

€66T |Udy - @on0eld pue sajdiduld : Buusauibug aremyos
YOURSDIN "Q MBIpuy pue Jakeyl ‘H preyory

€66T 'Bny - aAnoadsiad ueadoing v : Buusauibug aremyos
Jabuo) v ans

€667 "09Q - buussulbug aremyos maN ayL

yoeyos 'y usydals

€66T - uonip3 puz- Buusauibul aremyos

9JJ0IPOOAA MIBN pue pio4 " 3|IASN

7667 100 - Bunssulbuz aremyos BuigNBRSIY

"d ‘18lays 'V ‘ojged ap "d ‘uolsN ‘g ‘ubinoaured ‘r ‘ezzel 'O
66T - spiepuels Buussuibug aremyos

AaiydwnH 'S spem

G66T "uer - Buusauibug aremyos oy aundiosiq v

Jlouogoey usydals pue ae] weyels ‘sies dijiyd

G66T - Juawanoidw quswabeuey ‘9onoeld : Buussuibug aremyos
ubnojoired uor Aq payp3

G66T - SepIng Buussulbug aremyos

3|IAJBWIWOS ue|

G66T - uonip3 uyis - bulesuibuz aremyos

uewssald 'S Jaboy

966T Yo\ - Buussuibug aremyos o3 aping sabeuep v
uospnH 'C Youspald pue zooioyag I|v

966T AINC - sfeuswepun4 Buuasuibu] aresspg

'S 18boy 966T
Bny - uonip3 Yy - yorouddy sJauonnoeld v : Buussuibug aremyos

Jakey] "H pJyedly pue uewyloq ulsN Aq paup3

966T "das - Buuaauibug aremyos

aloer fexued

/66T - buuaauibug aremyjos o1 yoeouddy parelbaiu] uy

labas)id souaime Leys
866T YoIen - aonoeld pue Aloay) : BuussuiBul aremyos

O 0 O O

Formal Specification/Specification Languages

Methods/techniques
Specification Attributes

Specification Tools

September 1998

Animation of Requirements Specification

Real-Time Software Specification
Requirements Document

Algebraic Specification
Prototyping

Requirements Process/Activities
Requirements Identification/Capture
Non-Functional Requirements
Jackson System Development
Types of Requirements
Requirements Evolution

Software Architectural Design
Design Process/Activities
Real-Time Systems Design
Design Document

Software Detailed Design
Object-Oriented Design

© IEEE Computer Society

4U

Guiae 10 the Sorware Engineering boay or Kknowiedge — A Straw ivian version

Rared '3 preydry

G86T "uer - sidaouo) Buussuibug aremyos

uewssald 'S Jaboy

886T "god - apIino sJauulbag v ‘Buussulbug aremyos

20Ul 'd

686T - Bulaauibug aremyos

lawed @ sawer pue abes 'd maipuy

066T Yore - buusauibug swalsAs aremyos

sauor ‘M Alobaio

066T Yore - buusauibug aremyos

lJoLpUBK oulg pue Lakezer IpYsiy ‘1zzays oped

T66T "uer - Buussuibug a1emyos Jo speluswepuny

ybnd uyor pue Aaiop ue| ‘[lag ybnog

266T Ae\ - Buaauibug aremyos

wn|g ‘| aonig

266T 190 - M3IA 21SIoH V : Buussuibug aremyos

19IIA UeA 8lUA pue 18I\ Uep sueH

€66T |Udy - @on0eld pue sajdiduld : Buusauibug aremyos
YOURSDIN "Q MBIpuy pue Jakeyl ‘H preyory

€66T 'Bny - aAnoadsiad ueadoing v : Buusauibug aremyos
Jabuo) v ans

€667 "09Q - buussulbug aremyos maN ayL

yoeyos 'y usydals

€66T - uonip3 puz- Buusauibul aremyos

9JJ0IPOOAA MIBN pue pio4 " 3|IASN

7667 100 - Bunssulbuz aremyos BuigNBRSIY

"d ‘18lays 'V ‘ojged ap "d ‘uolsN ‘g ‘ubinoaured ‘r ‘ezzel 'O
66T - spiepuels Buussuibug aremyos

AaiydwnH 'S spem

G66T "uer - Buusauibug aremyos oy aundiosiq v

Jlouogoey usydals pue ae] weyels ‘sies dijiyd

G66T - Juawanoidw quswabeuey ‘9onoeld : Buussuibug aremyos
ubnojoired uor Aq payp3

G66T - SepIng Buussulbug aremyos

3|IAJBWIWOS ue|

G66T - uonip3 uyis - bulesuibuz aremyos

uewssald 'S Jaboy

966T Yo\ - Buussuibug aremyos o3 aping sabeuep v
uospnH 'C Youspald pue zooioyag I|v

966T AINC - sfeuswepun4 Buuasuibu] aresspg

'S 18boy 966T
Bny - uonip3 Yy - yorouddy sJauonnoeld v : Buussuibug aremyos

Jakey] "H pJyedly pue uewyloq ulsN Aq paup3

966T "das - Buuaauibug aremyos

aloer fexued

/66T - buuaauibug aremyjos o1 yoeouddy parelbaiu] uy

labas)id souaime Leys
866T YoIen - aonoeld pue Aloay) : BuussuiBul aremyos

Function-Oriented Design

Structured Design

Concepts and Principles

Data-Oriented Design

Design Methods/Models
Design Specification
Design Strategies

Human/Interface Design
Jackson System Development

Data flow Design

Data Structure Design

Design Improvement
Formal Methods

Merise

Process-Oriented Design

Tools
Software Coding

Programming Languages

Programming Style/Techniques

Structured Programming

Internal Documentation

September 1998

© IEEE Computer Society

41

Guiae 10 the Sorware Engineering boay or Kknowiedge — A Straw ivian version

Rared '3 preydry

G86T "uer - sidaouo) Buussuibug aremyos

uewssald 'S Jaboy

886T "god - apIino sJauulbag v ‘Buussulbug aremyos

20Ul 'd

686T - Bulaauibug aremyos

lawed @ sawer pue abes 'd maipuy

066T Yore - buusauibug swalsAs aremyos

sauor ‘M Alobaio

066T Yore - buusauibug aremyos

lJoLpUBK oulg pue Lakezer IpYsiy ‘1zzays oped

T66T "uer - Buussuibug a1emyos Jo speluswepuny

ybnd uyor pue Aaiop ue| ‘[lag ybnog

266T Ae\ - Buaauibug aremyos

wn|g ‘| aonig

266T 190 - M3IA 21SIoH V : Buussuibug aremyos

19IIA UeA 8lUA pue 18I\ Uep sueH

€66T |Udy - @on0eld pue sajdiduld : Buusauibug aremyos
YOURSDIN "Q MBIpuy pue Jakeyl ‘H preyory

€66T 'Bny - aAnoadsiad ueadoing v : Buusauibug aremyos
Jabuo) v ans

€667 "09Q - buussulbug aremyos maN ayL

yoeyos 'y usydals

€66T - uonip3 puz- Buusauibul aremyos

9JJ0IPOOAA MIBN pue pio4 " 3|IASN

7667 100 - Bunssulbuz aremyos BuigNBRSIY

"d ‘18lays 'V ‘ojged ap "d ‘uolsN ‘g ‘ubinoaured ‘r ‘ezzel 'O
66T - spiepuels Buussuibug aremyos

AaiydwnH 'S spem

G66T "uer - Buusauibug aremyos oy aundiosiq v

Jlouogoey usydals pue ae] weyels ‘sies dijiyd

G66T - Juawanoidw quswabeuey ‘9onoeld : Buussuibug aremyos
ubnojoired uor Aq payp3

G66T - SepIng Buussulbug aremyos

3|IAJBWIWOS ue|

G66T - uonip3 uyis - bulesuibuz aremyos

uewssald 'S Jaboy

966T Yo\ - Buussuibug aremyos o3 aping sabeuep v
uospnH 'C Youspald pue zooioyag I|v

966T AINC - sfeuswepun4 Buuasuibu] aresspg

'S 18boy 966T
Bny - uonip3 Yy - yorouddy sJauonnoeld v : Buussuibug aremyos

Jakey] "H pJyedly pue uewyloq ulsN Aq paup3

966T "das - Buuaauibug aremyos

aloer fexued

/66T - buuaauibug aremyjos o1 yoeouddy parelbaiu] uy

labas)id souaime Leys
866T YoIen - aonoeld pue Aloay) : BuussuiBul aremyos

Tools

User Manual

Code Generators

O 0 O O

o

£

S
o €
= ©
E 22
€ o9 £
g Ea E
> E o E
oSEQC

c o
Pmeo
—_ D) .= =
So5a
on Lo
+2 0 =
C.mea
c o= =
S 02 ®©
L 30

Principles

Top-Down/Bottom-Up Programming

System/Software Integration

Integration Plan
System/Software Testing

Unit/Module Testing

System Testing

O 0 0 0 0 0

Testing Fundamentals/Basic Concepts/Principles

Functional Testing
Integration Testing
Object-Oriented Testing
Other Tests

Test Plan

Interface Testing

September 1998

© IEEE Computer Society

42

Guiae 10 the Sorware Engineering boay or Kknowiedge — A Straw ivian version

Ralired "3 preydry

G86T "uer - sidaouo) Buussuibug aremyos

uewssald 'S laboy

886T 024 - apIno sJauuibag v ‘Bunasuibug alemyos

aou| 'q

686T - Bulaauibug aremyos

lawred ‘@ sawer pue abes 'd malpuy

066T Yore - buusauibug swalsAs aremyos

sauor ‘M Alobaio

066T Yore - buusauibug aremyos

lJoUpURN ould pue Lakezer IpYsN ‘1zzayo ojed

T66T "uer - Bulaauibug aremyos Jo speluswepun4

ybnd uyor pue Aaiop ue| ‘[lag ybnog

266T Ae\ - Buaauibug aremyos

wn|g ‘| 8dn.g

266T 190 - MAIA JISIloH V : Buuaauibug aremyos

18I/ UBA 3lUA pue 18lA U/ sueH

€66T |Udy - @on0eld pue sajdiduld : Buusauibug aremyos
YOURSDIN "Q MBIpuy pue Jakeyl ‘H preyory

€66T 'Bny - aAnoadsiad ueadoing v : Buusauibug aremyos
Jabuo) v ans

€66T 99 - Bussuibug aremyos maN ayL

yoeyas 'y uaydais

€66T - uolip3 pug- Buusauibug aremyos

3JJ0JPOO/ e\ pue pio ‘[3||IAeN

7667 100 - Bunssulbuz aremyos BuigNBRSIY

"d ‘18lays 'V ‘ojged ap "d ‘uolsN ‘g ‘ubinoaured ‘r ‘ezzel 'O
66T - sprepuels Bunaauibug aremyos

AaiydwnH 'S spem

G66T "uer - Buusauibug aremyos oy aundiosiq v

JlouogoeN uaydals pue are| weyelo ‘sijres dijyd

G66T - Juawanoidw quswabeuey ‘9onoeld : Buussuibug aremyos
ubnojoired uor Aq payp3

G66T - Sapino Buuasuibug aremyos

9|IBWWOS Ue|

G66T - uonip3 uyis - bulesuibuz aremyos

uewssald 'S laboy

966T Yasen - Bussuibug alemyos o} aping sabeuep v
UOSpNH 'C Youapald pue zoolojyag Il

966T AINC - sfeuswepun4 Buuasuibu] aresspg

'S 18boy 966T
Bny - uonip3 Yy - yorouddy sJauonnoeld v : Buussuibug aremyos
Jakey] "H piyeodry pue uewyod ullay Aq paup3

966T "das - Buuaauibug aremyos

aloer fexued

/66T - buuaauibug aremyjos o1 yoeouddy parelbaiu] uy
1abaajd aouaime Leys

866T YdJe\ - 9010eld pue Aloayl : Buusauibug aremyos

Structural Testing
Testing Process

Testing Strategies

Tools

White-Box/Black-Box Testing

Debugging

Performance Testing

Real-Time Software Testing
Testing Techniques

Software Installation

0 0 0 0 O

Transfer Document

Planning
Software Acceptance Support

Acceptance Testing

Training
Operation Process

O

O :

System Operation
Maintenance Process

Documentation
Maintainability

Maintenance Process

September 1998

© IEEE Computer Society

43

Guiae 10 the Sorware Engineering boay or Kknowiedge — A Straw ivian version

Rared '3 preydry

G86T "uer - sidaouo) Buussuibug aremyos

uewssald 'S Jaboy

886T "god - apIino sJauulbag v ‘Buussulbug aremyos

20Ul 'd

686T - Bulaauibug aremyos

lawed @ sawer pue abes 'd maipuy

066T Yore - buusauibug swalsAs aremyos

sauor ‘M Alobaio

066T Yore - buusauibug aremyos

lJoLpUBK oulg pue Lakezer IpYsiy ‘1zzays oped

T66T "uer - Buussuibug a1emyos Jo speluswepuny

ybnd uyor pue Aaiop ue| ‘[lag ybnog

266T Ae\ - Buaauibug aremyos

wn|g ‘| aonig

266T 190 - M3IA 21SIoH V : Buussuibug aremyos

19IIA UeA 8lUA pue 18I\ Uep sueH

€66T |Udy - @on0eld pue sajdiduld : Buusauibug aremyos
YOURSDIN "Q MBIpuy pue Jakeyl ‘H preyory

€66T 'Bny - aAnoadsiad ueadoing v : Buusauibug aremyos
Jabuo) v ans

€667 "09Q - buussulbug aremyos maN ayL

yoeyos 'y usydals

€66T - uonip3 puz- Buusauibul aremyos

9JJ0IPOOAA MIBN pue pio4 " 3|IASN

7667 100 - Bunssulbuz aremyos BuigNBRSIY

"d ‘18lays 'V ‘ojged ap "d ‘uolsN ‘g ‘ubinoaured ‘r ‘ezzel 'O
66T - spiepuels Buussuibug aremyos

AaiydwnH 'S spem

G66T "uer - Buusauibug aremyos oy aundiosiq v

Jlouogoey usydals pue ae] weyels ‘sies dijiyd

G66T - Juawanoidw quswabeuey ‘9onoeld : Buussuibug aremyos
ubnojoired uor Aq payp3

G66T - SepIng Buussulbug aremyos

3|IAJBWIWOS ue|

G66T - uonip3 uyis - bulesuibuz aremyos

uewssald 'S Jaboy

966T Yo\ - Buussuibug aremyos o3 aping sabeuep v
uospnH 'C Youspald pue zooioyag I|v

966T AINC - sfeuswepun4 Buuasuibu] aresspg

'S 18boy 966T
Bny - uonip3 Yy - yorouddy sJauonnoeld v : Buussuibug aremyos

Jakey] "H pJyedly pue uewyloq ulsN Aq paup3

966T "das - Buuaauibug aremyos

aloer fexued

/66T - buuaauibug aremyjos o1 yoeouddy parelbaiu] uy

labas)id souaime Leys
866T YoIen - aonoeld pue Aloay) : BuussuiBul aremyos

O

Tools

Cost
ISO/IEC

Cycle

Supporting Life

12207

Processes

O

O

O O O O

O 0 O 0 O 0 O O

O

O

Configuration Management Process

O

Process Implementation

O

Configuration Management Plans

Tools
Configuration Identification

Configuration Control

O

Change Control

Item control/storage

Change Management
Configuration Status Accounting

O

O

O

o)

Status Accounting and Auditing
Configuration Release Management and Delivery

Version and Release Management

System Building
Quality Assurance Process

Process Implementation

Quality Assurance Plans

September 1998

© IEEE Computer Society

44

Guiae 10 the Sorware Engineering boay or Kknowiedge — A Straw ivian version

Rared '3 preydry

G86T "uer - sidaouo) Buussuibug aremyos

uewssald 'S Jaboy

886T "god - apIino sJauulbag v ‘Buussulbug aremyos

20Ul 'd

686T - Bulaauibug aremyos

lawed @ sawer pue abes 'd maipuy

066T Yore - buusauibug swalsAs aremyos

sauor ‘M Alobaio

066T Yore - buusauibug aremyos

lJoLpUBK oulg pue Lakezer IpYsiy ‘1zzays oped

T66T "uer - Buussuibug a1emyos Jo speluswepuny

ybnd uyor pue Aaiop ue| ‘[lag ybnog

266T Ae\ - Buaauibug aremyos

wn|g ‘| aonig

266T 190 - M3IA 21SIoH V : Buussuibug aremyos

19IIA UeA 8lUA pue 18I\ Uep sueH

€66T |Udy - @on0eld pue sajdiduld : Buusauibug aremyos
YOURSDIN "Q MBIpuy pue Jakeyl ‘H preyory

€66T 'Bny - aAnoadsiad ueadoing v : Buusauibug aremyos
Jabuo) v ans

€667 "09Q - buussulbug aremyos maN ayL

yoeyos 'y usydals

€66T - uonip3 puz- Buusauibul aremyos

9JJ0IPOOAA MIBN pue pio4 " 3|IASN

7667 100 - Bunssulbuz aremyos BuigNBRSIY

"d ‘18lays 'V ‘ojged ap "d ‘uolsN ‘g ‘ubinoaured ‘r ‘ezzel 'O
66T - spiepuels Buussuibug aremyos

AaiydwnH 'S spem

G66T "uer - Buusauibug aremyos oy aundiosiq v

Jlouogoey usydals pue ae] weyels ‘sies dijiyd

G66T - Juawanoidw quswabeuey ‘9onoeld : Buussuibug aremyos
ubnojoired uor Aq payp3

G66T - SepIng Buussulbug aremyos

3|IAJBWIWOS ue|

G66T - uonip3 uyis - bulesuibuz aremyos

uewssald 'S Jaboy

966T Yo\ - Buussuibug aremyos o3 aping sabeuep v
uospnH 'C Youspald pue zooioyag I|v

966T AINC - sfeuswepun4 Buuasuibu] aresspg

'S 18boy 966T
Bny - uonip3 Yy - yorouddy sJauonnoeld v : Buussuibug aremyos

Jakey] "H pJyedly pue uewyloq ulsN Aq paup3

966T "das - Buuaauibug aremyos

aloer fexued

/66T - buuaauibug aremyjos o1 yoeouddy parelbaiu] uy

labas)id souaime Leys
866T YoIen - aonoeld pue Aloay) : BuussuiBul aremyos

September 1998

Quality Assurance Process/Activities

Quality Management
Product/Process Assurance

Quality Attributes
Verification and Validation Processes

Verification and Validation Plans

Software/Program Inspections
Walkthroughs

Design Verification/Validation
Requirements Validation
Requirement Reviews

Cleanroom Method
Audit Process

Traceability
Static Verification

Tools
Joint Review Process
Design Reviews

Reviews
Code Reviews

Audits
© IEEE Computer Society

40

Guiae 10 the Sorware Engineering boay or Kknowiedge — A Straw ivian version

Rared '3 preydry

G86T "uer - sidaouo) Buussuibug aremyos

uewssald 'S Jaboy

886T "god - apIino sJauulbag v ‘Buussulbug aremyos

20Ul 'd

686T - Bulaauibug aremyos

lawed @ sawer pue abes 'd maipuy

066T Yore - buusauibug swalsAs aremyos

sauor ‘M Alobaio

066T Yore - buusauibug aremyos

lJoLpUBK oulg pue Lakezer IpYsiy ‘1zzays oped

T66T "uer - Buussuibug a1emyos Jo speluswepuny

ybnd uyor pue Aaiop ue| ‘[lag ybnog

266T Ae\ - Buaauibug aremyos

wn|g ‘| aonig

266T 190 - M3IA 21SIoH V : Buussuibug aremyos

19IIA UeA 8lUA pue 18I\ Uep sueH

€66T |Udy - @on0eld pue sajdiduld : Buusauibug aremyos
YOURSDIN "Q MBIpuy pue Jakeyl ‘H preyory

€66T 'Bny - aAnoadsiad ueadoing v : Buusauibug aremyos
Jabuo) v ans

€667 "09Q - buussulbug aremyos maN ayL

yoeyos 'y usydals

€66T - uonip3 puz- Buusauibul aremyos

9JJ0IPOOAA MIBN pue pio4 " 3|IASN

7667 100 - Bunssulbuz aremyos BuigNBRSIY

"d ‘18lays 'V ‘ojged ap "d ‘uolsN ‘g ‘ubinoaured ‘r ‘ezzel 'O
66T - spiepuels Buussuibug aremyos

AaiydwnH 'S spem

G66T "uer - Buusauibug aremyos oy aundiosiq v

Jlouogoey usydals pue ae] weyels ‘sies dijiyd

G66T - Juawanoidw quswabeuey ‘9onoeld : Buussuibug aremyos
ubnojoired uor Aq payp3

G66T - SepIng Buussulbug aremyos

3|IAJBWIWOS ue|

G66T - uonip3 uyis - bulesuibuz aremyos

uewssald 'S Jaboy

966T Yo\ - Buussuibug aremyos o3 aping sabeuep v
uospnH 'C Youspald pue zooioyag I|v

966T AINC - sfeuswepun4 Buuasuibu] aresspg

'S 18boy 966T
Bny - uonip3 Yy - yorouddy sJauonnoeld v : Buussuibug aremyos

Jakey] "H pJyedly pue uewyloq ulsN Aq paup3

966T "das - Buuaauibug aremyos

aloer fexued

/66T - buuaauibug aremyjos o1 yoeouddy parelbaiu] uy

labas)id souaime Leys
866T YoIen - aonoeld pue Aloay) : BuussuiBul aremyos

September 1998

Life Cycle
Models/Estimation

Estimation

Duration/Schedule Estimation
Resource Estimation
Non-labor cost Estimation
Risk Assessment/Analysis

Activities/Framework
Cost/Effort Estimation
Building
COCOMO
Size Estimation
FPA
Risk Management
Risk Control

Concepts/Principles
Planning

Estimation

Initiation and Scope Definition
Risk

© IEEE Computer Society

Management Process

ISO/IEC 12207 Organizational

Processes
Techniques

40

Guiae 10 the Sorware Engineering boay or Kknowiedge — A Straw ivian version

Rared '3 preydry

G86T "uer - sidaouo) Buussuibug aremyos

uewssald 'S Jaboy

886T "god - apIino sJauulbag v ‘Buussulbug aremyos

20Ul 'd

686T - Bulaauibug aremyos

lawed @ sawer pue abes 'd maipuy

066T Yore - buusauibug swalsAs aremyos

sauor ‘M Alobaio

066T Yore - buusauibug aremyos

lJoLpUBK oulg pue Lakezer IpYsiy ‘1zzays oped

T66T "uer - Buussuibug a1emyos Jo speluswepuny

ybnd uyor pue Aaiop ue| ‘[lag ybnog

266T Ae\ - Buaauibug aremyos

wn|g ‘| aonig

266T 190 - M3IA 21SIoH V : Buussuibug aremyos

19IIA UeA 8lUA pue 18I\ Uep sueH

€66T |Udy - @on0eld pue sajdiduld : Buusauibug aremyos
YOURSDIN "Q MBIpuy pue Jakeyl ‘H preyory

€66T 'Bny - aAnoadsiad ueadoing v : Buusauibug aremyos
Jabuo) v ans

€667 "09Q - buussulbug aremyos maN ayL

yoeyos 'y usydals

€66T - uonip3 puz- Buusauibul aremyos

9JJ0IPOOAA MIBN pue pio4 " 3|IASN

7667 100 - Bunssulbuz aremyos BuigNBRSIY

"d ‘18lays 'V ‘ojged ap "d ‘uolsN ‘g ‘ubinoaured ‘r ‘ezzel 'O
66T - spiepuels Buussuibug aremyos

AaiydwnH 'S spem

G66T "uer - Buusauibug aremyos oy aundiosiq v

Jlouogoey usydals pue ae] weyels ‘sies dijiyd

G66T - Juawanoidw quswabeuey ‘9onoeld : Buussuibug aremyos
ubnojoired uor Aq payp3

G66T - SepIng Buussulbug aremyos

3|IAJBWIWOS ue|

G66T - uonip3 uyis - bulesuibuz aremyos

uewssald 'S Jaboy

966T Yo\ - Buussuibug aremyos o3 aping sabeuep v
uospnH 'C Youspald pue zooioyag I|v

966T AINC - sfeuswepun4 Buuasuibu] aresspg

'S 18boy 966T
Bny - uonip3 Yy - yorouddy sJauonnoeld v : Buussuibug aremyos

Jakey] "H pJyedly pue uewyloq ulsN Aq paup3

966T "das - Buuaauibug aremyos

aloer fexued

/66T - buuaauibug aremyjos o1 yoeouddy parelbaiu] uy

labas)id souaime Leys
866T YoIen - aonoeld pue Aloay) : BuussuiBul aremyos

September 1998

Risk Table/Matrix

Project Scheduling

Risk Areas
Process/Activities
Cost-benefit Analysis

Risk Model
Management of In-house software development

Tools

Review and evaluation
Resources Evaluation and Improvement

Project Control/Monitoring/Tracking

Managing People
Management of contracted software

Leading the project/Manager's Role

Reporting
Technical Management

Planning Tools

Project Budgeting

Staff/Personnel/Resources Planning
Execution and Control

Productivity
© IEEE Computer Society

a4/

Guiae 10 the Sorware Engineering boay or Kknowiedge — A Straw ivian version

Rared '3 preydry

G86T "uer - sidaouo) Buussuibug aremyos

uewssald 'S Jaboy

886T "god - apIino sJauulbag v ‘Buussulbug aremyos

20Ul 'd

686T - Bulaauibug aremyos

lawed @ sawer pue abes 'd maipuy

066T Yore - buusauibug swalsAs aremyos

sauor ‘M Alobaio

066T Yore - buusauibug aremyos

lJoLpUBK oulg pue Lakezer IpYsiy ‘1zzays oped

T66T "uer - Buussuibug a1emyos Jo speluswepuny

ybnd uyor pue Aaiop ue| ‘[lag ybnog

266T Ae\ - Buaauibug aremyos

wn|g ‘| aonig

266T 190 - M3IA 21SIoH V : Buussuibug aremyos

19IIA UeA 8lUA pue 18I\ Uep sueH

€66T |Udy - @on0eld pue sajdiduld : Buusauibug aremyos
YOURSDIN "Q MBIpuy pue Jakeyl ‘H preyory

€66T 'Bny - aAnoadsiad ueadoing v : Buusauibug aremyos
Jabuo) v ans

€667 "09Q - buussulbug aremyos maN ayL

yoeyos 'y usydals

€66T - uonip3 puz- Buusauibul aremyos

9JJ0IPOOAA MIBN pue pio4 " 3|IASN

7667 100 - Bunssulbuz aremyos BuigNBRSIY

"d ‘18lays 'V ‘ojged ap "d ‘uolsN ‘g ‘ubinoaured ‘r ‘ezzel 'O
66T - spiepuels Buussuibug aremyos

AaiydwnH 'S spem

G66T "uer - Buusauibug aremyos oy aundiosiq v

Jlouogoey usydals pue ae] weyels ‘sies dijiyd

G66T - Juawanoidw quswabeuey ‘9onoeld : Buussuibug aremyos
ubnojoired uor Aq payp3

G66T - SepIng Buussulbug aremyos

3|IAJBWIWOS ue|

G66T - uonip3 uyis - bulesuibuz aremyos

uewssald 'S Jaboy

966T Yo\ - Buussuibug aremyos o3 aping sabeuep v
uospnH 'C Youspald pue zooioyag I|v

966T AINC - sfeuswepun4 Buuasuibu] aresspg

'S 18boy 966T
Bny - uonip3 Yy - yorouddy sJauonnoeld v : Buussuibug aremyos

Jakey] "H pJyedly pue uewyloq ulsN Aq paup3

966T "das - Buuaauibug aremyos

aloer fexued

/66T - buuaauibug aremyjos o1 yoeouddy parelbaiu] uy

labas)id souaime Leys
866T YoIen - aonoeld pue Aloay) : BuussuiBul aremyos

0 0 0 O
O

O O O
O O O

O O O 0 O O
O O O

0 0O 0 0 0 0 O o)

Iterative Enhancement Model

Others

Evolutionary Model
Process Models/Structure

Incremental Model

Prototyping
Spiral Model

Process Establishment
Life-Cycle Processes
Models/Approaches
Waterfall Model
Process Analysis/Modeling
Process Selection

Improvement Process

Process Characteristics

Process Assessment

Process Evaluation/Assessment

Process Improvement

O 0 0 O

CMM
Process Maturity
ISO 9000

September 1998

© IEEE Computer Society

48

Guiae 10 the Sorware Engineering boay or Kknowiedge — A Straw ivian version

Rared '3 preydry

G86T "uer - sidaouo) Buussuibug aremyos

uewssald 'S Jaboy

886T "god - apIino sJauulbag v ‘Buussulbug aremyos

20Ul 'd

686T - Bulaauibug aremyos

lawed @ sawer pue abes 'd maipuy

066T Yore - buusauibug swalsAs aremyos

sauor ‘M Alobaio

066T Yore - buusauibug aremyos

lJoLpUBK oulg pue Lakezer IpYsiy ‘1zzays oped

T66T "uer - Buussuibug a1emyos Jo speluswepuny

ybnd uyor pue Aaiop ue| ‘[lag ybnog

266T Ae\ - Buaauibug aremyos

wn|g ‘| aonig

266T 190 - M3IA 21SIoH V : Buussuibug aremyos

19IIA UeA 8lUA pue 18I\ Uep sueH

€66T |Udy - @on0eld pue sajdiduld : Buusauibug aremyos
YOURSDIN "Q MBIpuy pue Jakeyl ‘H preyory

€66T 'Bny - aAnoadsiad ueadoing v : Buusauibug aremyos
Jabuo) v ans

€667 "09Q - buussulbug aremyos maN ayL

yoeyos 'y usydals

€66T - uonip3 puz- Buusauibul aremyos

9JJ0IPOOAA MIBN pue pio4 " 3|IASN

7667 100 - Bunssulbuz aremyos BuigNBRSIY

"d ‘18lays 'V ‘ojged ap "d ‘uolsN ‘g ‘ubinoaured ‘r ‘ezzel 'O
66T - spiepuels Buussuibug aremyos

AaiydwnH 'S spem

G66T "uer - Buusauibug aremyos oy aundiosiq v

Jlouogoey usydals pue ae] weyels ‘sies dijiyd

G66T - Juawanoidw quswabeuey ‘9onoeld : Buussuibug aremyos
ubnojoired uor Aq payp3

G66T - SepIng Buussulbug aremyos

3|IAJBWIWOS ue|

G66T - uonip3 uyis - bulesuibuz aremyos

uewssald 'S Jaboy

966T Yo\ - Buussuibug aremyos o3 aping sabeuep v
uospnH 'C Youspald pue zooioyag I|v

966T AINC - sfeuswepun4 Buuasuibu] aresspg

'S 18boy 966T
Bny - uonip3 Yy - yorouddy sJauonnoeld v : Buussuibug aremyos

Jakey] "H pJyedly pue uewyloq ulsN Aq paup3

966T "das - Buuaauibug aremyos

aloer fexued

/66T - buuaauibug aremyjos o1 yoeouddy parelbaiu] uy

labas)id souaime Leys
866T YoIen - aonoeld pue Aloay) : BuussuiBul aremyos

Spice
Special Topics

Metrics/Measurement

Management Metrics

Complexity Metrics

Quality Metrics
Size Metrics

Process Metrics

Product Metrics

Reliability Metrics
Data Collection

Object Oriented Metrics

Software Attributes

Technical Metrics

Tools

Other Metrics
Real-Time Systems

o) o)
O O O O
o) o)
[e) O
[
K=
T
QO
=
Q
@
o
(7))
10
c
=
o
c QL oc
235 £ =
n oTp O
O O ¢ 9
QX+ £
n n n B
EEEGS
L2220
IR R4
SN =
0w v o
0 o o £
EEEO®
FEER2
T © © &
Q0O 2
RRR@
o)
o

September 1998

© IEEE Computer Society

4y

Guiae 10 the Sorware Engineering boay or Kknowiedge — A Straw ivian version

Ralired "3 preydry

G86T "uer - sidaouo) Buussuibug aremyos
uewssald 'S laboy

886T 024 - apIno sJauuibag v ‘Bunasuibug alemyos
aou| 'q

686T - Bulaauibug aremyos

lawred ‘@ sawer pue abes 'd malpuy

066T Yore - buusauibug swalsAs aremyos O
sauor ‘M Alobaio
066T Yore - buusauibug aremyos
lJoLpUBK oulg pue Lakezer IpYsiy ‘1zzays oped
T66T "uer - Buussuibug a1emyos Jo speluswepuny 0O
ybnd uyor pue Aaiop ue| ‘[lag ybnog
266T Ae\ - Buaauibug aremyos
wn|g ‘| aonig
266T 190 - M3IA 21SIoH V : Buussuibug aremyos
19IIA UeA 8lUA pue 18I\ Uep sueH
€66T |Udy - @on0eld pue sajdiduld : Buusauibug aremyos
YOURSDIN "Q MBIpuy pue Jakeyl ‘H preyory 0 O

€66T 'Bny - aAnoadsiad ueadoing v : Buusauibug aremyos
Jabuo) v ans

€66T 99 - Bussuibug aremyos maN ayL

yoeyas 'y uaydais

€66T - uolip3 pug- Buusauibug aremyos

3JJ0JPOO/ e\ pue pio ‘[3||IAeN

7667 100 - Bunssulbuz aremyos BuigNBRSIY

"d ‘18lays 'V ‘ojged ap "d ‘uolsN ‘g ‘ubinoaured ‘r ‘ezzel 'O
66T - sprepuels Bunaauibug aremyos

AaiydwnH 'S spem

G66T "uer - Buusauibug aremyos oy aundiosiq v

JlouogoeN uaydals pue are| weyelo ‘sijres dijyd

G66T - Juawanoidw quswabeuey ‘9onoeld : Buussuibug aremyos
ybnojoured uor Aq panp3

G66T - Sapino Buuasuibug aremyos

9|IBWWOS Ue|

G66T - uonip3 uyis - bulesuibuz aremyos

uewssald 'S laboy

966T Yasen - Bussuibug alemyos o} aping sabeuep v
UOSpNH 'C Youapald pue zoolojyag Il

966T AINC - sfeuswepun4 Buuasuibu] aresspg

'S Jaboy 966T
Bny - uonip3 Yy - yorouddy sJauonnoeld v : Buussuibug aremyos
Jakey] "H piyeodry pue uewyod ullay Aq paup3

966T "das - Buuaauibug aremyos

aloer fexued

/66T - buuaauibug aremyjos o1 yoeouddy parelbaiu] uy

1abaajd aouaime Leys

866T YdJe\ - 9010eld pue Aloayl : Buusauibug aremyos

O 0 00 0 0 0

CASE Workbenches
Integrated Environments

Tool Integration

CASE Classification
Tools/Toolsets

Integrated CASE

Software Development Environments
CASE

Reverse Engineering

September 1998

Formal Specification/Specification Languages

Definitions, Concepts, Principles
Definition

Object-Oriented Approach
Object-Oriented Design
Object-Oriented Analysis
Object-Oriented Development
Object-Oriented Programming

Formal Methods
Formal Design

Unix Environment
Software Development Methodologies/Paradigms

© IEEE Computer Society

ou

Guiae 10 the Sorware Engineering boay or Kknowiedge — A Straw ivian version

Rared '3 preydry

G86T "uer - sidaouo) Buussuibug aremyos

uewssald 'S laboy

886T 024 - apIno sJauuibag v ‘Bunasuibug alemyos

aou| 'q

686T - Buuasuibug aremyos

lawred ‘@ sawer pue abes 'd malpuy

066T Yore - buusauibug swalsAs aremyos

sauor ‘M Alobaio

066T Yore - buusauibug aremyos

lJoUpURN ould pue Lakezer IpYsN ‘1zzayo ojed

T66T "uer - Bulaauibug aremyos Jo speluswepun4

ybnd uyor pue Aaiop ue| ‘[lag ybnog

266T Ae\ - Buaauibug aremyos

wn|g ‘| aonig

266T 190 - MAIA JISIloH V : Buuaauibug aremyos

19IIA UeA 8lUA pue 18I\ Uep sueH

€66T |Udy - @on0eld pue sajdiduld : Buusauibug aremyos
YOURSDIN "Q MBIpuy pue Jakeyl ‘H preyory

€66T 'Bny - aAnoadsiad ueadoing v : Buusauibug aremyos
Jabuo) v ans

€66T 99 - Bussuibug aremyos maN ayL

yoeyas 'y uaydais

€66T - uonip3 puz- buusauibug aremyos

3JJ0JPOO/ e\ pue pio ‘[3||IAeN

7667 100 - Bunssulbuz aremyos BuigNBRSIY

"d ‘18lays 'V ‘ojged ap "d ‘uolsN ‘g ‘ubinoaured ‘r ‘ezzel 'O
66T - sprepuels Bunaauibug aremyos

AaiydwnH 'S spem

G66T "uer - Buusauibug aremyos oy sundidsig v

JlouogoeN uaydals pue are| weyelo ‘sijres dijyd

G66T - Juawanoidw quswabeuey ‘9onoeld : Buussuibug aremyos
ubnojoired uor Aq payp3

G66T - Sapino Buuasuibug aremyos

9|IBWWOS Ue|

G66T - uonip3 uyis - bulesuibuz aremyos

uewssald 'S laboy

966T Yasen - Bussuibug alemyos o} aping sabeuep v
UOSpNH 'C Youapald pue zoolojyag Il

966T AINC - sfeuswepun4 Buuasuibu] aresspg

'S 18boy 966T
Bny - uonip3 Yy - yorouddy sJauonnoeld v : Buussuibug aremyos
Jakey] "H piyeodry pue uewyod ullay Aq paup3

966T "das - Buuaauibug aremyos

aloer fexued

/66T - buuaauibug aremyjos o1 yoeouddy parelbaiu] uy

labas)id souaime Leys
866T YoIen - aonoeld pue Aloay) : BuussuiBul aremyos

Prototyping

Prototyping in the Software Development Process

Design and Prototyping
Prototyping Techniques

Requirements Analysis and Prototyping
User Interface Prototyping
Jackson System Development

Data-centered Approach

Function-Oriented Approach
Knowledge-based Approach

Structured Systems Analysis and Design Method

(SSADM)

O O O 0

Software Products Improvement

Software Products Evaluation
Software Reliability

Software Products

Defensive Programming

Definitions

Design Rules

Exception handling
Fault Avoidance

Fault Tolerance

September 1998

© IEEE Computer Society

ol

Guiae 10 the Sorware Engineering boay or Kknowiedge — A Straw ivian version

Ralired "3 preydry

G86T "uer - sidaouo) Buussuibug aremyos

uewssald 'S laboy

886T 024 - apIno sJauuibag v ‘Bunasuibug alemyos

aou| 'q

686T - Bulaauibug aremyos

lawred ‘@ sawer pue abes 'd malpuy

066T Yore - buusauibug swalsAs aremyos

sauor ‘M Alobaio

066T Yore - buusauibug aremyos

lJoUpURN ould pue Lakezer IpYsN ‘1zzayo ojed

T66T "uer - Bulaauibug aremyos Jo speluswepun4

ybnd uyor pue Aaiop ue| ‘[lag ybnog

266T Ae\ - Buaauibug aremyos

wn|g ‘| 8dn.g

266T 190 - MAIA JISIloH V : Buuaauibug aremyos

18I/ UBA 3lUA pue 18lA U/ sueH

€66T |Udy - @on0eld pue sajdiduld : Buusauibug aremyos
YOURSDIN "Q MBIpuy pue Jakeyl ‘H preyory

€66T 'Bny - aAnoadsiad ueadoing v : Buusauibug aremyos
Jabuo) v ans

€66T 99 - Bussuibug aremyos maN ayL

yoeyas 'y uaydais

€66T - uolip3 pug- Buusauibug aremyos

3JJ0JPOO/ e\ pue pio ‘[3||IAeN

7667 100 - Bunssulbuz aremyos BuigNBRSIY

"d ‘18lays 'V ‘ojged ap "d ‘uolsN ‘g ‘ubinoaured ‘r ‘ezzel 'O
66T - sprepuels Bunaauibug aremyos

AaiydwnH 'S spem

G66T "uer - Buusauibug aremyos oy aundiosiq v

JlouogoeN uaydals pue are| weyelo ‘sijres dijyd

G66T - Juawanoidw quswabeuey ‘9onoeld : Buussuibug aremyos
ubnojoired uor Aq payp3

G66T - Sapino Buuasuibug aremyos

9|IBWWOS Ue|

G66T - uonip3 uyis - bulesuibuz aremyos

uewssald 'S laboy

966T Yasen - Bussuibug alemyos o} aping sabeuep v
UOSpNH 'C Youapald pue zoolojyag Il

966T AINC - sfeuswepun4 Buuasuibu] aresspg

'S 18boy 966T
Bny - uonip3 Yy - yorouddy sJauonnoeld v : Buussuibug aremyos
Jakey] "H piyeodry pue uewyod ullay Aq paup3

966T "das - Buuaauibug aremyos

aloer fexued

/66T - buuaauibug aremyjos o1 yoeouddy parelbaiu] uy
1abaajd aouaime Leys

866T YdJe\ - 9010eld pue Aloayl : Buusauibug aremyos

Models

Redundancy

Specification
Software Reuse

Code Reuse

Software Development for Reuse

Software Development with Reuse

Standards

Evaluating Software Engineering Standards

Quality Standards

Other Topics

Cleanroom Software Engineering

Safety-Critical Software

Software Tools

Fault-Tolerant Software
Human Factors
Client/Server

Ethics

Expert Systems

Software Engineering Education

Software Psychology

September 1998

© IEEE Computer Society

o V4

Guiae 10 the Sorware Engineering boay or Kknowiedge — A Straw ivian version

Rared '3 preydry

G86T "uer - sidaouo) Buussuibug aremyos

uewssald 'S Jaboy

886T "god - apIino sJauulbag v ‘Buussulbug aremyos

20Ul 'd

686T - Bulaauibug aremyos

lawed @ sawer pue abes 'd maipuy

066T Yore - buusauibug swalsAs aremyos

sauor ‘M Alobaio

066T Yore - buusauibug aremyos

lJoLpUBK oulg pue Lakezer IpYsiy ‘1zzays oped

T66T "uer - Buussuibug a1emyos Jo speluswepuny

ybnd uyor pue Aaiop ue| ‘[lag ybnog

266T Ae\ - Buaauibug aremyos

wn|g ‘| aonig

266T 190 - M3IA 21SIoH V : Buussuibug aremyos

19IIA UeA 8lUA pue 18I\ Uep sueH

€66T |Udy - @on0eld pue sajdiduld : Buusauibug aremyos
YOURSDIN "Q MBIpuy pue Jakeyl ‘H preyory

€66T 'Bny - aAnoadsiad ueadoing v : Buusauibug aremyos
Jabuo) v ans

€667 "09Q - buussulbug aremyos maN ayL

yoeyos 'y usydals

€66T - uonip3 puz- Buusauibul aremyos

9JJ0IPOOAA MIBN pue pio4 " 3|IASN

7667 100 - Bunssulbuz aremyos BuigNBRSIY

"d ‘18lays 'V ‘ojged ap "d ‘uolsN ‘g ‘ubinoaured ‘r ‘ezzel 'O
66T - spiepuels Buussuibug aremyos

AaiydwnH 'S spem

G66T "uer - Buusauibug aremyos oy aundiosiq v

Jlouogoey usydals pue ae] weyels ‘sies dijiyd

G66T - Juawanoidw quswabeuey ‘9onoeld : Buussuibug aremyos
ubnojoired uor Aq payp3

G66T - SepIng Buussulbug aremyos

3|IAJBWIWOS ue|

G66T - uonip3 uyis - bulesuibuz aremyos

uewssald 'S Jaboy

966T Yo\ - Buussuibug aremyos o3 aping sabeuep v
uospnH 'C Youspald pue zooioyag I|v

966T AINC - sfeuswepun4 Buuasuibu] aresspg

'S 18boy 966T
Bny - uonip3 Yy - yorouddy sJauonnoeld v : Buussuibug aremyos

Jakey] "H pJyedly pue uewyloq ulsN Aq paup3

966T "das - Buuaauibug aremyos

aloer fexued

/66T - buuaauibug aremyjos o1 yoeouddy parelbaiu] uy

labas)id souaime Leys
866T YoIen - aonoeld pue Aloay) : BuussuiBul aremyos

Technology Transition

September 1998

© IEEE Computer Society

Guide to the Software Engineering Body of Knowledge — A Straw Man Version 53

Appendix D.
Undergraduate Programs in Software Engineering -
Classification of Courses According to Potential Knowledge Areas

© IEEE Computer Society September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version 54

B |«
c =
2| 2 B | S
@ @ z2 |9
g2 | 552
2 | B gu |3
L L 3¢ |5
g g £ |Fo
© ©
s s 85 |ws 2
x5 [x8 Fa o9 | o2
S |5a o |82 | =9
‘3 |29 °g |35 | g£
Eo |Eo XGE |cc S
c < c < o295 e=NT} Oc
L0 (09 .22 (3 L
o0 o0 O c g Qo ©
£ |EnT |88 |98 =9
Ex Eg= ks ° O =2 g8
=9 =2 0;m o 5D [T = =2
m> m>, |20°L z 2 [O=
w9 |c2p |[«=2W =N « O
o £ Ofw [O0o= S [SR%)
28 |28% | 293 |22 £
29 |8Q8 |B88s |28 |B@g
oE |(oEm |58 |0 o0
20 [20c | 28T [2G | 24
(=N} cnxE c e () C © =
Oom om=2 |DE= Om Om
Introduction Software Engineering 2 2 6 1
Software Engineering/IS Engineering 00 00 ooy o
ISO/IEC 12207 Primary Processes 1 1 2 3 7
Development Process 1 1 2 3 7
General Subjects 2
Software Development o]
Foundation of software Development o]
System/Software Requirements Analysis 2 1
Analysis o]
Object-Oriented Analysis o
Requirements Engineering
Software Detailed Design 1 1 2 1 4
Design 00 o] 00
Human/User Interface 0 0 0
Object-Oriented Design/Modeling o
ISO/IEC 12207 Supporting Life Cycle Processes 1
Quality Assurance Process 1
Quality o]
ISO/IEC 12207 Organizational Life Cycle Processes 1 1
Management Process 1 1
Project/Software Management o]
Information Management o
Special Topics 3
Real-Time Software/Embedded Systems o
Reengineering o]
Software Security/Safety o]
Other Courses 11 15 18 20 28
Accounting o]
Algebra 0
Algorithms o] o] o]
Artificial Intelligence o]
Business Management o] 00
C++ 00 00
Calculus 00
Chemistry o]
Communication Skills and Professional Issues o o
Compilers o]

© IEEE Computer Society September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version 55

Computational Methods/Computing
Computer Architecture

Computer Graphics

Computer Science

Concurrent Systems/Programming
Data Bases/Data Management
Data Strucutres/Data Organization
Digital Computer Organization
Discret Mathematics

Economy

Ethics

File Management

Foundations of Computer Science
Hardware

Human/User Interface

Human Factors/Human Resources
Logic

Marketing

Mathematics

Mechanics

Microprocessors
Networks/Networking

Operating Systems

Physics

Programming

Reuse

Semantics

Simulation

Software Workshop

Statistics

Technical Communication and Writing
Telecommunications/Communication Systems

ISO/IEC 12207 Primary Processes
Development Process
System/Software Requirements Analysis
Formal Methods/specification languages
Software Detailed Design

BSc in Computer Science/Software Engineering

University of Birmingham, UK

O

06

O N N

University of Birmingham, UK

BSc in Computer Science/Software Engineering

with Business Studies

]6)

O

]6)

University of London, UK

Medicine MEng Computing (Software Engineering)

Imperial College of Science, Technology and

O A
o 8o

06

University of New South Wales, Sydney, Australia

Bachelor of Software Engineering

(@3
(@3

(e]6)

Y

06

06

]6)
Y2

University of Ottawa, Ontario
B.A.Sc. in Software Engineering

Y

]6)

0006

© IEEE Computer Society

September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version 56

Human/User Interface
Software Coding
Commercial Programming
Comparison of Programming Languages
Programming
Programming Languages Principles
Programming Methods
System/Software Testing
Verification, Validation and Testing
ISO/IEC 12207 Supporting Life Cycle Processes
Verification and Validation Process
Verification and Validation
ISO/IEC 12207 Organizational Life Cycle Processes
Management Process
Project Planning
Strategic Management
Special Topics
Real-Time Software/Embedded Systems
Other Courses
Accounting
Algebra
Artificial Intelligence
Automata Theory
Calculus
Cognitive Science
Compilers
Computer Graphics
Computer Structures
Trends in Computing
Data Bases/Data Management
Distributed Systems
Evolutionary Computation
Expert Systems
Foreign Language
Image Processing
Internet
International Business
Logic

University of Birmingham, UK
G O & O BScin Computer Science/Software Engineering

OGP OGO N DNOR P O OO

o B

GO O O

Ya

University of Birmingham, UK
o O &~ o BScin Computer Science/Software Engineering

with Business Studies

GIOGN DN O PR PO PR OO

O:

Y

University of London, UK

Imperial College of Science, Technology and

Medicine MEng Computing (Software Engineering)

University of New South Wales, Sydney, Australia

Bachelor of Software Engineering

University of Ottawa, Ontario
B.A.Sc. in Software Engineering

14

(@3

© IEEE Computer Society

September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version 57

Marketing
ML (Programming Language)
Networks/Networking
Numerical Methods
Operating Systems
Combinatorial Optimization
Pattern Recognition
Parallel Systems
Prolog
Robotics
Simulation
Statistics
Telecommunications/Communication Systems
Virtual Reality
Optional specified (number)
Optional specified (credits)
Optional non specified (number)
Optional non specified (credits)
Project/Studio (credits)

BSc in Computer Science/Software Engineering

University of Birmingham, UK

O

5

o | O

006

120

20
G40)

University of Birmingham, UK
o o BScin Computer Science/Software Engineering

with Business Studies

006

120

G40)

University of London, UK

Medicine MEng Computing (Software Engineering)

Imperial College of Science, Technology and

16

University of New South Wales, Sydney, Australia

Bachelor of Software Engineering

University of Ottawa, Ontario
B.A.Sc. in Software Engineering

© IEEE Computer Society

September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version 58

Summary

Medicine MEng Computing (Software Engineering)

University of New South Wales, Sydney, Australia

(=] (=]
£ £
@ @ z
2] 2 5
2 2 =
1] 1] S
® ® = o
© ©
2| 8 £ 2
N N = 2 o5
=) o0 [} c R
]] e i) 8 c
€ o € o x5 c c S
c < c < o2 | Oc¢c
£ e £ o9 -8 L
20 o'c .2 c 0 o <
R=N0] SNT S5 IS =Q
= Ex2| 2 = 8
=9 =8mn| g 5 g E
o3 o3 ol 22 n - O
o £ O E o [Shre) 5 ow
28 | 285 | 29 2 2c
g g £ 5 2<
o £ o £ CE g 5 2 o %
EQ | ERE| E8 8 £<
om Oom =2 D = m om
Q Q Q Q Q
= = k= = k=
1%} < 1%} < 1%} < 1%} < 1%} <
g8 |l g | g g <|g <
> 3 > 3 > 3 > 3 > 3
g Sl g 218 218 2|8 &
2 5123 S|z |2 £|2 ¢%
e 2|5 2|5 2|8 £|5 £
o (e} o (e} o (e} o (e} o (e}
Introduction Software Engineering 2 2 6 1
ISO/IEC 12207 Primary Processes 1 7|1 6|2 4 7 1
Development Process 1 1 3 7
General Subjects 2
System/Software Requirements Analysis 1 2 1
Software Detailed Design 1 1|1 12 4
Software Coding 4 4 1
Software Testing 1 1
ISO/IEC 12207 Supporting Life Cycle Processes 1 1
Quality Assurance Process
Verification and Validation Process 1 1
ISO/IEC 12207 Organizational Life Cycle Processes 2
Management Process 2
Special Topics 1
Other Courses 11 29|15 21|18 2 |20 28 14
Optional non specified (humber) 16 5 13
Optional non specified (credits) 20

© IEEE Computer Society

September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version

Appendix E.
Undergraduate Programs in Software Engineering -
Classification of Courses by Related Discipline

59

© IEEE Computer Society September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version 60

Communication
Issues

Computer Science
Algorithms
Artificial Intelligence
C++
Compilers

Computer Graphics
Computer Science

Communication Skills and Professional

Technical Communication and Writing

Computational Methods/Computing

Concurrent Systems/Programming
Data Bases/Data Management
Data Structures/Data Organization
File Management

Foundations of Computer Science
Operating Systems

Programming

Semantics

Simulation

Software Workshop

Electrical Engineering

Computer Architecture

Digital Computer Organization
Hardware

Microprocessors

Management

Accounting

Business Management
Economy

Marketing

Mathematics

Algebra

Calculus

Discrete Mathematics
Logic

Mathematics
Statistics

Project Management

Project/Software Management

Science

Chemistry
Mechanics
Physics

BSc in Computer Science/Software Engineering

University of Birmingham, UK

06

06

BSc in Computer Science/Software Engineering

University of Birmingham, UK
with Business Studies

06

06

University of London, UK

Imperial College of Science, Technology and

Medicine

06

Universityof New South Wales, Sydney, Australia

Bachelor of Software Engineering

10

06

06

06

Y2
06

University of Ottawa, Ontario
B.A.Sc. in Software Engineering

~

O 0O O O

o 85 ol Jeiledle}

~

06
Ov

8§o=o=4=ozpo=

© IEEE Computer Society

September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version 61

BSc in Computer Science/Software Engineering

University of Birmingham, UK

BSc in Computer Science/Software Engineering

University of Birmingham, UK
with Business Studies

University of London, UK

Imperial College of Science, Technology and

Medicine
MEng Computing (Software Engineering)

Universityof New South Wales, Sydney, Australia

Bachelor of Software Engineering

University of Ottawa, Ontario
B.A.Sc. in Software Engineering

Telecommunications/Networks
Networks/Networking
Telecommunications/Communication

Systems

Application Domains

Real-Time Software/Embedded Systems
Cognitive Science

Cognitive Science
Communication

Foreign Language
Computer Science

Artificial Intelligence

Automata Theory

Commercial Programming

Comparison of Programming Languages

Compilers

Computer Graphics

Computer Structures

Trends in Computing

Data Bases/Data Management

Distributed Systems

Evolutionary Computation

Expert Systems

Human/User Interface

Image Processing

Internet

ML (Programming Language)

Operating Systems

Parallel Systems

Pattern Recognition

Prolog

Programming

Programming Languages Principles

Programming Methods

Robotics

Simulation

Virtual Reality
Management

Accounting

International Business

Marketing

Strategic Management
Mathematics

Algebra

Calculus

Ok O

G| O O OO

(@3

oo a0

006

~ O

(e]eX7]

OO O O

(@3

N OO OO h O

ok

gm

w

060606

13

(@3

© IEEE Computer Society

September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version 62

Universityof New South Wales, Sydney, Australia

(=] (=]
£ £
@ @ z
21 & |8
2| 2 | 8 2
L L S 9
(] (] c Y
§ § % 'g g’ o
<S35 | © 9 85| of
29 |29 g 9 == RS
E3 |8 ks § =2 | £5
c < c < D .2 F= w O c
£ 0 coal.2 9 L
0 2Gc.Q |0 (p o I
£ [EnTISs 3 IS =2
Ex Eyg 2 2 g 2 T 3
=2 | =8n|cy g £ = 2
m > mns,[RT F 2 [O=
“— — 29 == a n « O
o £ OSEQ|®90 ¢4 5 own
28 |28 294 9§ 2 >c
22 |222@ssg 28 | T
o £ o .Em o580 2 [5X%)
= 0 .205 Eg_guCJ S .E<'
58 |S8E5ESY 58 | 50
Combinatorial Optimization o o
Logic o] o]
Numerical Methods o
Statistics o
Project Management 1 1
Project Planning o] o]
Software Engineering 2 1
Formal Methods/Specification languages o]
Verification, Validation and Testing o o
Telecommunications/Networks 1 1
Networks/Networking o]
Telecommunications/Communication o
Systems
Optional specified (number) 1 3
Optional specified (credits) 120 120
Optional non specified (humber) 16 5 3
Optional non specified (credits) 20
Project/Studio (credits) Qq40) | §40) o] o] o]

© IEEE Computer Society September 1998

63

Guide to the Software Engineering Body of Knowledge — A Straw Man Version

Summary Table

a|ge|reny sasino) feuondo «© N —
Bulsauibug aremyos ul ‘9Sy'g 198 ! - .
oueuQ ‘eme o Alsianiu —
Lo RO Jo Al un sasino) Alosindwod — ~ ™ < NS A o™
a|ge|reny sasino) feuondo
Buleauibug aremyos jo Jojayoeg o
elressny ‘AsupAs ‘sae Nnos MaN JoANSIaAIU
leasny PAS [BM inos N oAl un s9sIn0) Alosindwo) .nlu_ - - [Te] N
(Buussuibug aremyos) Bunndwod Bug suRIpaN | siqeireay sesinod reuondo - -
‘ [{e]
pue ABojouyoa] ‘@aualds Jo abajj0) [euadw) <9
N ‘uopuoT jo AusIaniun sasun09 Alosindwo) g9 ™ ™ —
SaIpn]S ssauisng YIM | siqeiieay sesinod reuondo Q « < N
Buleauibug aremyos/aouaids Jaindwo) ul 9sg
MN ‘weybuiwig Jo AusiaAiun $9sIn0D A1osindwon — o - o -
9|0ejreny sasino) feuondo —l M — n < - —
Bueauibug aremyos/aouaids Jaindwo) ul 9sg o
‘weybuiwig jo Alsianiu N
AN ubuilg § W un sasIn0) Alosindwo) — 0 - N
o=~
o |»n
Elal|s
— m e
8|58
Z|ElS
oS |o
2 = 5|23
QD s 53|53
3 S 3 e S|0|D
c c c (0] Clala
g sS85 o 2 L2lo|o
o= c c 0 Slc|c
8P um RRERE m ol|o
S T E © = clc
>3 5 £ o E€ls|s
= > O o)) = | ©
EE2E 9 g2 2 8lc|c
> E E oL c S =0 d|lo|o
Q669 5 88 L G ols|s
CCCEEMMPSTOD.%.

September 1998

© IEEE Computer Society

Guide to the Software Engineering Body of Knowledge — A Straw Man Version

Appendix F.
Graduate Programs in Software Engineering -
Admission Requirements by Related Discipline

64

© IEEE Computer Society September 1998

0o

Guiage 10 the Sortware Engineering boay or Kknowiedge — A Straw ivian version

3S Ul SN
puepoas ‘Bulns - bulns jo Ausiaaiun

3S Ul SN
rlOSBUUIN ‘sijodeauul|y - Sewoy] 1S Jo Alslaniun

2.7

IS Ul SN
Vd ‘UOjuRIOS - UOJURIDS JO ANISISAIUN

4.0

Oor

uolfeIuUsu0) JS - 92UBI0S Jandwo) ul SN
AID sesued-INossIN o Alslaniun

3.0 | 3.0/

3S Jo Ja1se
puejAreN red abajjo) - puejhiel Jo Alsianiun

3.0/
4.0

3S Ul SN
UBpaams - Agauuoyeuonisiied Jo Alsiaaiun

IS Ul SN
X1 ‘UOISNOH - 8xeT Jes|d - UOISNOH JO ANISIsAIUN

35 ul uondo yum Busauibug Jo Jaise
09D ‘sbuuds opelojo) - opelojo) Jo AlsiaAiun

3S Ul Ul uonezifeoads yIm IS
v ‘Areble) - Arebie) jo Alsianiun

3.0

3S Ul 'V'OS'IN
20 ‘[eaNUO - [E2IUON & 230N NP SUSISAIUN

4.3

3S Jo Ja1se
X1 ‘“UUOAM Hoo - AUSIBAIUN UenNSUYD Sexal

3.0 | 3.0/

5

3S Ul SN
X1 ‘se|req - AlsIanun ISIPoYIsN UIsyinos

3.0/
4.0

Oor

3S Jo Ja1se
VM ‘aneas - AIsisAlun ajess

Oor

3S Ul SN
VO ‘ejlor €7 - Ausianiun [euonen

Oor

3S Ul SN 02
‘sBuljjoD 104 - Auslaniun [ealbojouyoa] feuoneN

3S Ul SIN
CN ‘youelg BuoT 1sap\ ‘AlISIBAIUN YINOWUON

25
to
3.0

3S Jo Ja1se
S ‘ueneyuely - AlSIaAIUN B1LIS sesuey

3.0

™

o)

OO0 « O 4 O

3S J0 JalSe\
BI[eNISNY ‘BlesiSNY YINoS Jo AUSIsAlUN sJapulld

3S Jo Ja1se
14 ‘yoeag euoikeq - Ausianiun a|ppiy-Aiqug

uonenuasuo) Juawdopaag a/emyos - 3S Ul SW
71 ‘obeayd - Ausianiun (nedaa

—

uondQ 3S - 9ou8I9S JaINdwo) ul JsISseN
20 ‘[eanuol - eIpIoduo)D

3S Jo Ja1se
vd ‘ybingsnid - Ausianiun uojieN aibaured

O*

O*

Buusauibug aremyos ul SN
uebIydI - AlISIaAluUn Smalpuy

Degree in Computer Science or equivalent

Grades

Graduate Record Exam

Experience Required

Software Development

Software Maintenance
Experience (Can be used for acceptance

instead of degree)
Non Specified

Computer Science

Algorithms

Requirements Analysis
Data Structures
Programming

Mathematics

Mathematics
Software Engineering

Software Engineering

Specific

Courses/Knowledge

Undergraduate

Required

Computer Science

Algorithms

Comparative Programming Languages

Compiling techniques

Computer Organization

September 1998

© IEEE Computer Society

bb

Guiage 10 the Sortware Engineering boay or Kknowiedge — A Straw ivian version

3S Ul SN

puepoas ‘Bulns - bulns jo Ausiaaiun 0O
3S Ul SN
©lOSaUUIN ‘sljodeauuly - Sewoy] 1S Jo AUSIaAIuN
3S Ul SN . . ; . .
Vd ‘UOJUBIIS - UOJURIDS JO ANSIDAIUN O O O - O - O
uofeUaU0D 3S - 99UBIDS Jandwo) ul SW] 0 o o]] .
RuD sesued-unossIy Jo AlIsIaAiun O O 0|5 © ¥ 9 © O ~ O O
3S Jo Ialse o
puejAreN red abajjo) - puejhiel Jo Alsianiun ’
3S Ul SN o
uapaams - Agauuoyeuoysiiey Jo Alsianiun - ’
JSUSN o
X1 ‘UOISNOH - 8yeT Jea|D - U0ISNOH JO AlSIaAlun =
35 ul uondo yum Busauibug Jo Jaise]]]
09D ‘sbuuds opelojo) - opelojo) Jo AlsiaAiun 0O 0O - 0O
3S Ul Ul uonezifeoads yIm IS . .
v ‘Areble) - Arebie) jo Alsianiun O O
3S Ul 'V'OS'IN . O O
20 ‘[eauUo - [ea)IUOIN B 9909N NP 3USIBAIUN 0 ® |00l
3S Jo Jalse]]
X1 ‘UMOM HoH - AUSIBAIUN URISUYD Sexa] 0 0
3S Ul SN 0
X1 ‘se|ieqd - Auslaniun 1SIPoYIB|Al uIayinos =
3S Jo Jalse]
VM ‘9neas - Alsianiun apess 0
3S Ul SN ~l. . O~ . O
VO ‘ejjor e - Ausianiun feuonen 0|0 O 00 0O« 0|0
3S Ul SN 02
‘sbuljjoD uo4 - Alslaniun eaibojouysa] feuonen
3S Ul SN . . .
CN ‘youelg Buo 1sapn ‘AlISIBAIUN YINOWUOW O 0 © - O
3S Jo Ialse
S ‘ueneyuel - AlsIaAUN AeIS Sesue
3S Jo Ialse
elfesisny ‘eljesisny Yyinos jo Ausianiun siapuil4
3S Jo Jalse
14 ‘yoeag euoikeq - Ausianiun a|ppiy-Aiqug
uonenuasuo) Juawdopaag a/emyos - 3S Ul SW
. O - O
71 ‘obeayd - Ausianiun (nedaa
uondo 3S - 99ua19S Jaindwo) ul Jsise Q
20 ‘[eanuop - eipI0duoD Mm
3S Jo IsIseN | % % A .
vd ‘ybingsnid - Ausianiun uojieN aibaured ke O i - ©
Buussuibug aremyos Ul SN] .]
uebIydI - AlISIaAluUn Smalpuy 0O 0O m| OO 0O
c
i)
SR
c S n
S S 3
R S &
Q w % o o 8})
s o 22 228 £33 _£ £
8 $ §E 5§83 £8<ptE2l £
S % 2 o5 2 4= oS35 80 =9
K9] o 5 23ab o5 5T o 5 £ Q
o= £ 2 o o D ©on 2 = 0 £ =
ARIE 2w E @RS EC S| 5 2w o 2 = 5 0
222958505 E£E 5IZTEDS S 83 8
gls 23?280 2EEE cga83ge8drly 228,
|lc E g o s 1 £ EEE w = OL=c®Le 8 auge o
] </l g = CE © © & _ 3 ..5 —_ alQ w 5 = S5 = o =
E([8 88 g 4 EQPPIPXO0EDEEETSELGZoE =
S8 882252222 ccos52s258cc82c8Cd
oo r0aoaa>goO0onoaa £0Q03=0m
i)) [
w O =

September 1998

© IEEE Computer Society

or

Guiage 10 the Sortware Engineering boay or Kknowiedge — A Straw ivian version

3S Ul SN
puepoas ‘Bulns - bulns jo Ausiaaiun

3S Ul SN
rlOSBUUIN ‘sijodeauul|y - Sewoy] 1S Jo Alslaniun

IS Ul SN
Vd ‘UOjuRIOS - UOJURIDS JO ANISISAIUN

uolfeIuUsu0) JS - 92UBI0S Jandwo) ul SN
AID sesued-INossIN o Alslaniun

3S Jo Ja1se
puejAreN red abajjo) - puejhiel Jo Alsianiun

3S Ul SN
UBpaams - Agauuoyeuonisiied Jo Alsiaaiun

IS Ul SN
X1 ‘UOISNOH - 8xeT Jes|d - UOISNOH JO ANISIsAIUN

35 ul uondo yum Busauibug Jo Jaise
09D ‘sbuuds opelojo) - opelojo) Jo AlsiaAiun

3S Ul Ul uonezifeoads yIm IS
v ‘Areble) - Arebie) jo Alsianiun

3S Ul 'V'OS'IN
20 ‘[eaNUO - [E2IUON & 230N NP SUSISAIUN

3S Jo Ja1se
X1 ‘“UUOAM Hoo - AUSIBAIUN UenNSUYD Sexal

3S Ul SN
X1 ‘se|req - AlsIanun ISIPoYIsN UIsyinos

3S Jo Ja1se
VM ‘aneas - AIsisAlun ajess

3S Ul SN
VO ‘ejlor €7 - Ausianiun [euonen

3S Ul SN 02
‘sBuljjoD 104 - Auslaniun [ealbojouyoa] feuoneN

IS UISIN
CN ‘youelg BuoT 1S9 ‘AlSIBAIUN YINOWUO

3S Jo Ja1se
S ‘ueneyuely - AlSIaAIUN B1LIS sesuey

3S J0 JalSe\
BI[eNISNY ‘BlesiSNY YINoS Jo AUSIsAlUN sJapulld

3S Jo Ja1se
14 ‘yoeag euoikeq - Ausianiun a|ppiy-Aiqug

uonenuasuo) Juawdopaag a/emyos - 3S Ul SW
71 ‘obeayd - Ausianiun (nedaa

uondQ 3S - 9ou8I9S JaINdwo) ul JsISseN
20 ‘[eanuol - eIpIoduo)D

3S Jo Ja1se
vd ‘ybingsnid - Ausianiun uojieN aibaured

Buusauibug aremyos ul SN
uebIydI - AlISIaAluUn Smalpuy

Software Engineering

Formal Methods

Object-Oriented Design

Software Development

Software Engineering
Telecommunications/Networks

Networks

*two

required

September 1998

© IEEE Computer Society

[o2e}

Guiage 10 the Sortware Engineering boay or Kknowiedge — A Straw ivian version

aousuadx3 reuondo

IS UISIN
PUeN0OS 'BUILNS - BUINNS JO AUSIBAIUN | oppopmousysssinon paurnboy |
3JS Ul SN ©JOSaUUIN aouauadx3 reuondo
‘sljodeauulnl - sewoyL 1S Jo Ausiaaun 5Bpajmouy|/sasiNoD painbay
3JS UI S aouauadx3 reuondo
vd _CO«CG_OW - uojuelids hO >u_w._®>_CD abpajmouy/sasino) palinbay Dl e A
uoljejuaduo) 3S - 9aJuUaldS LOHJQEOU ul SN @ouauiadx3 feuondo
\ﬁ_o m@wcﬁv_u_‘_JOmw__\/_ hO >u_w._®>_CD abpajmouy/sasino) paliinbay ~os N
as hO 1215e N aouauadx3 reuondo
puejArey Sied 969]109 - puejAeN JO ANSIBAIUN | sppapousysssinog paunbay |
IS Ul S aousuadx3 reuondo
UaPaIMS - Agauuoy/euonisjiey Jo Alsianun 5Bpajmouy|/sasIN0D painbay —
IS Ul SN X1 aouauadx3 reuondo
.COHWDOI - 9eT] Jeg|) - UOIsnoH Jo >u_w._®>_CD abpajmouyj/sasinod paiinbay \n \n A
3S ul uondo yum Bussuibul Jo Jsisey 3ouapadg euondo
0D _wmc__Qw OUM‘_O_OO - OUG_O_OO hO >u_w._®>_CD abpajmouyy/sasinod palinbay N |-
3Ss ul Ul uonezifeloads ynm oS 3ouoHat3 euondo
Y .\CG@_GO - \CGD_GO hO >u_w._®>_CD abpajmouy/sasinod paiinbay N «
3S Ul YIS aouauadx3 reuondo
00 ‘[eaUOIN - [E2]UO € 2309ND Np dlIsIsAIUN sBpamousy/sasinog paimboy | N ™ —
as hO 1215e N aouauadx3 reuondo
X1 .EtO\S uod - >a_w_m>_CD Cﬁ_uw_‘_co Sexa L abpajmouy/sasinod palinbay N
IS Ul S aousuadx3 reuondo
X1 ‘se|ed - AusIaAuN ISIPOYIBIN LIayINoS 5Bpajmouy|/sasinoD painbay —
as hO 1215e N aousuadx3 reuondo
VM .m_ﬁdwm - \ﬁ_w‘_®>_CD m_ﬁdwm abpajmouy/sasinod paiinbay A
IS Ul S aousuadx3 reuondo
vO .G__OH. e - >«_w_m->_CD _GCOE@Z abpajmouy/sasinod paiinbay | N
3JS Ul SN 0D .wmc___oo aouauadx3 reuondo
104 - Aus1aniun [eaibojouyda | [euoneN 5Bpajmouy|/sasiN0D painbay
IS Ul S aousuadx3 reuondo
CN .SUCM‘_m_ @COI_ 1SaM\ .>«_w‘_®>_CD cuDOECO_\/_ abpajmouy/sasino) palinbay < |-
as hO 1215e N aousuadx3 reuondo ™ |
SH .C@ﬁMSCm_\/_ - >u_w._®>_c3 9]e]S sesue)y abpajmouy/sasinod paiinbay
as hO 1215e N aousuadx3 reuondo
el[esisSNY ‘elfesny ynos Jo Ausianiun s1apul4 5BpajmoUy|/sasIN0D painbay
as hO 1215e N aousuadx3 reuondo
14 ;._U@m-m GCOH\AGD - >u_wh®>_CD m_UU_N_-\Cn_Em abpajmouy/sasino) painbay
IS Ul S aousuadx3 reuondo = =
Tl .O@GQEU - >a_w_m>_CD __._Mn_wﬁ_ abpajmouy/sasino) paiinbay \n |-
CO_HQO 3S - 9JUaIdgS _OQJQEOO ul Is1Ssei\ @ouauiadx3 feuondo
OO __Mw‘_uco_\/_ - m6;00:00 abpajmouy/sasinod paiinbay ™
as hO 1215e N aousuadx3 reuondo
vd 'yBingsiild - ANsianiun uojjpiN aibaured sBpamousy/sasinog painboy | ™ —
aousuadx3 reuondo N
Buusauibug aremyos ul SN ! !
uebIydIN - AISIBAIUN SMaIpUY aBpapmouyysasinos pamnbay | & ™
)
i 4
—
E
2
(o))
W c o m,)
= %2}
® o 5 £ S S
S oo =
IS o £ 2 £ 5
o O = o .=
QUU BBy e
2w _._nL 2w 3
E Tl = ©) IS
-
£82< g3
S22 e TG
oOwoz=wn2

September 1998

© IEEE Computer Society

Guide to the Software Engineering Body of Knowledge — A Straw Man Version 69

Appendix G.
Graduate Programs in Software Engineering -
Classification of Courses According to Potential Knowledge Areas

© IEEE Computer Society September 1998

[4Y)

Guiage 10 the Sortware Engineering boay or Kknowiedge — A Straw ivian version

3S Ul SN
puepoas ‘Bulns - bulns jo Ausiaaiun

3S Ul SN
rlOSBUUIN ‘sijodeauul|y - Sewoy] 1S Jo Alslaniun

42

Y

Ya

IS Ul SN
Vd ‘UOJURIOS - UOJURIOIS JO ANISISAIUN

36

uolreIuUsuU0) JS - 92UBI0S Jandwo) ur S
AID sesued-INossIN o Alslaniun

3.0

3S Jo Ja1se
puejAreN red abajjo) - puejhiep Jo Alsianiun

36

3S Ul SN
USpaaMs - Agauuoyeuonisiie) Jo Alsiaaiun

40

pts

IS Ul SN
X1 ‘UOISNOH - 8xeT Jes|d - UOISNOH JO ANISIaAIuN

36

(credit
hours)

O

D

esje]

35 ul uondo yum Busauibug Jo Jaisep
09D ‘sbuuds opelojo) - opelojo) Jo Alsianiun

3.0

3S Ul Ul uonezifeoads yum oSN
v ‘Areble) - Arebie) jo Alsianiun

]6)

3S Ul 'V OS'IN
20 ‘[eaNUO - [e2IUON & 230N NP SUSISAIUN

45

3S Jo Ja1se
X1 ‘“UUOAM Hoo - AUSIBAIUN UenNSUYD Sexal

31

(sem
hours)

Ya

3S Ul SN
X1 ‘se|req - AlsIanun ISIpoyIsy UIsyinos

30
(sem.

hrs.)
3.0/
4.0

3S Jo Ja1se
VM ‘aeas - AlIsisAlun ajess

45

3S Ul SN
VO ‘ejlor B - Ausianiun [euonen

60
(quarte | (grad.

3.0

3S UISN 02
‘sBuljjoD 104 - Auslaniun [ealbojouyos] feuoneN

33

(sem.
credits) | r units) | credits)| credit

3S Ul SIN
CN ‘youelg BuoT 1sap\ ‘AlISIBAIUN YINOWUON

36

3S Jo Ja1se
S ‘ueneyuely - AlSIaAIUN LIS sesuey

33

(credit
hours)

3S J0 Ja1se\
BI[eNISNY ‘BlesISNY YINOS Jo AUSISAIUN sJapulld

3S Jo Ja1se
14 ‘yoeag euoikeq - Ausianiun a|ppiy-Aiqug

36
(credit
hours)

Ya

uonenuasuo) Juawabeuep 108lold - 3S Ul SW
71 ‘obeayd - Ausianiun (nedaq

2.5/
4.0

Ya

Ya

—

uonenuaduo) Juswdojenag aremyos - 3S ul SN
71 ‘obeaiyd - Ausianiun (nedaq

2.5/
4.0

Ya

Ya

—

uondQ 3S - 82u8I9S JaINdwo) ul JsIsen
20 ‘[eanuo - eIpIoduo)D

45

3S Jo Ja1se
vd ‘ybingsnid - Ausianiun uojieN aibaured

Bunsauibug aremyos ur S
uebIydI - AlISIaAluUN Smalpuy

48
(quarte

credits)

06

2

(e]6]

Credits

Grades

Introduction to Software Engineering

Software Engineering Principles

Software Engineering/IS Engineering

ISO/IEC 12207 Primary Processes

Development Process

General Subjects

Development Methods/Methodologies
Object-Oriented Development

Software Development

Software Development Environments and

Tools

System/Software Requirements Analysis

Formal Methods/specification languages
Requirements Analysis/Specification

Software Detailed Design

Design

Human/User Interface

Object-Oriented Design/Modeling

Software Coding

C++

September 1998

© IEEE Computer Society

(L

Guiae 10 tne Sorware Engineering soay or Knowiedge — A Straw ivian version

3S Ul SN
puepoas ‘Bulns - bulns jo Ausiaaiun

3S Ul SN
rlOSBUUIN ‘sijodeauul|y - Sewoy] 1S Jo Alslaniun

IS Ul SN
Vd ‘UOJURIOS - UOJURIOIS JO ANISISAIUN

uolreIuUsuU0) JS - 92UBI0S Jandwo) ur S
AID sesued-INossIN o Alslaniun

3S Jo Ja1se
puejAreN red abajjo) - puejhiep Jo Alsianiun

3S Ul SN
USpaaMs - Agauuoyeuonisiie) Jo Alsiaaiun

Y

Ya

IS Ul SN
X1 ‘UOISNOH - 8xeT Jes|d - UOISNOH JO ANISIaAIuN

gd

gd

35 ul uondo yum Busauibug Jo Jaisep
09D ‘sbuuds opelojo) - opelojo) Jo Alsianiun

3S Ul Ul uonezifeoads yum oSN
v ‘Areble) - Arebie) jo Alsianiun

3S Ul 'V OS'IN
20 ‘[eaNUO - [e2IUON & 230N NP SUSISAIUN

Ya

]/21

3S J0 Ja1se\
X1 ‘UHOM L0 - AUSIBAIUN UBASUYD Sexa]

Ya

Ya

Ya

3S Ul SN
X1 ‘se|req - AlsIanun ISIpoyIsy UIsyinos

Ya

Ya

Y2
Y2

3S Jo Ja1se\
VM ‘9[neas - AusIaniun amess

3S Ul SN
VO ‘ejlor B - Ausianiun [euonen

Ya

3S UISN 02
‘sBuljjoD 104 - Auslaniun [ealbojouyos] feuoneN

3S Ul SIN
CN ‘youelg BuoT 1sap\ ‘AlISIBAIUN YINOWUON

3S Jo Ja1se
S ‘ueneyuely - AlSIaAIUN LIS sesuey

3S J0 Ja1se\
BI[eNISNY ‘BlesISNY YINOS Jo AUSISAIUN sJapulld

3S Jo Ja1se
14 ‘yoeag euoikeq - Ausianiun a|ppiy-Aiqug

uonenuasuo) Juawabeuep 108lold - 3S Ul SW
71 ‘obeayd - Ausianiun (nedaq

Ya

uonenuaduo) Juswdojenag aremyos - 3S ul SN
71 ‘obeaiyd - Ausianiun (nedaq

uondQ 3S - 82u8I9S JaINdwo) ul JsIsen
20 ‘[eanuo - eIpIoduo)D

- Bl 4 O

oG

3S Jo Ja1se
vd ‘ybingsnid - Ausianiun uojieN aibaured

1

Bunsauibug aremyos ur S
uebIydI - AlISIaAluUN Smalpuy

1

Implementation

Programming Methods

System/Software Testing

Testing
Maintenance Process

Maintenance

ISO/IEC

Cycle

Supporting Life

12207

Processes

Quality Assurance Process

Quality Assurance

Reliability
Verification and Validation Process

Verification and Validation

ISO/IEC 12207 Organizational

Processes

Life Cycle

Management Process

Estimation

IT Management
Productivity

Project Planning

Project/Software Management

Software Economics
Improvement Process

Software/Systems Process

Life Cycle Models

September 1998

© IEEE Computer Society

(Z

Guiage 10 the Sortware Engineering boay or Kknowiedge — A Straw ivian version

3S Ul SN
puepoas ‘Bulns - bulns jo Ausiaaiun

3S Ul SN
rlOSBUUIN ‘sijodeauul|y - Sewoy] 1S Jo Alslaniun

IS Ul SN
Vd ‘UOJURIOS - UOJURIOIS JO ANISISAIUN

uolreIuUsuU0) JS - 92UBI0S Jandwo) ur S
AID sesued-INossIN o Alslaniun

3S Jo Ja1se
puejAreN red abajjo) - puejhiep Jo Alsianiun

3S Ul SN
USpaaMs - Agauuoyeuonisiie) Jo Alsiaaiun

IS Ul SN
X1 ‘UOISNOH - 8xeT Jes|d - UOISNOH JO ANISIaAIuN

2-3

gd| o

2
7]

4
Y2

2
Ya

4
Ya

2-3

35 ul uondo yum Busauibug Jo Jaisep
09D ‘sbuuds opelojo) - opelojo) Jo Alsianiun

3S Ul Ul uonezifeoads yum oSN
v ‘Areble) - Arebie) jo Alsianiun

3S Ul 'V OS'IN
20 ‘[eaNUO - [e2IUON & 230N NP SUSISAIUN

1-3

o)

o)

3S Jo Ja1se
X1 ‘“UUOAM Hoo - AUSIBAIUN UenNSUYD Sexal

3S Ul SN
X1 ‘se|req - AlsIanun ISIpoyIsy UIsyinos

3S Jo Ja1se
VM ‘aeas - AlIsisAlun ajess

Ya

Ya

3S Ul SN
VO ‘ejlor B - Ausianiun [euonen

06

3S UISN 02
‘sBuljjoD 104 - Auslaniun [ealbojouyos] feuoneN

3S Ul SIN
CN ‘youelg BuoT 1sap\ ‘AlISIBAIUN YINOWUON

o]}

3S Jo Ja1se
S ‘ueneyuely - AlSIaAIUN LIS sesuey

3S J0 Ja1se\
BI[eNISNY ‘BlesISNY YINOS Jo AUSISAIUN sJapulld

3S Jo Ja1se
14 ‘yoeag euoikeq - Ausianiun a|ppiy-Aiqug

uonenuasuo) Juawabeuep 108lold - 3S Ul SW
71 ‘obeayd - Ausianiun (nedaq

Ya

uonenuaduo) Juswdojenag aremyos - 3S ul SN
71 ‘obeaiyd - Ausianiun (nedaq

0060| 66

uondQ 3S - 82u8I9S JaINdwo) ul JsIsen
20 ‘[eanuo - eIpIoduo)D

3S Jo Ja1se
vd ‘ybingsnid - Ausianiun uojieN aibaured

Bunsauibug aremyos ur S
uebIydI - AlISIaAluUN Smalpuy

Special Topics

CASE

Measurement/Metrics

Real-Time Software/Embedded Systems

Reengineering

Reuse

Software Security/Safety

Other Courses

Algorithms

Analysis of Software Artifacts

Artificial Intelligence

Computer Architecture
Concurrent Systems

Current Trends in Software Engineering
Current/Special/Advanced Topics in SE

Data Bases/Data Management

Data Analysis and Regression

Data Structures

Distributed Systems

Foundations of Computer Science/SlI
Hardware and Software Integration

Information Security

Mathematics

Networks/Networking

September 1998

© IEEE Computer Society

(3

Guiage 10 the Sortware Engineering boay or Kknowiedge — A Straw ivian version

3S Ul SN
puepoas ‘Bulns - bulns jo Ausiaaiun

3S Ul SN
rlOSBUUIN ‘sijodeauul|y - Sewoy] 1S Jo Alslaniun

IS Ul SN
Vd ‘UOJURIOS - UOJURIOIS JO ANISISAIUN

uolreIuUsuU0) JS - 92UBI0S Jandwo) ur S
AID sesued-INossIN o Alslaniun

3S Jo Ja1se
puejAreN red abajjo) - puejhiep Jo Alsianiun

Ya

3S Ul SN
USpaaMs - Agauuoyeuonisiie) Jo Alsiaaiun

IS Ul SN
X1 ‘UOISNOH - 8xeT Jes|d - UOISNOH JO ANISIaAIuN

35 ul uondo yum Busauibug Jo Jaisep
09D ‘sbuuds opelojo) - opelojo) Jo Alsianiun

3S Ul Ul uonezifeoads yum oSN
v ‘Areble) - Arebie) jo Alsianiun

Y

3S Ul 'V OS'IN
20 ‘[eaNUO - [e2IUON & 230N NP SUSISAIUN

3S Jo Ja1se
X1 ‘“UUOAM Hoo - AUSIBAIUN UenNSUYD Sexal

3S Ul SN
X1 ‘se|req - AlsIanun ISIpoyIsy UIsyinos

3S Jo Ja1se
VM ‘aeas - AlIsisAlun ajess

3S Ul SN
VO ‘ejlor B - Ausianiun [euonen

Ya

3S UISN 02
‘sBuljjoD 104 - Auslaniun [ealbojouyos] feuoneN

3S Ul SIN
CN ‘youelg BuoT 1sap\ ‘AlISIBAIUN YINOWUON

3S Jo Ja1se
S ‘ueneyuely - AlSIaAIUN LIS sesuey

3S J0 Ja1se\
BI[eNISNY ‘BlesISNY YINOS Jo AUSISAIUN sJapulld

3S Jo Ja1se
14 ‘yoeag euoikeq - Ausianiun a|ppiy-Aiqug

Ya

uonenuasuo) Juawabeuep 108lold - 3S Ul SW
71 ‘obeayd - Ausianiun (nedaq

13

12

]6)

06

uonenuaduo) Juswdojenag aremyos - 3S ul SN
71 ‘obeaiyd - Ausianiun (nedaq

13

12

uondQ 3S - 82u8I9S JaINdwo) ul JsIsen
20 ‘[eanuo - eIpIoduo)D

3S Jo Ja1se
vd ‘ybingsnid - Ausianiun uojieN aibaured

Bunsauibug aremyos ur S
uebIydI - AlISIaAluUN Smalpuy

Operating Systems

Organizational Management

Protocols

to Engineering

Approach

Quantitative

Software

Research Process

Software Architecture/IS Architectures

Technical Communication and Writing
Telecommunications/Communication

Systems

Wireless

Introduction to Software Engineering

Software Engineering/IS Engineering

ISO/IEC 12207 Primary Processes

Acquisition Process

Software Acquisition

Development Process

General Subjects

Object-Oriented Development

Software Development

Software Development Methods
System/Software Requirements Analysis

Data Analysis

Formal Methods/specification languages

Object-Oriented Analysis
© IEEE Computer Society

September 1998

4

Guiae 10 tne Sorware Engineering soay or Knowiedge — A Straw ivian version

3S Ul SN
puepoas ‘Bulns - bulns jo Ausiaaiun

Ol 0 O

—

Ya

3S Ul SN
rlOSBUUIN ‘sijodeauul|y - Sewoy] 1S Jo Alslaniun

IS Ul SN
Vd ‘UOJURIOS - UOJURIOIS JO ANISISAIUN

uolreIuUsuU0) JS - 92UBI0S Jandwo) ur S
AID sesued-INossIN o Alslaniun

006

3S Jo Ja1se
puejAreN red abajjo) - puejhiep Jo Alsianiun

]6)

3S Ul SN
USpaaMs - Agauuoyeuonisiie) Jo Alsiaaiun

IS Ul SN
X1 ‘UOISNOH - 8xeT Jes|d - UOISNOH JO ANISIaAIuN

35 ul uondo yum Busauibug Jo Jaisep
09D ‘sbuuds opelojo) - opelojo) Jo Alsianiun

3S Ul Ul uonezifeoads yum oSN
v ‘Areble) - Arebie) jo Alsianiun

3S Ul 'V OS'IN
20 ‘[eaNUO - [e2IUON & 230N NP SUSISAIUN

3S Jo Ja1se
X1 ‘“UUOAM Hoo - AUSIBAIUN UenNSUYD Sexal

Y2
Y2

3S Ul SN
X1 ‘se|req - AlsIanun ISIpoyIsy UIsyinos

3S Jo Ja1se
VM ‘aeas - AlIsisAlun ajess

]6)

3S Ul SN
VO ‘ejlor B - Ausianiun [euonen

3S UISN 02
‘sBuljjoD 104 - Auslaniun [ealbojouyos] feuoneN

3S Ul SIN
CN ‘youelg BuoT 1sap\ ‘AlISIBAIUN YINOWUON

Ya

3S Jo Ja1se
S ‘ueneyuely - AlSIaAIUN LIS sesuey

3S J0 Ja1se\
BI[eNISNY ‘BlesISNY YINOS Jo AUSISAIUN sJapulld

3S Jo Ja1se
14 ‘yoeag euoikeq - Ausianiun a|ppiy-Aiqug

uonenuasuo) Juawabeuep 108lold - 3S Ul SW
71 ‘obeayd - Ausianiun (nedaq

1

uonenuaduo) Juswdojenag aremyos - 3S ul SN
71 ‘obeaiyd - Ausianiun (nedaq

06 | 66

06 | 66

3

Ya

uondQ 3S - 82u8I9S JaINdwo) ul JsIsen
20 ‘[eanuo - eIpIoduo)D

&

&

3S Jo Ja1se
vd ‘ybingsnid - Ausianiun uojieN aibaured

Bunsauibug aremyos ur S
uebIydI - AlISIaAluUN Smalpuy

Requirements Analysis/Specification

Software Detailed Design

Design

Human/User Interface

Object-Oriented Design/Modeling

Software Coding

Implementation

Object-Oriented Programming
Programming Languages

System/Software Testing

Testing
Maintenance Process

Maintenance

ISO/IEC

Cycle

Supporting Life

12207

Processes

Quality Assurance Process

Quality Assurance

Reliability
Verification and Validation Processes

Verification and Validation

ISO/IEC 12207 Organizational

Processes

Life Cycle

Management Process

Estimation

Human Factors/Human Resources

IT Management

September 1998

© IEEE Computer Society

(o

Guiage 10 the Sortware Engineering boay or Kknowiedge — A Straw ivian version

3S Ul SN
puepoas ‘Bulns - bulns jo Ausiaaiun

3S Ul SN
rlOSBUUIN ‘sijodeauul|y - Sewoy] 1S Jo Alslaniun

14

06

IS Ul SN
Vd ‘UOJURIOS - UOJURIOIS JO ANISISAIUN

uolreIuUsuU0) JS - 92UBI0S Jandwo) ur S
AID sesued-INossIN o Alslaniun

19

3S Jo Ja1se
puejAreN red abajjo) - puejhiep Jo Alsianiun

Y

6 |666

3S Ul SN
USpaaMs - Agauuoyeuonisiie) Jo Alsiaaiun

IS Ul SN
X1 ‘UOISNOH - 8xeT Jes|d - UOISNOH JO ANISIaAIuN

35 ul uondo yum Busauibug Jo Jaisep
09D ‘sbuuds opelojo) - opelojo) Jo Alsianiun

31

06

06

3S Ul Ul uonezifeoads yum oSN
v ‘Areble) - Arebie) jo Alsianiun

Y2
Y2

06

3S Ul 'V OS'IN
20 ‘[eaNUO - [e2IUON & 230N NP SUSISAIUN

3S Jo Ja1se
X1 ‘“UUOAM Hoo - AUSIBAIUN UenNSUYD Sexal

Ya

Y2
10

3S Ul SN
X1 ‘se|req - AlsIanun ISIpoyIsy UIsyinos

3S Jo Ja1se
VM ‘aeas - AlIsisAlun ajess

3S Ul SN
VO ‘ejlor B - Ausianiun [euonen

3S UISN 02
‘sBuljjoD 104 - Auslaniun [ealbojouyos] feuoneN

3S Ul SIN
CN ‘youelg BuoT 1sap\ ‘AlISIBAIUN YINOWUON

06
Y2

3S Jo Ja1se
S ‘ueneyuely - AlSIaAIUN LIS sesuey

3S J0 Ja1se\
BI[eNISNY ‘BlesISNY YINOS Jo AUSISAIUN sJapulld

3S Jo Ja1se
14 ‘yoeag euoikeq - Ausianiun a|ppiy-Aiqug

0066

uonenuasuo) Juawabeuep 108lold - 3S Ul SW
71 ‘obeayd - Ausianiun (nedaq

uonenuaduo) Juswdojenag aremyos - 3S ul SN
71 ‘obeaiyd - Ausianiun (nedaq

Ya

uondQ 3S - 82u8I9S JaINdwo) ul JsIsen
20 ‘[eanuo - eIpIoduo)D

3S Jo Ja1se
vd ‘ybingsnid - Ausianiun uojieN aibaured

Bunsauibug aremyos ur S
uebIydI - AlISIaAluUN Smalpuy

Productivity Tools
Project Control
Project Planning

Project/Software Management
Risk/Cost-benefit Analysis

Software Economics

Strategic Management

Improvement Process

Software/Systems Process

Software Process Improvement
Software Process Modeling

Special Topics

CASE

Client-Server Systems
Measurement/Metrics

Real-Time Software/Embedded Systems

Reuse

Software Security/Safety

Other Courses

ADA

Algorithms

Artificial Intelligence

Compilers

Computational Geometry
Computational Theory

September 1998

© IEEE Computer Society

0

Guiage 10 the Sortware Engineering boay or Kknowiedge — A Straw ivian version

3S Ul SN
puepoas ‘Bulns - bulns jo Ausiaaiun

Ya

Ya

3S Ul SN
rlOSBUUIN ‘sijodeauul|y - Sewoy] 1S Jo Alslaniun

06
]6)

IS Ul SN
Vd ‘UOJURIOS - UOJURIOIS JO ANISISAIUN

uolreIuUsuU0) JS - 92UBI0S Jandwo) ur S
AID sesued-INossIN o Alslaniun

006

3S Jo Ja1se
puejAreN red abajjo) - puejhiep Jo Alsianiun

Ya

3S Ul SN
USpaaMs - Agauuoyeuonisiie) Jo Alsiaaiun

IS Ul SN
X1 ‘UOISNOH - 8xeT Jes|d - UOISNOH JO ANISIaAIuN

35 ul uondo yum Busauibug Jo Jaisep
09D ‘sbuuds opelojo) - opelojo) Jo Alsianiun

]6)

]6)

0066

3S Ul Ul uonezifeoads yum oSN
v ‘Areble) - Arebie) jo Alsianiun

3S Ul 'V OS'IN
20 ‘[eaNUO - [e2IUON & 230N NP SUSISAIUN

3S Jo Ja1se
X1 ‘“UUOAM Hoo - AUSIBAIUN UenNSUYD Sexal

3S Ul SN
X1 ‘se|req - AlsIanun ISIpoyIsy UIsyinos

3S Jo Ja1se
VM ‘aeas - AlIsisAlun ajess

3S Ul SN
VO ‘ejlor B - Ausianiun [euonen

3S UISN 02
‘sBuljjoD 104 - Auslaniun [ealbojouyos] feuoneN

3S Ul SIN
CN ‘youelg BuoT 1sap\ ‘AlISIBAIUN YINOWUON

3S Jo Ja1se
S ‘ueneyuely - AlSIaAIUN LIS sesuey

a6

G (666

3S J0 Ja1se\
BI[eNISNY ‘BlesISNY YINOS Jo AUSISAIUN sJapulld

3S Jo Ja1se
14 ‘yoeag euoikeq - Ausianiun a|ppiy-Aiqug

uonenuasuo) Juawabeuep 108lold - 3S Ul SW
71 ‘obeayd - Ausianiun (nedaq

e]e}

uonenuaduo) Juswdojenag aremyos - 3S ul SN
71 ‘obeaiyd - Ausianiun (nedaq

uondQ 3S - 82u8I9S JaINdwo) ul JsIsen
20 ‘[eanuo - eIpIoduo)D

3S Jo Ja1se
vd ‘ybingsnid - Ausianiun uojieN aibaured

Bunsauibug aremyos ur S
uebIydI - AlISIaAluUN Smalpuy

Computer Architecture
Computer Graphics

Computer Language Processing
Computer Performance
Computer Technology

Computer Vision

Computer/Engineering Optimization

Control Systems

Current Trends in Software Engineering
Current/Special/Advanced Topics in SE

Data Bases/Data Management

Data Structures

Digital Systems

Distributed Systems
Domain Analysis
Expert Systems

Hardware Acquisition

Knowledge-based Systems
Legal Aspects of Software

Management and Behavioral Science

Mathematics

Microprocessors
Multimedia

Networks/Networking

New Technologies
© IEEE Computer Society

September 1998

([

Guiage 10 the Sortware Engineering boay or Kknowiedge — A Straw ivian version

3S Ul SN
puepoas ‘Bulns - bulns jo Ausiaaiun

Ya

E:8

3S Ul SN
rlOSBUUIN ‘sijodeauul|y - Sewoy] 1S Jo Alslaniun

E:5

IS Ul SN
Vd ‘UOJURIOS - UOJURIOIS JO ANISISAIUN

uolreIuUsuU0) JS - 92UBI0S Jandwo) ur S
AID sesued-INossIN o Alslaniun

3S Jo Ja1se
puejAreN red abajjo) - puejhiep Jo Alsianiun

6 |6606

3S Ul SN
USpaaMs - Agauuoyeuonisiie) Jo Alsiaaiun

IS Ul SN
X1 ‘UOISNOH - 8xeT Jes|d - UOISNOH JO ANISIaAIuN

35 ul uondo yum Busauibug Jo Jaisep
09D ‘sbuuds opelojo) - opelojo) Jo Alsianiun

06

0064

0066

3S Ul Ul uonezifeoads yum oSN
v ‘Areble) - Arebie) jo Alsianiun

3S Ul 'V OS'IN
20 ‘[eaNUO - [e2IUON & 230N NP SUSISAIUN

3S Jo Ja1se
X1 ‘“UUOAM Hoo - AUSIBAIUN UenNSUYD Sexal

3S Ul SN
X1 ‘se|req - AlsIanun ISIpoyIsy UIsyinos

3S Jo Ja1se
VM ‘aeas - AlIsisAlun ajess

hrs.

3S Ul SN
VO ‘ejlor B - Ausianiun [euonen

3S UISN 02
‘sBuljjoD 104 - Auslaniun [ealbojouyos] feuoneN

3S Ul SIN
CN ‘youelg BuoT 1sap\ ‘AlISIBAIUN YINOWUON

(e]e]6)

5

3S Jo Ja1se
S ‘ueneyuely - AlSIaAIUN LIS sesuey

A:2-

&1

3S J0 Ja1se\
BI[eNISNY ‘BlesISNY YINOS Jo AUSISAIUN sJapulld

3S Jo Ja1se
74 ‘yoeaq euoikeq - Ausiaaun s|ppry-Aiquig

6-9

uonenuasuo) Juawabeuep 108lold - 3S Ul SW
71 ‘obeayd - Ausianiun (nedaq

a4 -

A1

uonenuaduo) Juswdojenag aremyos - 3S ul SN
71 ‘obeaiyd - Ausianiun (nedaq

5

uondQ 3S - 82u8I9S JaINdwo) ul JsIsen
20 ‘[ealiuol - BIPJOdU0D

a?-

a1

3S Jo Ja1se
vd ‘ybingsnid - Ausianiun uojieN aibaured

Bunsauibug aremyos ur S
uebIydI - AlISIaAluUN Smalpuy

Object-Oriented Databases

Operating Systems

Organizational Management
Parallel Systems

Protocols
Robotics

Semiconductors

Simulation

Software Architecture/IS Architectures

Telecommunications/Communication

Systems

Unix
Number to choose

Credits to meet

Computer Science

Chemical Engineering

Design (not software design)

Electrical Engineering

Industrial Engineering
Information Systems

Languages

Management/Administration
Mechanical Engineering

Nuclear Engineering

September 1998

© IEEE Computer Society

(8

Guiage 10 the Sortware Engineering boay or Kknowiedge — A Straw ivian version

3S Ul SN 2
puepoas ‘Bulns - Bulns Jo AlsiaAiun 3 m
3S Ul SN o
©lOSaUUIN ‘sljodeauuly - Sewoy] 1S Jo AUSIaAIUN o
3S Ul SN s
Vd ‘UOIURIIS - UOIURIDS JO ANSIBAIUN o
uoneuaduU0)D 3S - 99UBIDS JaIndwo) ul SW < =
AuD sesued-UnossIN Jo Alsianun o 5] >
3S Jo Ja1se -
puejAreN red abajjo) - puejhiep Jo Alsianiun ol
3S Ul SW oz
uapaams - Agauuoyeuolysiiey Jo Alsianiun “m\m
3S UI S © 5 ©
X1 ‘UOISNOH - 9yeT Jea|D - UOISNOH JO ANSIaAIUN ol O £
35 ul uondo yum Busauibug Jo Jaisep =
09D ‘sbuuds opelojo) - opelojo) Jo Alsianiun o
3S Ul Ul uonezifeoads yum oSN =
v ‘Areble) - Arebie) jo Alsianiun o
3S Ul 'V OS'IN vS
20 ‘[ealluo|A - [e2UOIN & 2903aNd Np JNSIBAIUN P gs)
3S Jo Ja1se W7
X1 ‘UMOM HOoH - AUSIBAIUN URNSUYD Sexa] O3
3S Ul SN
X1 ‘se|ieqd - Ausianiun 1SIPoOYIB|Al UIayinos ™
3S Jo Ja1se =
VM ‘9neas - Alsianiun apess O
3S Ul S O ~
VO ‘ejjor e - Ausianiun feuonen oL
3S UISN 02 ;
‘sbuljjoD uo4 - Alslaniun eaibojouysa] feuonen O o N
3S Ul S . ©
CN ‘youelg Buo 1S9\ ‘ANISISAIUN YINOWUON O ° O
3S Jo Ja1se =
S ‘ueneyuel - AlSIaAIUN AeIS Sesue N © O
3S Jo Ja1se
elfesisny ‘eljesisny Yyinos jo Ausianiun siapuil4
3S Jo JaIseN o @ >
14 ‘yoeag euoikeq - Ausianiun a|ppiy-Aiqug © O © O
uonenuasuo) Juawabeuep 108lold - 3S Ul SW 8.5
71 ‘obeaiy) - Ausianiun [nedad N - g+ m o
uonenuasuo) juawdopAag a/emyos - 3S Ul S © =
1 ‘oBeaiy) - Ausianiun Inedsq N % 3 O
- O~
uondo 3S - 99ua19Ss Jaindwo) ul Jsise =
20 ‘[ealiuol - eIpJodU0D O
3Syjosmsen [0 < o
Vvd ‘ybingsnid - Ausianiun uojsy aibsuled 000 0 2 “M\%
Bunsauibug aremyos ur S Do O —~
uebIydI - AlISIaAluUN Smalpuy < N 0L
)
Q
c
Q@
3 3
4] o 3 0
2 £ 5 S
0 S O o
S5 o8 o
c O £ 0
i O 85 8 b ke 2
3308 g S B8 S 2
- © S S5 O o o = =
s O ol 9| © < o n o
oo ¥ 59 € © g 3 0
858z°2 W2 ¢
85382 BEz: £
ET ES
S = S =
Zz 0 z 0O

*Depend on concentration chosen

& Safety Track

& Sl option

& Telecommunications option

& System Artchitecture Specialization

(¥:Reuse/Reengineering Track

C')Z:Integralion Option

¢#:Quality Control Specialization

&:Information Management Track

Part of a course

MS: Master of Science
M.Sc.A.: Master in Applied Science

& Required

Y.

Information Systems
IT: Information Technology

IS:

September 1998

© IEEE Computer Society

Y

Guiage 10 the Sortware Engineering boay or Kknowiedge — A Straw ivian version

S|gelleAy

mm C_ w_\/_ $3SIN0YD 8ANd3|13 © © « o N -
puenoas ‘Bullns - Bullns Jo Aisisaun $951100 paunboy
STIeTEnRy
3S Ul SN $8SIN0D 9AN08|F © © N N
Bl0SBUUIN ‘sljodeauuly - sewoy 1S Jo Aysisaiun $9s1N0) palinbay ™ M o - -
Elis iz
3S Ul SN sesinoy aaosg | <1 <
Vd ‘UOIURIOS - UOIURIOS JO AlISISAIUN sesInoD palinbay < < - -
STIeTEnRY
uolfeIua2U0) JS - 92U3IS Jandwo) ul S $98IM0D SAIO o~ o~ o~
Ao sesuey-unossiy Jo Asianiun sasino) painbay | o o ol —
STIETERY
3S JO IslseN $8SIN0) 9AN08|F N = - —
puelkiep ied 869)j0D - puejfren jo Ausisaiun sesnop pamnbey | o o Nl ol =
STIETEnRY
3S Ul SN $95IN0D) 9AN99|3
uspaams - Agauuoyeuonisiey Jo Alsisaun $9s1N0) palinbay ™ P -
STIeTEnRy
3S Ul SN $95IN0D) 9AN98|3
XL ‘UOISNOH - 8XeT Jea|D - UoISNOH Jo ANsIaniun sas1n07 painbay < < o~ - -
35 uondo - Buusauibug Jo Jsise SosIN0D Shoa “ —
02 ‘sbuuds opelojo) - opelo|od Jo Asianiun 95103 paunbay B~ o
STIeTEnRy
3S ul uoneziferads yum oSN $8SIN0D 8ANDB|T © Q| N <
v ‘ArebreD - Arebled jo Ausieniun s85IN0D palnbay ~ « ~
. STIeTEnRY
3S Ul 'V OS'IN $95IN0D) 9AN99|3
20 ‘[eallUOIA - [e93UOIN B 9909N) NP dMSIBAIUN $8sIN0) palinbay T} < o~ — —
STIETEnRY
3S JO IslseiN $95IN0D) 9AN98|3] ™ N
X1 ‘UUOAA L0H - AlISIBAIUN uensuUyD sexa | sasino) painbay | o M o~ — -
STIETEnRY
3S Ul SN sosinopampeg | T 0 . ™ I N
X1 ‘sejled - AusIaniun 1SIPOYIBIN UIsyINos sasin0) painbay | o oy N - -
STIeTEnRY
3S JO IslseiN $95IN0D) 9AN98|3 o < — N
VM ‘B[iess - Ausianiun apess sas1n07 painbay ™ ™ - “ -
STIeTEnRY
3S Ul SN $95IN0D) 9AN98|3
VO ‘ejjor e - AusisAiun [euonen $9SIN0D painbay | oy — —
STIeTEnRY
3S Ul SN (e)e} $95IN0D) 9AN98|3
‘sBuljjoD 104 - Ausianiun eaibojouysa] [euonen sasIn0D panbay ~ ~ o N [P R -
Elis iz
3S UISIN sesinoy annoeg | =1 — —
CN ‘yaueig @COl_ 1S9\ .>«_w._®>_CD Yinowuopn $851N0) palinbay < < ~ - -
Elis iz
3S JO Jsise\ $95IN0D) 9AN98|3 ™ ™ - — —
S ‘ueneyuep - >u_w._m>_c3 9]k]S sesue)y| sasino) painbay | o — —
STIETEnRY
3S JO Islse\ $9SIN0D 9AI9|T
eIRNISNY ‘BIRNSNY YINOS JO AUSISAIUN SIapulld sesIn00 paiinbey
STIETEnRY
3S JO JIsise\ $95IN0D) 9AN98|3 ™ ™ - —
14 ‘yoeag euolheq - Alsianiun s|ppiy-Aiqug sasinod painbay | o o N - —
STIeTEnRY ™ ~
uonenuasuo) Juswabeuen 198loid - IS ul SN sesinog anoeg | T | @ ™ N N[N
71 ‘obeayd - Ausianun [nedad sosinoopanbad [10 10 o o o o
STIeTEnRY ™ N
uonenuasuo) uswdoeAsq a,emyos - IS Ul SN sesinog empoe | Nmo oo
71 ‘oBeayD - Ausianiun [nedaq sesinod paunbay | i © o~ N
Elis iz
uondo 3IS - 99uaIS JaINdwo) Ul JaIse $98IM0D SAIO © © -~ N —
OO __mwbco_\/_ - BIpJOJuU0)D s3sIN0) palinbay < ™ — — —
Elis iz
3S JO Isise|N S9SIN0D 9ANI8IT
vd ‘ybingsnid - Ausianiun uojieN aibaured sas1nN0) pasnbay N ol —
STIeTEnRY
Buusauibug aremyos ul S S8SIN0D) BANDS|T
IIN ‘sBulds ualag - AlSIaAIUN SMaIpuy sesinod pasnbey | oy oy & ~
@
=
o (5]
= £
] =
2 0 S
= 0 o
o 9 7} c o
c O x =2 c
w © = =
> = o =
c o o o 2
© g >) o [t
E £8238290 Zoo
IS = E O © O ® = < &
o= 3 o o T =
5 N = = =2 =T 2
N O o o & 0 o £
= 50 =33 [aINSINS)
cC N S O — 9 v o Y
S8SETE §&¢E
5 22098 ,32229
S m 2 0o < vz ..M Zl v
o > o >
8=220020000
S0 o o]
IS s

September 1998

© IEEE Computer Society

o]V}

Guiage 10 the Sortware Engineering boay or Kknowiedge — A Straw ivian version

3S Ul SN — — — — “ I~
puepoas ‘Bulns - bulns jo Ausiaaiun
3S Ul S ~
BlOSaUUIN ‘sljodeauuly - Sewoy] 1S Jo AUSIaAIuN o o o o ~
ISUISW | — ™
Vd ‘UOIUBIIS - UOJURIDS JO ANSIBAIUN - - ~
uofeIUadU0D 3S - 99UBIDS Jandwo) ul SW = &
A sesuey-Lnossiy Jo AlSIaAIuN -
3S Jo Ja1se o~ — o < < -~
puejAreN red abajjo) - puejhiel Jo Alsianiun P i ~
3S Ul SN
uspaams - Agauuoy/euoyspiey] Jo AlsIaAiun ~ <N ~ -
3S Ul SN
X1 ‘UOISNOH - e Jes|d - UoISnoH Jo AlsIaAlun - . - a2
3S uondo - buusauibul Jo Jai1se — — — — =
00 ‘sbunds opesojoD - opelojoD jo Ausisaun | L o ~ ~ ~
3S ul uonezifenads yum oSN © < N+ N
v ‘Arebre) - Arebie) jo Alsianiun o o o o =~
3S Ul 'V OS'IN ~
20 ‘[edNUOA - [E213UOIN 8 28GINO NP JUSIBAIUN | . o @
3S Jo Ja1se o~ o~ N1
XL ‘YUOM Lo- - Alsianiun uensuyd sexal | o = o o
ASUISW | —
X1 ‘sejieq - AlsIaAiunN 1SIPOYISN ulayinos ~ < < ~
3S Jo JaiseN | — ™ ©
VM ‘91reas - Alisianiun apess o o o o -
3S Ul SN
VD ‘ejlor e - Alsianiun feuoneN o = o ~
3S UISN 02 ~
‘sbuljjoD uo4 - Alslaniun eaibojouyda] feuonen -~ ~ < N
3JS Ul S — — — — < ©
CN ‘youelg Buo 1S9 ‘ANISIBAIUN YINOWUON o = o -
3S Jo Ja1se 1 1 NS
S ‘ueneyuel - AlSIaAIUN AeIS Sesue - =
3S Jo Ja1se
eljRAISNY ‘BlRNSNY YINOS JO ANISISAIUN SISpulld
3S JO IsIse|\ ™ — N O 1o
14 ‘yoeag euoikeq - Ausianiun a|ppiy-Aiqug o o o o o
uonenuasuo) Juawabeue 108old - JSUISN |~ ® < o o - -~
71 ‘obeaiyd - Ausianiun (nedaq . i = &
uonenuasuo) uswdopAsg a/emyosS - JSUISW [@ o o0 ™ NS
71 ‘obeayd - Ausianiun (nedaq <
uondo 3S - 99ua19S Jaindwo) ul Jsise i — -~
OO0 ‘[e8NUON - BIPIOOUOD | i 9 « o i Y
3S Jo Ja1se
vd ‘ybingsnid - Ausianiun uojieN aibaured — — .
Buusauibug aremyos ul S
IIN ‘sBulds ualag - AlsSIaAlUN SMaIpuy — — <
() ()
© ©
> >
(6] n O
(%2}
[}
2 S e
[}
> N
= o = -
© o o ® D
£ 22 &=206 249
[} © [}
g 8 8 > g 8
> m ~ (=] | m =
)] o o m C [o Qo (%)
8 588 288
o o c o S @ = =
c 0 o £ Q 5
© % <| = % £ S _m [e)
& n > 8 o g > O
Oy 22207 D257 =
tWeo3gEWe & 2§ 0
S 5 S o8 [}
O o () O o m O =
= D o > D5 =| = = (o]

September 1998

© IEEE Computer Society

Guide to the Software Engineering Body of Knowledge — A Straw Man Version 81

Appendix H.
Graduate Programs in Software Engineering -
Classification of Courses by Related Discipline

© IEEE Computer Society September 1998

o 74

Guiage 10 the Sortware Engineering boay or Kknowiedge — A Straw ivian version

3S Ul SN
puepoas ‘Bulns - bulns jo Ausiaaiun

3S Ul SN
rlOSBUUIN ‘sijodeauul|y - Sewoy] 1S Jo Alslaniun

42

IS Ul SN
Vd ‘UOJURIOS - UOJURIOS JO ANISISAIUN

36

uolfeIuUsou0) JS - 92UBIDS Jandwo) ul SN
AID sesued-INossIy o Alslaniun

3.0

3S Jo Ja1se
puejAreN Yred abajjo) - puejhiel Jo Alsianiun

36

3S Ul SN
Uspaams - Agauuoyeuonisiied Jo Alsiaaiun

40
pts

IS Ul SN
X1 ‘UOISNOH - 8xeT Jes|d - UOISNOH Jo ANISIsAIUN

36

(credit
hours)

35 ul uondo yum Buussuibul jo Jsise
09D ‘sbuuds opelojo) - opelojo) Jo Alsianiun

3.0

3S Ul Ul uonezifeoads yIm IS
v ‘Areble) - Arebie) jo Alsianiun

3S Ul 'V OS'IN
20 ‘[eaNUO - [E2IUON & 23g9nd NP SUSISAIUN

45

“0“10

3S Jo Ja1se
X1 ‘UUOAM Hoo - AUSIBAIUN UenNSUYD Sexal

31

(sem.

3S Ul SN
X1 ‘se|req - AlsIanun ISIpoyIsy UIsyinos

30
(sem.

3.0/
4.0

3S Jo Ja1se
VM ‘aneas - AlsisAlun ajess

45

Ya

Ya

3S Ul SN
VO ‘ejlor BT - Ausianiun [euonen

60

(quarte | (grad.

3.0

06

3S Ul SN
02 ‘'sbulfjod 104 - Ausiaaiun [ealbojouyda] feuoneN

33
(sem.

credits)| r units) | credits) | credits)| hours)

3S Ul SIN
CN ‘youelg BuoT 1sap\ ‘AlISIBAIUN YINOWUON

36

3S Jo Ja1se
S ‘ueneyuely - AlSIaAIUN B1LIS sesuey

33
(credit
hours)

3S Jo JaIse\
BI[eNISNY ‘BlesISNY YINOS Jo AUSISAIUN sJapulld

72
units

3S Jo Ja1se
14 ‘yoeag euoikeq - Ausianiun a|ppiy-Aiqug

36
(credit
hours)

uonenuaduo) Juswabeue 199loid - 3S Ul SN
71 ‘obeayd - Ausianiun (nedaq

2.5/
4.0

uonenuasuo) Juswdojanag aremyos - 3S Ul SN
71 ‘obeayd - Ausianiun (nedaa

2.5/
4.0

0006| 66

uondQ 3S - 92usI9S JaINdwo) ul JsIseN
20 ‘[eanuo - eIpIoduo)D

45

2-4

3S Jo Ja1se
vd ‘ybingsnid - Ausianiun uojieN aibaured

Buusauibug aremyos ul SN
uebIydi - AlISIaAlUn Smalpuy

48
(quarte

credits)

Credits

Grades

Communication

Technical Communication and Writing

Computer Science

Algorithms

Artificial Intelligence

C++

Concurrent Systems

Data Bases/Data Management

Data Structures

Distributed Systems

Foundations of Computer Science/SlI
Human/User Interface/Interaction

Implementation

Information Security
Operating Systems

Programming Methods

Protocols

Real-Time Software/Embedded Systems

Software Security/Safety

Electrical Engineering

September 1998

© IEEE Computer Society

83

Guiage 10 the Sortware Engineering boay or Kknowiedge — A Straw ivian version

3S Ul SN
puepoas ‘Bulns - bulns jo Ausiaaiun

3S Ul SN
rlOSBUUIN ‘sijodeauul|y - Sewoy] 1S Jo Alslaniun

Y

IS Ul SN
Vd ‘UOJURIOS - UOJURIOS JO ANISISAIUN

uolfeIuUsou0) JS - 92UBIDS Jandwo) ul SN
AID sesued-INossIy o Alslaniun

3S Jo Ja1se
puejAreN Yred abajjo) - puejhiel Jo Alsianiun

5

3S Ul SN
Uspaams - Agauuoyeuonisiied Jo Alsiaaiun

Ya

IS Ul SN
X1 ‘UOISNOH - 8xeT Jes|d - UOISNOH Jo ANISIsAIUN

gd

35 ul uondo yum Buussuibul jo Jsise
09D ‘sbuuds opelojo) - opelojo) Jo Alsianiun

o |58

3S Ul Ul uonezifeoads yIm IS
v ‘Areble) - Arebie) jo Alsianiun

3S Ul 'V OS'IN
20 ‘[eaNUO - [E2IUON & 23g9nd NP SUSISAIUN

]/21

o)

3S Jo Ja1se
X1 ‘UUOAM Hoo - AUSIBAIUN UenNSUYD Sexal

Ya

Ya

3S Ul SN
X1 ‘se|req - AlsIanun ISIpoyIsy UIsyinos

Y2
Y2

3S Jo Ja1se
VM ‘aneas - AlsisAlun ajess

3S Ul SN
VO ‘ejlor BT - Ausianiun [euonen

Ya

3S Ul SN
02 ‘'sbulfjod 104 - Ausiaaiun [ealbojouyda] feuoneN

10

3S Ul SIN
CN ‘youelg BuoT 1sap\ ‘AlISIBAIUN YINOWUON

3S Jo Ja1se
S ‘ueneyuely - AlSIaAIUN B1LIS sesuey

3S Jo JaIse\
BI[eNISNY ‘BlesISNY YINOS Jo AUSISAIUN sJapulld

3S Jo Ja1se
14 ‘yoeag euoikeq - Ausianiun a|ppiy-Aiqug

Ya

uonenuaduo) Juswabeue 199loid - 3S Ul SN
71 ‘obeayd - Ausianiun (nedaq

Ya

Ya

Ya

uonenuasuo) Juswdojanag aremyos - 3S Ul SN
71 ‘obeayd - Ausianiun (nedaa

Ya

uondQ 3S - 92usI9S JaINdwo) ul JsIseN
20 ‘[eanuo - eIpIoduo)D

3S Jo Ja1se
vd ‘ybingsnid - Ausianiun uojieN aibaured

Buusauibug aremyos ul SN
uebIydi - AlISIaAlUn Smalpuy

Computer Architecture

Hardware and Software Integration

Wireless
Management

IT Management

Organizational Management

Mathematics

Data Analysis and Regression

Mathematics
Project Management

Estimation

Productivity

Project Planning

Project/Software Management

Software Economics
Software Engineering

Analysis of Software Artifacts

CASE

Current Trends in Software Engineering
Current/Special/Advanced Topics in SE

Design

Formal Methods/Specification languages

Life Cycle Models
Maintenance

Measurement/Metrics

September 1998

© IEEE Computer Society

84

Guiage 10 the Sortware Engineering boay or Kknowiedge — A Straw ivian version

3S Ul SN
puepoas ‘Bulns - bulns jo Ausiaaiun

3S Ul SN
rlOSBUUIN ‘sijodeauul|y - Sewoy] 1S Jo Alslaniun

Y

IS Ul SN
Vd ‘UOJURIOS - UOJURIOS JO ANISISAIUN

uolfeIuUsou0) JS - 92UBIDS Jandwo) ul SN
AID sesued-INossIy o Alslaniun

3S Jo Ja1se
puejAreN Yred abajjo) - puejhiel Jo Alsianiun

3S Ul SN
Uspaams - Agauuoyeuonisiied Jo Alsiaaiun

Ya

IS Ul SN
X1 ‘UOISNOH - 8xeT Jes|d - UOISNOH Jo ANISIsAIUN

o~

<

¥y 0 0D

35 ul uondo yum Buussuibul jo Jsise
09D ‘sbuuds opelojo) - opelojo) Jo Alsianiun

3S Ul Ul uonezifeoads yIm IS
v ‘Areble) - Arebie) jo Alsianiun

06

3S Ul 'V OS'IN
20 ‘[eaNUO - [E2IUON & 23g9nd NP SUSISAIUN

Y2
11

Y

3S Jo Ja1se
X1 ‘UUOAM Hoo - AUSIBAIUN UenNSUYD Sexal

Y

3S Ul SN
X1 ‘se|req - AlsIanun ISIpoyIsy UIsyinos

Ya

Y

3S Jo Ja1se
VM ‘aneas - AlsisAlun ajess

3S Ul SN
VO ‘ejlor BT - Ausianiun [euonen

3S Ul SN
02 ‘'sbulfjod 104 - Ausiaaiun [ealbojouyda] feuoneN

3S Ul SIN
CN ‘youelg BuoT 1sap\ ‘AlISIBAIUN YINOWUON

3S Jo Ja1se
S ‘ueneyuely - AlSIaAIUN B1LIS sesuey

3S Jo JaIse\
BI[eNISNY ‘BlesISNY YINOS Jo AUSISAIUN sJapulld

3S Jo Ja1se
14 ‘yoeag euoikeq - Ausianiun a|ppiy-Aiqug

Ya

uonenuaduo) Juswabeue 199loid - 3S Ul SN
71 ‘obeayd - Ausianiun (nedaq

Y

uonenuasuo) Juswdojanag aremyos - 3S Ul SN
71 ‘obeayd - Ausianiun (nedaa

Y

uondQ 3S - 92usI9S JaINdwo) ul JsIseN
20 ‘[ealiuo| - BIPIOdUOD

3S Jo Ja1se
vd ‘ybingsnid - Ausianiun uojieN aibaured

Buusauibug aremyos ul SN
uebIydi - AlISIaAlUn Smalpuy

06

06

Object-Oriented

Object-Oriented Design/Modeling

Object-Oriented Development

Quality Assurance

Quantitative Approach to Engineering

Reengineering

Reliability

Requirements Analysis/Specification

Reuse

Software Architecture/IS Architectures

Software Development

Development Environments and Tools

Software Engineering Principles

SE Methods/Methodologies
Software Engineering/IS Engineering

Software/Systems Processes

Verification, Validation and Testing

Telecommunication/Networks

Networks/Networking

Telecommunications/Comm. Systems

Others

Research Process

September 1998

© IEEE Computer Society

8o

Guiage 10 the Sortware Engineering boay or Kknowiedge — A Straw ivian version

3S Ul SN
puepoas ‘Bulns - bulns jo Ausiaaiun

3S Ul SN
rlOSBUUIN ‘sijodeauul|y - Sewoy] 1S Jo Alslaniun

15

06

06

IS Ul SN
Vd ‘UOJURIOS - UOJURIOS JO ANISISAIUN

uolfeIuUsou0) JS - 92UBIDS Jandwo) ul SN
AID sesued-INossIy o Alslaniun

12

006

3S Jo Ja1se
puejAreN Yred abajjo) - puejhiel Jo Alsianiun

6 |666

3S Ul SN
Uspaams - Agauuoyeuonisiied Jo Alsiaaiun

IS Ul SN
X1 ‘UOISNOH - 8xeT Jes|d - UOISNOH Jo ANISIsAIUN

35 ul uondo yum Buussuibul jo Jsise
09D ‘sbuuds opelojo) - opelojo) Jo Alsianiun

21

(e]6)

06

06

06

3S Ul Ul uonezifeoads yIm IS
v ‘Areble) - Arebie) jo Alsianiun

06

3S Ul 'V OS'IN
20 ‘[eaNUO - [E2IUON & 23g9nd NP SUSISAIUN

3S Jo Ja1se
X1 ‘UUOAM Hoo - AUSIBAIUN UenNSUYD Sexal

Ya

3S Ul SN
X1 ‘se|req - AlsIanun ISIpoyIsy UIsyinos

3S Jo Ja1se
VM ‘aneas - AlsisAlun ajess

06

3S Ul SN
VO ‘ejlor BT - Ausianiun [euonen

3S Ul SN
02 ‘'sbulfjod 104 - Ausiaaiun [ealbojouyda] feuoneN

3S Ul SIN
CN ‘youelg BuoT 1sap\ ‘AlISIBAIUN YINOWUON

3S Jo Ja1se
S ‘ueneyuely - AlSIaAIUN B1LIS sesuey

3S Jo JaIse\
BI[eNISNY ‘BlesISNY YINOS Jo AUSISAIUN sJapulld

0606| &

3S Jo Ja1se
14 ‘yoeag euoikeq - Ausianiun a|ppiy-Aiqug

uonenuaduo) Juswabeue 199loid - 3S Ul SN
71 ‘obeayd - Ausianiun (nedaq

uonenuasuo) Juswdojanag aremyos - 3S Ul SN
71 ‘obeayd - Ausianiun (nedaa

06

Ya

uondQ 3S - 92usI9S JaINdwo) ul JsIseN
20 ‘[eanuo - eIpIoduo)D

3S Jo Ja1se
vd ‘ybingsnid - Ausianiun uojieN aibaured

Buusauibug aremyos ul SN
uebIydi - AlISIaAlUn Smalpuy

Application Domains

Domain Analysis

Computer Science

ADA

Algorithms

Artificial Intelligence

Client-Server Systems

Compilers

Computational Geometry
Computational Theory
Computer Graphics

Computer Language Processing
Computer Performance
Computer Technology

Computer Vision

Computer/Engineering Optimization

Control Systems

Data Analysis and Statistical Software

Data Bases/Data Management

Data Structures

Distributed Systems
Expert Systems

Human/User Interface

Knowledge-based systems
Measurement/Metrics

September 1998

© IEEE Computer Society

8o

Guiage 10 the Sortware Engineering boay or Kknowiedge — A Straw ivian version

3S Ul SN
puepoas ‘Bulns - bulns jo Ausiaaiun

Y

3S Ul SN
rlOSBUUIN ‘sijodeauul|y - Sewoy] 1S Jo Alslaniun

06

™

06

IS Ul SN
Vd ‘UOJURIOS - UOJURIOS JO ANISISAIUN

uolfeIuUsou0) JS - 92UBIDS Jandwo) ul SN
AID sesued-INossIy o Alslaniun

006

3S Jo Ja1se
puejAreN Yred abajjo) - puejhiel Jo Alsianiun

06

3S Ul SN
Uspaams - Agauuoyeuonisiied Jo Alsiaaiun

IS Ul SN
X1 ‘UOISNOH - 8xeT Jes|d - UOISNOH Jo ANISIsAIUN

35 ul uondo yum Buussuibul jo Jsise
09D ‘sbuuds opelojo) - opelojo) Jo Alsianiun

06

066

06

3S Ul Ul uonezifeoads yIm IS
v ‘Areble) - Arebie) jo Alsianiun

3S Ul 'V OS'IN
20 ‘[eaNUO - [E2IUON & 23g9nd NP SUSISAIUN

3S Jo Ja1se
X1 ‘UUOAM Hoo - AUSIBAIUN UenNSUYD Sexal

3S Ul SN
X1 ‘se|req - AlsIanun ISIpoyIsy UIsyinos

3S Jo Ja1se
VM ‘aneas - AlsisAlun ajess

3S Ul SN
VO ‘ejlor BT - Ausianiun [euonen

3S Ul SN
02 ‘'sbulfjod 104 - Ausiaaiun [ealbojouyda] feuoneN

3S Ul SIN
CN ‘youelg BuoT 1sap\ ‘AlISIBAIUN YINOWUON

06

3S Jo Ja1se
S ‘ueneyuely - AlSIaAIUN B1LIS sesuey

3S Jo JaIse\
BI[eNISNY ‘BlesISNY YINOS Jo AUSISAIUN sJapulld

06

3S Jo Ja1se
14 ‘yoeag euoikeq - Ausianiun a|ppiy-Aiqug

0066

uonenuaduo) Juswabeue 199loid - 3S Ul SN
71 ‘obeayd - Ausianiun (nedaq

uonenuasuo) Juswdojanag aremyos - 3S Ul SN
71 ‘obeayd - Ausianiun (nedaa

uondQ 3S - 92usI9S JaINdwo) ul JsIseN
20 ‘[eanuo - eIpIoduo)D

3S Jo Ja1se
vd ‘ybingsnid - Ausianiun uojieN aibaured

Buusauibug aremyos ul SN
uebIydi - AlISIaAlUn Smalpuy

Multimedia

New Technologies
Object-Oriented Databases

Operating Systems

Parallel Systems
Programming

Programming Languages

Protocols

Real-Time Software/Embedded Systems

Robotics

Simulation

Software Security/Safety

Unix
Electrical Engineering

Computer Architecture

Digital Systems

Microprocessors
Semiconductors

Ethics/Legal Aspects

Legal Aspects of Software

Management

Human Factors/Human Resources

IT Management

Management and Behavioral Science

Organizational Management

September 1998

© IEEE Computer Society

8/

Guiage 10 the Sortware Engineering boay or Kknowiedge — A Straw ivian version

3S Ul SN
puepoas ‘Bulns - bulns jo Ausiaaiun

3S Ul SN
rlOSBUUIN ‘sijodeauul|y - Sewoy] 1S Jo Alslaniun

IS Ul SN
Vd ‘UOJURIOS - UOJURIOS JO ANISISAIUN

uolfeIuUsou0) JS - 92UBIDS Jandwo) ul SN
AID sesued-INossIy o Alslaniun

3S Jo Ja1se
puejAreN Yred abajjo) - puejhiel Jo Alsianiun

3S Ul SN
Uspaams - Agauuoyeuonisiied Jo Alsiaaiun

IS Ul SN
X1 ‘UOISNOH - 8xeT Jes|d - UOISNOH Jo ANISIsAIUN

35 ul uondo yum Buussuibul jo Jsise
09D ‘sbuuds opelojo) - opelojo) Jo Alsianiun

3S Ul Ul uonezifeoads yIm IS
v ‘Areble) - Arebie) jo Alsianiun

Y2
Y2

3S Ul 'V OS'IN
20 ‘[eaNUO - [E2IUON & 23g9nd NP SUSISAIUN

3S Jo Ja1se
X1 ‘UUOAM Hoo - AUSIBAIUN UenNSUYD Sexal

3S Ul SN
X1 ‘se|req - AlsIanun ISIpoyIsy UIsyinos

3S Jo Ja1se
VM ‘aneas - AlsisAlun ajess

3S Ul SN
VO ‘ejlor BT - Ausianiun [euonen

3S Ul SN
02 ‘'sbulfjod 104 - Ausiaaiun [ealbojouyda] feuoneN

3S Ul SIN
CN ‘youelg BuoT 1sap\ ‘AlISIBAIUN YINOWUON

Ya

3S Jo Ja1se
S ‘ueneyuely - AlSIaAIUN B1LIS sesuey

3S Jo JaIse\
BI[eNISNY ‘BlesISNY YINOS Jo AUSISAIUN sJapulld

3S Jo Ja1se
14 ‘yoeag euoikeq - Ausianiun a|ppiy-Aiqug

uonenuaduo) Juswabeue 199loid - 3S Ul SN
71 ‘obeayd - Ausianiun (nedaq

13

uonenuasuo) Juswdojanag aremyos - 3S Ul SN
71 ‘obeayd - Ausianiun (nedaa

Ya

12

uondQ 3S - 92usI9S JaINdwo) ul JsIseN
20 ‘[eanuo - eIpIoduo)D

3S Jo Ja1se
vd ‘ybingsnid - Ausianiun uojieN aibaured

Buusauibug aremyos ul SN
uebIydi - AlISIaAlUn Smalpuy

Strategic Management

Mathematics

Mathematics
Project Management

Estimation

Productivity Tools
Project Control
Project Planning

Project/Software Management

Risk/Cost-benefit Analysis

Software Economics
Software Engineering

CASE

Current Trends in Software Engineering

Current/Special/Advanced Topics in SE

Design

Formal Methods/Specification languages

Implementation
Maintenance

Object-Oriented

Object-Oriented Analysis

Object-Oriented Design/Modeling

Object-Oriented Development

Object-Oriented Programming

Quality Assurance

September 1998

© IEEE Computer Society

ole}

Guiage 10 the Sortware Engineering boay or Kknowiedge — A Straw ivian version

3S Ul SN
puepoas ‘Bulns - bulns jo Ausiaaiun

Ya

Y

3S Ul SN
rlOSBUUIN ‘sijodeauul|y - Sewoy] 1S Jo Alslaniun

IS Ul SN
Vd ‘UOJURIOS - UOJURIOS JO ANISISAIUN

uolfeIuUsou0) JS - 92UBIDS Jandwo) ul SN
AID sesued-INossIy o Alslaniun

3S Jo Ja1se
puejAreN Yred abajjo) - puejhiel Jo Alsianiun

Ya

Ya

6 |666

Y2
Y2

3S Ul SN
Uspaams - Agauuoyeuonisiied Jo Alsiaaiun

IS Ul SN
X1 ‘UOISNOH - 8xeT Jes|d - UOISNOH Jo ANISIsAIUN

35 ul uondo yum Buussuibul jo Jsise
09D ‘sbuuds opelojo) - opelojo) Jo Alsianiun

0066

(e]e]6]

3S Ul Ul uonezifeoads yIm IS
v ‘Areble) - Arebie) jo Alsianiun

(e]6)

3S Ul 'V OS'IN
20 ‘[eaNUO - [E2IUON & 23g9nd NP SUSISAIUN

3S Jo Ja1se
X1 ‘UUOAM Hoo - AUSIBAIUN UenNSUYD Sexal

Ya

3S Ul SN
X1 ‘se|req - AlsIanun ISIpoyIsy UIsyinos

3S Jo Ja1se
VM ‘aneas - AlsisAlun ajess

hrs.

3S Ul SN
VO ‘ejlor BT - Ausianiun [euonen

3S Ul SN
02 ‘'sbulfjod 104 - Ausiaaiun [ealbojouyda] feuoneN

3S Ul SIN
CN ‘youelg BuoT 1sap\ ‘AlISIBAIUN YINOWUON

Ya

(e]e]6)

3S Jo Ja1se
S ‘ueneyuely - AlSIaAIUN B1LIS sesuey

G |666

&1

3S Jo JaIse\
BI[eNISNY ‘BlesISNY YINOS Jo AUSISAIUN sJapulld

27
units

3S Jo Ja1se
14 ‘yoeag euoikeq - Ausianiun a|ppiy-Aiqug

6-9

uonenuaduo) Juswabeue 199loid - 3S Ul SN
71 ‘obeayd - Ausianiun (nedaq

a4 -

A1

uonenuasuo) Juswdojanag aremyos - 3S Ul SN
71 ‘obeayd - Ausianiun (nedaa

O 0 0 O

06 | 66

5

uondQ 3S - 92usI9S JaINdwo) ul JsIseN
20 ‘[eanuo - eIpIoduo)D

&

a?-

a1

3S Jo Ja1se
vd ‘ybingsnid - Ausianiun uojieN aibaured

Buusauibug aremyos ul SN
uebIydi - AlISIaAlUn Smalpuy

Reliability

Requirements Analysis/Specification

Reuse

Research Topics in Software Engineering

Software Architecture/IS Architectures

Software Development

Software Development Methods

Software Engineering/IS Engineering
Software Process Improvement
Software Process Modeling

Software/Systems Process

Tools for Software Engineering

Verification, Validation and Testing

Telecommunication/Networks

Networks/Networking

Telecommunications/Comm.

Others

Hardware Acquisition
Software Acquisition

Number to choose

Credits to meet

Computer Science

September 1998

© IEEE Computer Society

8y

Guiae 10 tne Sorware Engineering soay or Knowiedge — A Straw ivian version

3S Ul S 2
puepoas ‘Bulns - bulns jo Ausiaaiun O m
3S U S 8
©JOSaUUIN ‘sljodeauuly - Sewoy] 1S Jo AUSIaAIUN o)
3S Ul SN &
Vd ‘UOIURIIS - UOIURIDS JO ANSIBAIUN o)
uofeUaU0YD 3S - 99UaIDS Jandwo) ul SW o i~
AID sesued-UnossIN Jo AlsIanun Q ° O
3S JO IslseN 5
puejAiel “ed abajj0D - puejAre Jo AlsiaAluN Q
3S Ul SN S @
Uapaams - Agauuoyeuolysiied Jo Alsianiun %m
3S Ul S es |
X1 ‘U0ISNOH - 8yeT Jea|D - UOISNOH JO ANSIaAIUN oz ol
35 ul uondo yum Buussuibul jo Jsise <
09D ‘sbuuds opelojo) - opelojoD Jo Alsianiun Q
3S ul Ul uonezifeads yim IS =
v ‘Areble) - Arebie) jo Ausianiun ')
IS Ul VIS Vg
20 ‘[eanuo - [eanIUOIN & 93gand NP dUSIBAIUN O
3S Jo Ja1se %
X1 ‘UMOM HoH - AUSIBAIUN URNSUYD Sexa] Q37
(&)
3S Ul SN
X1 ‘se|ieq - Auslaniun 1SIPoYIB|Al uIayinos ™
3S Jo Ja1se 5
VM ‘9neas - Alsianiun ajess O
3S Ul SN S
VO ‘Bllor €7 - ANs1aniun [euonen m
3S ulSW o
09 ‘sBulfjod 1oH - Ausianiun [eaibojouyda] reuonen e N
3S Ul SN O g
CN ‘youelg Buo 1S9 ‘ANISIBAIUN YINOWUON 0 ° O
3S Jo Ja1se . PPN PN E 8
SY ‘ueneyuel\ - AlSIBAIUN 31e]S Sesury) 0O 00|00 N © Fe)
3S JO IslseiN < O
elfesisny ‘eljesisny Yyinos jo Ausianiun siapuil4 8 QL
3S Jo saiseN o &, &
14 ‘yoeag euoikeq - Ausianiun a|ppiy-Aiqug © QO ° O
uonenuasuo) uawabeuep 108lold - 3S Ul SW .8
1 ‘oBeaiy) - Ausianiun Inedsq N 3+ m
uonenuasuo) JuawdojpAag a/emyos - 3S Ul S e c
71 ‘obeaiyd - Ausianiun [nedaq N Q0370
(=]
uondo 3S - 99ua19S Jaindwo) ul Jsise s
20 ‘[eanuo - eIpioduoD o)
3S Jo Ja1se) Y [I I I I N S
vd ‘ybingsnid - Alsianiun uojsy aibsured 0 2| SOl S ROl RO O RS S “%)
Buusauibug aremyos ul SN .)
fe) < ;
uebIydi - AlISIaAlUn Smalpuy <N um
()
n
o o 2 o)
= o 5 o] @
2} c £ £ 0 o0 %2} < he]
E o0 g5 2L w® of 2
= £ 0 m Q5 O o - 2 c o ..ﬂllu \nnb/
2o o5 Ec 2o ® = = @ =
hoc 22Uz 2 oI S © o kS
c ECWuWg < s 9 5 = w 2 g
S®9® - = 8§59 <0355 <cd.28 _
FEE88Bc L EFSccoce 898G 0
ceWScEE8fogsoaluWoEe 2522835 |5
Eg 253852 geooo oy 5 EFE 3 ©
LowetoScw @259y o2 8L h S
S5 5022058858222 >3283 @
8 2 gESc222f3 §Eges ¢
mile} aSsodAApsL ©5290 2
zZ 0 uw =z oo a =

& Safety Track C')Z:Reuse/Reengineering Track

& Sl option

& Telecommunications option

(o System Architecture Specialization

September 1998

© IEEE Computer Society

v

Guiage 10 the Sortware Engineering boay or Kknowiedge — A Straw ivian version

3S Ul SN
puepoas ‘Bulns - bulns jo Ausiaaiun

3S Ul SN
rlOSBUUIN ‘sijodeauul|y - Sewoy] 1S Jo Alslaniun

IS Ul SN
Vd ‘UOJURIOS - UOJURIOS JO ANISISAIUN

uolfeIuUsou0) JS - 92UBIDS Jandwo) ul SN
AID sesued-INossIy o Alslaniun

3S Jo Ja1se
puejAreN Yred abajjo) - puejhiel Jo Alsianiun

3S Ul SN
Uspaams - Agauuoyeuonisiied Jo Alsiaaiun

IS Ul SN
X1 ‘UOISNOH - 8xeT Jes|d - UOISNOH Jo ANISIsAIUN

35 ul uondo yum Buussuibul jo Jsise
09D ‘sbuuds opelojo) - opelojo) Jo Alsianiun

3S Ul Ul uonezifeoads yIm IS
v ‘Areble) - Arebie) jo Alsianiun

3S Ul 'V OS'IN
20 ‘[eaNUO - [E2IUON & 23g9nd NP SUSISAIUN

3S Jo Ja1se
X1 ‘UUOAM Hoo - AUSIBAIUN UenNSUYD Sexal

3S Ul SN
X1 ‘se|req - AlsIanun ISIpoyIsy UIsyinos

3S Jo Ja1se
VM ‘aneas - AlsisAlun ajess

3S Ul SN
VO ‘ejlor BT - Ausianiun [euonen

3S Ul SN
02 ‘'sbulfjod 104 - Ausiaaiun [ealbojouyda] feuoneN

3S Ul SIN
CN ‘youelg BuoT 1sap\ ‘AlISIBAIUN YINOWUON

3S Jo Ja1se
S ‘ueneyuely - AlSIaAIUN B1LIS sesuey

3S Jo JaIse\
BI[eNISNY ‘BlesISNY YINOS Jo AUSISAIUN sJapulld

3S Jo Ja1se
14 ‘yoeag euoikeq - Ausianiun a|ppiy-Aiqug

uonenuaduo) Juswabeue 199loid - 3S Ul SN
71 ‘obeayd - Ausianiun (nedaq

uonenuasuo) Juswdojanag aremyos - 3S Ul SN
71 ‘obeayd - Ausianiun (nedaa

uondQ 3S - 92usI9S JaINdwo) ul JsIseN
20 ‘[eanuo - eIpIoduo)D

3S Jo Ja1se
vd ‘ybingsnid - Ausianiun uojieN aibaured

Buusauibug aremyos ul SN
uebIydi - AlISIaAlUn Smalpuy

(8:Information Management TrackO4:Software Processes

Track

&:Integration Option

&:Quality Control Specialization

Part of a course

Y.

MS: Master of Science

M.Sc.A.: Master in Applied Science

IS:

Information Systems

IT: Information Technology

September 1998

© IEEE Computer Society

vl

Guiage 10 the Sortware Engineering boay or Kknowiedge — A Straw ivian version

SEMeny

3S Ul SIN $95IN0D) 9AN98|3 el — © N
puenods ‘Bulns - Buins Jo Aisisaun $951100 painboy
SETERY
3S ul SIN $9SIN0D 9ANY9|T w ™ — ™
©I0SBUUI ‘sljodesuuliy - sewoy] 1S Jo AsiaAun $8s1N0) palinbay o - o 0
S[UEeny
3S Ul SN $8SIN0D 9AN08|F ™ ™
Vd ‘UOIURIOS - UOIURIOS JO AlISIaAlUN sesIn0D palinbay — — — <
SETERY I~
uoljejuaduo) 3S - 9aJuUaldS LOHJQEOU ur SN $98SIN0D 9A103|3 — — | ®
AN sesuey-UNOSSI JO Alsianun s8sIn0D palinbay) ~ NN
S[UEeny
3S JO JIsise|N $95IN0D) 9AN99|3 <~ ™ — < A N
puelAre|N red a69|j0D - puejAre Jo Ausianiun sesIn0D painbey ~ - 0
SETERY
3S Ul SN $95IN0D) 9AN99|3
uapaams - Agauuoy euonisiiey Jo Ausianiun s8sIn0D palinbay ~ e}
S[UEeny
3S Ul SN $95IN0D) 9AN99|3
X1 ‘UCISNOH - e Jes|d - UOISNOH Jo Ausianun s8sIno) paiinbay ® — @
4 - <
SETERY
35 ul uondo yum Busauibug Jo Jaise $9SIN0D) BANOS|T N ™ \ ™| ©
00 ‘sbunds opelojoD - opelojod Jo Ausianun sesIn0D palinbay — — — e}
S[UEeny
3S ul Ul uonezifeads yum oSN sesinod aadag | < N N ™ o
v ‘AreBed - Arebred jo Ausianiun s8sIno) paiinbay — e} -
— SETERY
3S Ul 'V'OS'IN $95IN0D) 9AN98|3 ™ I I
20 ‘[ealUOIA - [e93UOIN B 9909ND NP dMSIAIUN s8sIno) paiinbay o — ~ 3
S[UEeny
3S JO Isise|N S$3SIN0D 9ANI8[T .nlu_ « \ < -
X1 ‘UHOA Ho- - AusIaniun uensuyD sexal sesIn0D palinbay — — <
SETERY
3S Ul SIN $8SIN0D 9AN08|F ™ o~ B
X1 ‘se|eq - Ausianiun 1SIPOYISN uIsyinos $95IN0) palinbay ~ <
S[UEeny
3S JO Islse\ $9SIN0D 9AI9|T © ! Lo
VM ‘9[iess - Ausianiun apess s8sIn0D palinbay - ™ — — <
SETERY
3S Ul SN $95IN0D) 9AN99|3
VO ‘Bllor €7 - ANsianiun [euonen sesIn0D palinbay) — < - —
SETERY =
39S Ul SN (e)e] $95IN0D) 9AN99|3 ® N — [a]
‘sBuljjod wo- - Aussaniun [eaibojouyoa] [euonen sesIn0D palinbay - - - =
SETERY
3S Ul SIN $95IN0D) 9AN98|3 <~ — w0 ©
CN ‘youelg BuoT isem ‘Ausisniun yinowuow s8sIn0D palinbay - 0w N
SETERY =
3S JO Islse\ S$3SIN0D 9ANY8[T 0 o o hid
SY ‘ueneyuely - AlsIsAlUN B1elS sesuey s8sIn0D palinbay — ~
SETERY
3S JO Islse\ $95IN0D 9AI8|T © ©
eleSNY ‘BlfesisNY YINos Jo Ausianiun siapulld sesInoD palinbay
S[UEeny
3S JO Islse\ $9SIN0D 9AI9|T o ! ©
74 ‘yoeag euoikeq - Ausieniun s|pprd-Aiqwg sesIn00 painbey o o
SETERY -
uonenuasuo) Juswabeuep 193l0id - IS Ul SN $98IM0D BANE o — Q-
71 ‘obeaiyd - Ausianiun [nedaq s8sIn0D palinbay) — ~ ©
S[ENEny I~
uoljenuaduo)d HCwEQO_O?m-D °2/emjjos - IS Ul SIN $98SIN0D 9A109|3 S ™ -
71 ‘obeaiyd - Ausianun [nedaeq s8sIn0D palinbay < © —
SETERY
uondo 3S - 92ualds Jaindwo) ul JaIse $95IN0D 3A1IS|T © ©
20 ‘[ea)IUOIA - BIpIodU0D sesInoD palinbay 3 — ~ 2 -
S[UEeny
3S JO JIsise\ $95IN0D) 9AN98|3 onoooon [a] [apya]
vd ‘ybingsnid - Ausianiun uojlsN s1bauie) sesIn0D palinbay — <
SETERY
Buusauibug aremyos ul SN $98IN0D) 9AN0S|T [a]
uebiydIN - Ausisalun smaipuy sesIn00 paunbey o - - <
4]
=
S
S
=
()
(o))
4 c £ e g 2 £
> i = o = = 2}
S - —
@ o c
© © o o D £ c e
c E c &) £ g o o 2
P -
S o5 .Q S <L [0 o R o £ 5
IS A =| o =2 =) c O oo 3]
= C = c w0 = c c =
> - m n b S »n o O .£ m > O W c
iz STs w8LERBPey=8 94, 2
© 25 Sd & QLEWEs s, N =
c 9 o B ol = & Elwn
S E29E32c25=858T S
SEEFEL 2828028 s 8¢
900005 g88=9 2 Ho o0 Qs
<o o0 AQWwWwa=2=202a0a38 0nwnv o O

September 1998

© IEEE Computer Society

V4

Guiage 10 the Sortware Engineering boay or Kknowiedge — A Straw ivian version

3S Ul SN
puepoas ‘Bulns - bulns jo Ausiaaiun

3S Ul SN
BlOSBUUIN ‘sijodeauul|y - Sewoy] 1S Jo Alslaniun

S Ul SN
Vd ‘UOJuRIOS - UOJURIOIS JO ANISISAIUN

uoleIuUsU0D JS - 99UBIDS Jandwo) ul SN
AID sesued-INossIN o Alslaniun

3S Jo Ja1se
puejAreN red abajjo) - puejhiep Jo Alsianiun

3S Ul SN
USpaaMs - Agauuoyeuonisiied Jo Alsiaaiun

IS Ul SN
X1 ‘UOISNOH - 8)eT Jes|d - UOISNOH Jo AlISIsAIUN

35 ul uondo yum Busauibug Jo Jaise
09D ‘sbuuds opelojo) - opelojo) Jo AlsiaAiun

3S Ul Ul uonezifeoads yIm IS
v ‘Arebre) - Arebie) jo Alsianiun

3S Ul 'V'OS'IN
20 ‘[eaNUO - [e2IUON & 2309nd NP SUSISAIUN

3S Jo JaIse\
X1 ‘UHOM L0 - AUSISAIUN UBASUYD Sexa]

3S Ul SN
X1 ‘se|req - AlsIaniun ISIpoyIsy UIsyinos

3S Jo Ja1se
VM ‘aneas - AIsisAlun ajness

3S UISIN
VO ‘ejlor B - AUsIaniun [euonen

3S UISN 02
‘sBuljjoD 104 - Auslaniun [ealbojouyos] feuoneN

3S Ul SN
CN ‘youelg BuoT 1S9/ ‘AUSISAIUN YINOWUON

3S Jo Ja1se
S ‘ueneyuely - AlSIaAIUN B1LIS sesuey

3S Jo JaIse\
BI[eNISNY ‘BlesISNY YINOS Jo AUSISAIUN sJapulld

3S Jo Ja1se
14 ‘yoeag euoikeq - Ausianiun a|ppiy-Aiqug

uonenuasuo) Juawaleuep 108lold - 3S Ul SW
71 ‘obeaiyd - Ausianiun (nedaq

uonenuasuo) Juswdojanag aremyos - 3S Ul SN
71 ‘obeayd - Ausianiun (nedaa

uondQ 3S - 9ousI9S JaINdwo) ul IsIsen
20 ‘[eanuol - eIpIoduoD

3S Jo Ja1se
vd ‘ybingsnid - Ausianiun uojieN aibaured

Buusauibug aremyos ul SN
uebIydI - AlISIaAluUn Smalpuy

Summary

Research Process

Hardware Acquisition
Software Acquisition

September 1998

© IEEE Computer Society

Guide to the Software Engineering Body of Knowledge — A Straw Man Version 93

Appendix I.
Draft Classification of Knowledge on Formal Methods Based on the Proposed Four-Category
Schema

© IEEE Computer Society September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version 94

Introduction

As an illustration of how the subject matter of a Knowledge Area could be broken down into Generally
Accepted, Advanced, Research and Specialized, we present in the following pages some key areas of
formal methods. For this presentation, these topics were also broken down according to the main life cycle
phases, without using the 12207 vocabulary. The various topics included were identified from an informal
literature survey done over the last few years (see below for the references which were examined) and
which gave rise to an annotated bibliography (the annotations are in French) currently containing over 500
entries. This bibliography on formal methods is available at the following URL, where it can be searched:

http://www.info.ugam.ca/~tremblay/chercher-reference.cgi

The categorization into Generally accepted, Advanced, Research and Specialized was obtained, grosso
modo, as follows:

* Generally accepted: A topic discussed in a number of (mainstream) software engineering textbooks.

* Advanced: A topic discussed in numerous formal methods related books or papers. Note that this
category also includes a topic (program derivation and verification) discussed in numerous books, even
basic programming ones, but rarely used in practice.

* Research: A topic discussed in a few (more than 1) formal methods research papers.

* Specialized: A topic relevant to only certain types of software.

The references were obtained mainly, but not exclusively, from the followings:
* Books: Mainstream software engineering books and books specifically targeted to formal methods.

* Journals: ACM Computing Surveys, CACM, ACM Sigplan Notices, ACT TOPLAS, Computer
Networks and ISDN Systems, IEEE Computer, IEEE Software, IEEE Trans. on Soft. Eng., Journal of
Systems and Software, Science of Computer Programming, Software -- Practice and Experience, The
Computer Journal.

* Conferences: CONCUR, FME, VDM, AMAST, Computer-Aided Verification, Intl. Conf. on Soft. Eng.,
Protocol Specification, Testing and Verification, TAPSOFT, ZUM.

Requirements analysis and specification
Generally Accepted

Formal specification of the abstract behavior of a system (black box functional specification) using
an abstract model or axiomatic specifications, with pre/post-conditions (e.g., VDM Z, Lar ch two-
tier approach) [Lam88, Pre92, GH93, Som95, Pfl9g].

Advanced
Verification of the internal consistency of a specification by generating and discharging
appropriate proof obligations (using rigorous inspection and/or formal
proofs) [Jon86,Sha95,BDMW97].

Research

Formal specifications of the abstract behavior of a system using various approaches, e.g.,
assertions on traces [BP78,Jan97], Petri nets [Rei87,Fur93, BOP97], Statecharts [Har88,HG97],
etc.

© IEEE Computer Society September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version 95

Animation of formal specifications and/or use of formal specifications for prototyping in order to
validate the requirements [HI88,BM93,WP94,BDMW97].

Formal specification of (concrete) person-machine interfaces [Ale90,KB97].

Integration of formal methods with existing requirements and analysis approaches (e.g., OO
approaches [CHB92,Ca93,AS97,HG97], structured analysis [PvKP91, SFD92,GP95]).

Specialized

Telecommunication protocol design, telephony, hardware design: Formal specification of the
abstract, external behavior of a (finite state) system (e.g. SDL, Lotos, CCS/CSP) + Formal
specification of some important properties required and/or expected of the system using modal,
temporal logic + Verification of those properties using model-
checking [CES86,Tur93,CWa96,Bru97].

Architectural design
Generally accepted

Formal specification of the behavior of modules using model-based or abstract machine
approaches (e.g., VDM Z, B) [Lam88,ALN+91,Pre92,Som95,Pfl98].

Specification of abstract data types using algebraic approaches (e.g., Larch, ACT- ONE)
[Som95,Lam88,dMRV92,GH93].

Advanced

Verification of the internal consistency of a module specification by generating and discharging
appropriate proof obligations (using rigorous inspection and/or formal proofs)
[Jon86,Sha95,BDMW97].

Research

Formal specification of architectural styles and patterns [AG94,Gar95,CM97].

Detailed design
Advanced

Verification of the refinement of modules by generating and discharging appropriate proof
obligations [Jon86,Sha95,BDMW97,TTOV97].

Coding and testing
Advanced
Program derivation and formal (in-the-small) program verification [Gri81,Dro89,AI91].
Research

Derivation of test cases based on the formal specification of a module (black-box unit
testing) [DF93,SC96,NB92,FJJ+96,Den96,BDMW97].

Automatic or semi-automatic transformation of specification to synthesize software and/or
generate executable code [Par90,Jul93,SH94].

© IEEE Computer Society September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version 96

Qualification testing
Research

Derivation of test cases based on the formal (functional) specification of a system (black-box
testing) [DF93,SC96,NB92,FJJ+96,Den96,BDMW97].

References
AG94

R. Allen and D. Garlan.
Formalizing architectural connection.
In Proc. 16th Int'l Conf. Software Eng., pages 71-80. IEEE Computer Society Press, 1994.

Al91

D. Andrews and D. Ince.
Practical formal methods with VDM.
The McGraw-Hill International Series in Software Engineering, 1991.

Ale90

H. Alexander.

Structuring dialogues using CSP.

In Formal Methods in Human-Computer Interaction, chapter 9, pages 273-295. Cambridge University
Press, 1990.

ALN+91

J.-R. Abrial, M.K.O Lee, D.S. Neilson, P.N. Scharbach, and I.H. Sorensen.

The B-method.

In VDM '91: Formal Software Development Methods, pages 398-405. Springer-Verlag, LNCS-552,
1991.

AS97

K. Achatz and W. Schulte.
A formal OO method inspired by Fusion and Object-Z.
In ZUM '97: The Z Formal Specification Notation, pages 92-111. Springer-Verlag, LNCS-1212, 1997.

BDMW97

J. Bicarregui, J. Dick, B. Matthews, and E. Woods.
Making the most of formal specification through animation, testing and proof.
Science of Computer Programming, 29(1):53-78, 1997.

BM93

P. Borba and S. Meira.
From VDM specifications to functional prototypes.
J. Systems Software, 21(3):267-278, Mar. 1993.

BOP97
L. Baresi, A. Orso, and M. Pezzeé.

Introducing formal specification methods in industrial practice.
In ICSE '97 (Intl. Conf. on Soft. Eng.), pages 56-66, 1997.

© IEEE Computer Society September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version 97

BP78

W. Bartussek and D.L. Parnas.
Using assertions about traces to write abstract specifications for software modules.
In European Cooperation in Informatics, pages 211-236. Springer-Verlag, LNCS-65, 1978.

Bru97

G. Bruns.
Distributed Systems Analysis with CCS.
International Series in Computer Science. Prentice-Hall, 1997.

Ca93

E. Casais and al.
Formal Methods and Object-Orientation.
Tutorial at TOOLS Europe 1993, 1993.

CES86

E.M. Clarke, E.A. Emerson, and A.P. Sistla.
Automatic verification of finite-state concurrent systems using temporal logic specifications.
ACM TOPLAS, 8(2):244-263, 1986.

CHB92

D. Coleman, F. Hayes, and S. Bear.
Introducing objectcharts or how to use statecharts in object-oriented design.
IEEE Trans. on Soft. Eng., 18(1):9-18, Jan. 1992.

CM97

P. Ciancarini and C. Mascolo.

Analyzing and refining an architectural style.

In ZUM '97: The Z Formal Specification Notation, pages 349-368. Springer-Verlag, LNCS-1212,
1997.

CWa96
E.M. Clarke, W.M. Wing, and al.
Formal methods: State of the art and future directions.
ACM Computing Surveys, 28(4):626-643, 1996.
Den96

R. Denney.
A comparison of the model-based & algebraic styles of specification as a basis for test specification.
Soft. Eng. Notes, 21(5):60-65, 1996.

DF93
J. Dick and A. Faivre.

Automating the generation and sequencing of test cases from model-based specifications.
In FME '93: Industrial-Strength Formal Methods, pages 268-284. Springer-Verlag, LNCS-670, 1993.

© IEEE Computer Society September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version

dMRV92
Jan de Meer, Rudolf Roth, and Son Vuong.
Introduction to algebraic specifications based on the language ACT ONE.
Computer Networks and ISDN Systems, 23(5):363-392, 1992.

Dro89

G. Dromey.
Program Derivation -- The Development of Programs From Specifications.
Addison-Wesley Publishers Ltd., 1989.

FJJ+96

J.-C. Fernandez, C. Jard, T. Jéron, L. Nedelka, and C. Viho.

An experiment in automatic generation of test suites for protocols with verification technology.

Technical Report 2923, INRIA, Rocquencourt, Juin 1996.
Fur93

U. Furbach.
Formal specification methods for reactive systems.
J. Systems Software, 21(2):129-139, Feb. 1993.

Gar9s

D. Garlan.
Research directions in software architecture.
ACM Computing Surveys, 27(2):257-261, 1995.

GH93

J.V. Guttag and J.J. Horning.
Larch: Languages and Tools for Formal Specification.
Springer-Verlag, 1993.

GP95

C. Gaskell and R. Phillips.

98

A structured analysis formalism with execution semantics to allow unambiguous model interpretation.

In Software Engineering -- ESEC '95, pages 235-253, 1995.
Gri8l

D. Gries.
The Science of Programming.
Springer-Verlag, 1981.

Har88

D. Harel.
On visual formalisms.
Comm. of the ACM, 31(5):514-530, May 1988.

HG97
D. Harel and E. Gery.

Executable object modeling with Statecharts.
IEEE Computer, 30(7):31-42, 1997.

© IEEE Computer Society September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version 99

HI88

S. Hekmatpour and D. Ince.
Software Prototyping, Formal Methods and VDM.
Addison-Wesley Publishing Co., 1988.

Jan97

R. Janicki.
Foundations of the trace assertion method of module interface specification.
Technical Report CRL Report 348, McMaster University, 1997.

Jon86

C.B. Jones.
Systematic Software Development using VDM.
Prentice-Hall International Series in Computer Science, 1986.

Jul93

R.K. Jullig.
Applying formal software synthesis.
IEEE Software, 10(3):11-22, May 1993.

KB97

J.C. Knight and S.S. Birilliant.

Preliminary evaluation of a formal specification to user interface specification.

In ZUM '97: The Z Formal Specification Notation, pages 329-346. Springer-Verlag, LNCS-1212,
1997.

Lam88

D.A. Lamb.
Software Engineering: Planning for Change.
Prentice-Hall, 1988.

NB92

K. Naik and Sarikaya. B.
Testing communication protocols.
IEEE Software, 9(1):27-37, Jan. 1992.

Par90

H.A. Partsch.
Specification and transformation of programs: a formal approach to software development.
Springer, 1990.

Pf198

S.L. Pfleeger.
Software Engineering -- Theory and Practice.
Prentice-Hall, Inc., 1998.

© IEEE Computer Society September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version 100

Pre92

R.S. Pressman.
Software Engineering -- A Practitioner's Approach (Third Edition).
McGraw-Hill, Inc., 1992.

PvKP91

N. Plat, J. van Katwijk, and K. Pronk.

A case for structured analysis/formal design.

In VDM '91: Formal Software Development Methods, pages 81-105. Springer-Verlag, LNCS-551,
1991.

Rei87

W. Reisig.

Petri nets in software engineering.

In Petri Nets: Applications and Relationships to Other Models of Concurrency, pages 63-96. Springer-
Verlag, LNCS-255, 1987.

SC96

P. Stocks and D. Carrington.
A framework for specification-based testing.
IEEE Trans. on Soft. Eng., 22(11):777-793, 1996.

SFD92

L.T. Semmens, R.B. France, and T.W.G. Docker.
Integrated structured analysis and formal specification techniques.
The Computer Journal, 35(6):600-610, 1992.

SH94

A.C. Storey and H.P. Haughton.

A strategy for the production of verifiable code using the B method.

In FME '94: Industrial Benefits of Formal Methods, pages 346-365. Springer-Verlag, LNCS-873,
1994.

Sha9s

N. Shankar.

Computer-aided computing.

In Bernhard M"oller, editor, Mathematics of Program Construction '95, number 947 in Lecture Notes in
Computer Science, pages 50-66. Springer-Verlag, 1995.

Som95

I. Sommerville.
Software Engineering (Fifth Edition).
Addison-Wesley, 1995.

TTOV97

S. Taouil-Traverson, P. Ozello, and S. Vignes.
Développement formel de logiciel de sécurité: utilisation de la méthode B a la SNCF.
Technique et Sciences Informatique, 16(9):1187-1209, 1997.

© IEEE Computer Society September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version 101

Tur93

K.J. Turner.
Using formal description techniques: an introduction to Estelle, LOTOS, and SDL.
Wiley series in communication and distributed systems, 1993.

WP94

Y. Wang and D.L. Parnas.
Simulating the behavior of software modules by trace rewriting.
IEEE Trans. on Soft. Eng, 20(10):750-759, 1994.

© IEEE Computer Society September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version 102

Appendix J.
Additional Information on Other Body of Knowledge Proposals

© IEEE Computer Society September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version 103

The Joint Steering Committee of the IEEE Computer Society and the ACM for the Establishment of
Software Engineering as a Profession established a task force in 1996 to conduct exploratory work on the
issue of the software engineering body of knowledge. The task force designed and conducted a pilot
survey on a sample of tasks that could be considered within the scope of software engineeringzs. The
survey asked whether each task described would be expected to be performed by a “novice software
engineer”, an “expert software engineer”, a “software engineering specialist” or a “manager” in the
organization.

The Institute for Certification of Computer Professionals (ICCP)ZQ, a non-profit organization, offers a
certification program for software practitioners entitled Certified Computing Professional (CCP). The ICCP
states that there are currently 50,000 certificate holders. To obtain this certificate, a candidate must have
at least 48 months of direct full-time experience in computer-based information systems. A portion of this
experience requirement may be substituted with post-secondary education. Additionally, candidates must
successfully pass three exams, one of which is to be chosen from among various different topics,
including software engineering. The topics covered in the software engineering exam are: computer
systems engineering, software project planning, software requirements, software design, programming
languages and coding, software quality assurance, software testing techniques, software maintenance
and configuration management.

The Software Quality Engineers program (SQE) is a certification program of the American Society for
Quality (ASQ)SO. Obtaining this certificate also requires experience, which can be partly waived with post-
secondary education and by passing a 4-hour, 160-question exam. The “exam body of knowledge”
follows this table of contents:

. general knowledge, conduct and ethics;

. software quality management;

. software processes;

. software project management;

. software metrics, measurement and analytical methods;
. software inspection, testing, verification and validation;
. software audits;

. software configuration management.

The Quality Assurance Institute offers two specialized certification programs related to software
engineering: Certified Quality Analyst (CQA) and Certified Software Test Engineer (CSTE)Sl. Obtaining
the CQA certificate requires a bachelor’'s degree, which can be waived with an Associate’s degree and/or
experience, a character reference and successfully passing a four hour, four part exam. The “Common
Body of Knowledge for the Information Systems Quality Assurance Profession” is provided as study
material for this exam. It describes knowledge in the following areas:

% The report on the survey results can be found at computer.org/tab/seprof/survey.htm

See http://www.iccp.org/profess.html
See http://www.asq.org/about/divtech/softdiv/topcert.htm
See www.gaiusa.com

29
30
31

© IEEE Computer Society September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version 104

Auditing and Control
Change Management
Communications

Disaster Recovery

Human Resource Principles
Management Techniques
Principles of I/S

Quality Assurance

Quality Control Techniques
Quality Management
Quantitative Methods
Reviews

Standards

Testing

Training and Development

Vendor Control

To obtain the Certified Software Test Engineer (CSTE) certificate, candidates must have direct
experience in software testing and must be able to show proficiency in six software testing skills
via a resume and other supporting documents. Candidates must, as of January 1999,
successfully pass an exam on the CSTE common body of knowledge. This body of knowledge
includes sixteen knowledge domains grouped into four categories:

Test management: communication, professional development, testing concepts and
test environments;

Test planning: risk analysis, development methods and environment, test methods and
techniques, and planning process;

Test execution: verification methods, test tools, test-case design and performing tests;

Test results analysis and reporting: defect tracking and management, evaluating test
results, quantitative methods and test reporting.

Parnas proposes in [16] that the development of a body of knowledge in software engineering
must begin with the identification of tasks performed by software engineers. He then goes on to
propose a list of nine tasks:

Analyze the intended application to determine the requirements that must be satisfied,
and record these requirements in a precise, well-organized and easy-to-use document.

Participate in the design of the computer system configuration, determining which
functions will be implemented in hardware and which functions will be implemented in
software, and selecting the basic hardware and software components.

Analyze the performance of a proposed design (either analytically or by simulation) to
make sure that the proposed system can meet the application’s requirements.

Design the basic structure of the software, its division into modules, the interfaces
between these modules and the structure of individual programs, while precisely
documenting all software design decisions.

© IEEE Computer Society

September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version 105

- Analyze the software structure for completeness, consistency and suitability for the
intended application.

- Implement the software as a set of well-structured and well-documented programs.
- Integrate new software with existing or “off the shelf” software.

- Perform systematic and statistical testing of the software and integrated computer
system.

- Revise and enhance software systems, maintaining their conceptual integrity and
keeping documents complete and accurate.

Parnas also points out that many other topics important to software engineers, such as project
management, are at the core of engineering as a whole and hence should not be included in the
software engineering body of knowledge.

Hilburn et al. in [26] recently proposed a body of knowledge for software engineering divided into
four major knowledge areas, which are then divided into knowledge components. These are:

. Core knowledge area:
- Software requirements
- Software design
- Software construction
- Software project management
- Software evolution
Foundations area:
- Computing fundamentals

- Human factors

Application domains
. Recurring area:
- Ethics and professionalism
- Software processes
- Software quality
- Software modeling
- Software metrics
- Tools and environments
- Documentation

. Supporting area: this area includes other fields of study which complete the education of
software engineers such as “general education”, mathematics, natural sciences and business
studies.

“Software Engineering and Methodologies” has also been incorporated as a “knowledge area” or
unit in the Core Body of Knowledge for Information Technology Professionals® published by the
Australian Computer Society. The topics covered in this unit are:

. Fundamentals of Software Engineering

- requirements analysis

32 http://www.acs.org.au/national/pospaper/bokptl.htm

© IEEE Computer Society September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version

106

- functional and technical specifications

- process, data and object orientation models

- documentation standards
- software testing
- software maintenance
- software quality assurance
- formal specification methods
- software configuration management
. Project Management
- project planning, estimation and control
- project evaluation and control techniques
- team construction and management

- principles of software project management

- prototyping

A model curriculum and guidelines for undergraduate degree programs in information systems
entitled 1S'97** has recently been published after going through a very serious comment-
gathering and review process. This model curriculum was produced through a collaborative effort
of the Association for Computing Machinery (ACM), the Association for Information Systems (AIS)
and the Association of Information Technology Professionals (AITP). The draft curriculum was
reviewed at eleven national and international meetings involving over 1,000 individuals from
industry and academia. A body of knowledge for information systems that includes many software

engineering elements is proposed in 1S'97.

see http://webfoot.csom.umn.edu/faculty/gdavis/curcomre.pdf

© IEEE Computer Society

September 1998

