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Abstract 
 

The objective of Empirical Software Engineering is to improve the software development 
and maintenance processes and consequently the quality of theirs various deliverables. This 
can be achieved by evaluating, controlling and predicting some important attributes of 
software projects such as development effort, software reliability, and programmers 
productivity. One of the most interesting sub-field of ESE is software estimation models. 
Software estimation models are used to predict some critical attributes of some entities that 
are not yet exist. For example, we often need to predict how much a development project will 
cost, or how much time and effort will be needed., so that we can allocate the appropriate 
resources to the project. In general, estimation models relate the attribute to be predicted to 
some other attributes, that we can measure now, by using mathematical formulas or other 
techniques such as neural networks, case-based reasoning, regression trees and rule-based 
induction. Currently, our research concerns software cost estimation models. We have 
developed an innovative approach referred to as Fuzzy Analogy for software cost estimation. 
Nevertheless, this approach can be used to evaluate and predict other attributes such as 
reliability, quality, safety, and maintainability. In this paper, we present some results of our 
recent research related to the cost estimation field. 
 
1. Cost estimation: Techniques and challenges  
 

 Accurate and timely prediction of the development effort and schedule required to build 
and/or maintain a software system is one of the most critical activities in managing software 
projects, and has come to be known as ‘Software Cost Estimation’. In order to achieve 
accurate cost estimates and minimize misleading (under- and over-estimates) predictions, 
several cost estimation techniques have been developed and validated. These techniques may 
be grouped into two major categories: 
§ parametric models, and 
§ non-parametric models. 

 
Parametric models are derived from statistical or numerical analysis of historical projects 

data (simple/multiple/stepwise regression, Bayesian approach, polynomial interpolation, …) 
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and are  illustrated by estimations models such as COCOMO [7,8], PUTNAM-SLIM[37], and 
function points analysis [2,4,30]. There are two main disadvantages to these models. First, 
they make an assumption on the form of the prediction function, represented by: 

βα sizeEffort ×=  where α represents a productivity coefficient and β  an economies (or 
diseconomies) of scale coefficient. Second, they need to be adjusted or calibrated to local 
circumstances. 
 

Non-parametric models are based on computational intelligence techniques such as analogy-
based reasoning, artificial neural networks, regression trees, and rule-based induction. They 
have been developed to avoid the above mentioned shortcomings. Recently, many researchers 
have begun to turn their attention to this alternative[5,32,35,36,43-47,49,53,54]. This 
alternative has two significant advantages: First, the capability to model the complex set of 
relationship between the dependent variable to predict (cost, effort) and the independent 
variables (cost drivers) collected earlier in the lifecycle. Second, the capability to learn from 
historical projects data (especially for neural networks). 
   

Experience has shown that there does not exist a ‘best’ prediction technique outperforming 
all the others in every situation. Indeed, Shepperd et al., Niessink and Van Vliet found that 
estimation by analogy generated better results than stepwise regression [34,45,46]. However, 
Briand et al., Stensrud and Myrtveit reported opposite results [9,32]. Recent research has been 
initiated to explain the relationship between different properties of historical projects dataset 
(size, number of attributes, presence of outliers, etc.) and the accuracy of a prediction system 
[46]. Beyond this interesting issue, we have identified three other challenges that cost 
estimation community must tackle to improve the existing models: 

   
§  Cost estimation models must be able to deal with vague information. Indeed, most of 

the software project attributes are measured on a scale composed of linguistic values 
such as low and high. For example, the well-known COCOMO’81 model has 15 
attributes out of 17 (22 out of 24 in the COCOMO II) that are measured with six 
linguistics values: very low, low, nominal, high, very high, and extra-high [7,8]. 

  
§ Cost estimation models must appropriately handle the uncertainty in estimates. 

 
§ Cost estimation models must learn from previous situations because software 

development technology is continuously evolving.  
 

Currently, no cost estimation model has integrated in its modeling process the above three 
criteria. In our recent research, we have developed an estimation model based on reasoning by 
analogy, fuzzy logic, and possibility theory to satisfy to two first criteria. Further research 
work has been initiated to look at the integration of the third criterion, concerning learning 
capabilities, in our model.   
 
2. Computational Intelligence: Case-Based Reasoning and Fuzzy Logic 
 

Computational intelligence is concerned with the computational modeling of human 
intelligence. Its major objective is to attack the problem of understanding intelligence in 
computational terms. This idea comes from the first decade of Artificial Intelligence when 
Alan Turing has published his monumental paper entitled “Computing Machinery and 
Intelligence”. Since that, two approaches known as symbolic and connectionist debate this 
idea [33,38,39,40,41,48]. Until the last decade, both approaches progressed independently. 
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Recently, many researchers started investigating ways of integrating both 
approaches[11,50,51]. In our research, we use a set of techniques inspired of both symbolic 
and connectionist approaches to develop an intelligent cost estimation model. 
 
2.1 Case-Based Reasoning 
  

Case-Based Reasoning (CBR) is a technology that is especially useful when there is limited 
domain knowledge and when an optimal solution process to the given problem in not known. 
Part of the computational intelligence field, it has proven useful in a wide variety of domains, 
including software quality classification [10], and software fault prediction [27]. The four 
primary steps comprising a CBR estimation system are [1,29]:  

1- Retrieve the most similar case or cases, i.e., previously developed projects. 
2- Reuse the information and knowledge represented by the case(s) to solve the estimation 

problem. 
3- Revise the proposed solution. 
4- Retain the parts of this experience likely to be useful for future problem solving. 

 
In the context of software cost estimation, a CBR system is based on the assumption that 

‘similar software projects have similar costs’. Following this simple yet logical assumption, a 
CBR system can be employed as follows. Initially, each software project (both historical and 
candidate projects) must be described by a set of attributes that must be relevant and 
independent of each other. Subsequently, the similarity between the candidate project and 
each project in the historical database is determined. Finally, the known development-effort 
values of historical (previously developed similar) projects is used to derive, i.e., case 
adaptation, an estimate for the new project. 
 

There are two main advantages of analogy-based estimation: first, it is easy to understand 
and to explain its process to the users, and second, it can model a complex set of relationships 
between the dependent variable (such as, cost or effort) and the independent variables (cost 
drivers). However, its deployment in software cost estimation still warrants some 
improvements.  Human intelligence comes in large part from the ability to reason by analogy.  
But human reasoning by analogy is always approximate rather than precise. Indeed, the 
human mind can handle imprecision, uncertainty, partial truth, and approximation to achieve 
tractability, robustness, and low solution cost. According to Zadeh, “the exploitation of these 
criteria underlies the remarkable human ability to understand distorted speech, decipher 
sloppy handwriting, drive a vehicle in dense traffic and, more generally, make decisions in an 
environment of uncertainty and imprecision” [61].  

 
Zadeh’s idea is to mimic the ability of the human mind in order to increase the Machine 

Intelligence Quotient (MIQ) of the new industrial products (microwave, washing machines, 
software, etc.). Thus, for more than 30 years, Zadeh has been involved in the foundation of a 
new strategy of computing that is different from the traditional (hard) computing. Zadeh’s 
effort in this area begins with his paper on fuzzy sets followed by the paper on possibility 
theory, the paper on soft computing, and more recently his papers on computing with words 
[58-62]. Our intelligent cost estimation model is based on CBR technique to which we 
integrate fuzzy logic in order to deal with uncertainty and imprecision (like the human brain) 
in the analogy process  
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2.2 Fuzzy Logic 
 

Since its foundation by Zadeh in 1965, Fuzzy Logic (FL) has been the subject of important 
research investigations. During the early nineties, fuzzy logic was firmly grounded in terms of 
its theoretical foundations and application in the various fields in which it was being used, 
such as robotics, medicine, and image processing.  

 
A fuzzy set is a set with a graded membership function, µ, in the real interval [0, 1]. This 

definition extends the one of a classical set where the membership function is in the couple 
{0, 1}.  Fuzzy sets can be effectively used to represent linguistic values such as low, young, 
and complex, in the following two ways [25]: 

 
§ Fuzzy sets that model the gradual nature of properties, i.e., the higher the membership 

that a given property x has in a fuzzy set A, the more it is true that x is A. In this case, 
the fuzzy set is used to model the vagueness of the linguistic value represented by the 
fuzzy set A. 
 

§ Fuzzy sets that represent incomplete states of knowledge. In this case, the fuzzy set is a 
possibility distribution of the variable X, and consequently, is used to model the 
associated uncertainty. When considering that it is only known that x is A, and x is not 
precisely known, the fuzzy set A can be considered as a possibility distribution, i.e., the 
higher the membership x’ has in A, the higher the possibility that x = x’. 

 
For example, consider the linguistic value young (for attribute Age) that can be represented 

in three ways: by a fuzzy set, i.e., Figure 1 (a), by a classical interval, i.e., Figure 1 (b), and by 
a numerical value, i.e., Figure 1 (c). The representation by a fuzzy set is more advantageous 
than the other two approaches, because: 
§ It is more general, 
§ It mimics the way in which the human-mind interprets linguistic values, and 
§ The transition from one linguistic value to a contiguous linguistic value is gradual rather 

than abrupt. 
 
 
 
 
 
 
 
 
 
 
                           (a)                                                       (b)                                                          (c)       
Figure 1: (a) Fuzzy set representation of the young linguistic value. (b) Classical set representation of the young 
linguistic value. (c) Numerical representation of the young linguistic value. 
 
3. Work In Progress 
 

We have initiated preliminary investigations of applying computational intelligence 
techniques such as case-based reasoning, fuzzy sets, fuzzy inference, soft computing, 
possibility theory and fuzzy rule-based systems to software cost estimation. Promising results 
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of initial studies has encouraged our team to start further advanced development and 
exhaustive empirical validation. A summary of these preliminary works are now presented.  
 
COCOMO cost model using fuzzy logic.  In this work, 15 cost drivers used in the 
intermediate COCOMO’81 are represented by means of fuzzy sets instead of classical sets. 
The study has shown that the representation by fuzzy sets, unlike the one using classical sets, 
tolerates imprecision in the input (cost drivers) of the intermediate COCOMO’81 and 
consequently it generates gradual outputs (costs). The approach was tested on three data sets 
and was shown to yield flexible and stable cost estimations [14,15] 
 
Software project similarity measures based on fuzzy logic. The similarity of two software 
projects, which are described and characterized by a set of attributes, is often evaluated by 
measuring the distance between these two projects through their sets of attributes. The way in 
which the similarity of software projects is gauged is fundamental to the estimation of 
software cost estimation by CBR. In cost estimation, most researchers have used the 
Euclidean distance when projects are described by numerical data and the equality distance 
when they are described by linguistic values. However, the concept of similarity measures has 
also been discussed in fuzzy logic and in cognitive science [52]. To overcome the limitations 
of the similarity measures used in the cost estimation literature, we have proposed a set of 
new software project similarity measures based on fuzzy logic [16]. These measures evaluate 
the overall similarity of two projects P1 and P2, d(P1, P2), by combining the individual 
similarities of P1 and P2 associated with the various linguistic variables (attributes) (Vj) 
describing P1 and P2, ),( 21 PPd

jv . After an axiomatic validation of some proposed candidate 

measures for the individual distances ),( 21 PPd
jv , we have retained two measures that use max-

min and sum-product aggregations [17]. To evaluate the overall distance of P1 and P2, the 
individual distances ),( 21 PPd

jv  are aggregated using Regular Increasing Monotone (RIM) 

linguistic quantifiers such as ‘all’, ‘most’, ‘many’, ‘at most α’ or ‘there exists’. The choice of 
the appropriate RIM linguistic quantifier, Q, depends on the characteristics and the needs of 
each environment. Q indicates the proportion of individual distances that we feel is necessary 
for a good evaluation of the overall distance. The overall similarity of P1 and P2 , d( P1 ,P2) is 
given by one of the following formulas [18]:  
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When choosing the appropriate RIM linguistic quantifier to guide the aggregation of the 
individual distances, its implementation is realized by an Ordered Weight Averaging operator 
[55-57].  
 
Fuzzy Analogy for software cost estimation. We have proposed a new approach, referred to 
as Fuzzy Analogy, for software cost estimation [19]. It is based on CBR and fuzzy set theory. 
It can be used when software projects are described either by numerical or linguistic values. 
Fuzzy Analogy is a fuzzfication of the analogy procedure. It is also composed of three steps: 
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identification of cases, retrieval of similar cases and cases adaptation. Each step is a 
fuzzification of its equivalent in the classical analogy procedure: 
 
§ In the identification of cases step, the software projects can be described either by 

numerical or linguistic values. For linguistic values, we have represented them by fuzzy 
sets rather than classical intervals. The representation of the linguistic values by fuzzy 
sets has three advantages over the one using classical sets (1) it is more general, (2) it 
mimics the way in which human interpret these values, (3) and the transition from one 
linguistic value to the following is gradual rather than abrupt. 

 
§ In the retrieval of similar cases step, we have used our software projects similarity 

measures in order to take into account the case when software projects are described by 
linguistic values.       

 
§ In the cases adaptation step, we have proposed a new strategy to choose similar projects 

that will be used in the adaptation. Also, we have proposed how to adapt the chosen 
projects in order to generate an estimate for the new project. 

 
We have validated this approach with the COCOMO’81 data set. The obtained results were 

compared with three other models: original intermediate COCOMO’81, fuzzy intermediate 
COCOMO’81, and classical CBR estimation model. Fuzzy Analogy performs better in terms 
of accuracy and adequacy in dealing with linguistic values [20,23]. 

 
Handling uncertainty in Fuzzy Analogy: We have improved Fuzzy Analogy by integrating 
the uncertainty criterion in its process. Managing the uncertainty in Fuzzy Analogy means 
that it can produce a set of estimates, rather than only one, with a possibility distribution. This 
set can be used to deduce, for practical purposes, a point estimate for the cost, and analyzing 
the risks associated with all possible estimates [24]. 

 
4. Future work 

 
  By using fuzzy logic and the possibility theory in its estimation process, Fuzzy Analogy 

satisfies the two first criteria, i.e., the tolerance of imprecision when describing software 
project, and the uncertainty when estimating the development cost. The third criterion of an 
intelligent model that Fuzzy Analogy has not yet incorporated into its process is to learn from 
previous experiences. The learning criterion is required for any cost estimation model. Indeed, 
the software industry is continuously evolving: engineers use more and more high level 
programming languages, application generators, web-based technology, etc.   
 

We have initiated the inclusion of some learning functionality in our approach. In the 
identification step, we can update all information concerning the linguistic variables 
describing software projects, specifically, their linguistic values that depend on human 
judgement. For example, the linguistic value high for software reliability may mean that the 
failure intensity is lower than 6 per month, but in the future, we may require less than 3 
software failures per month to evaluate it as high. In the case retrieval step, we can update the 
definition of the linguistic quantifier used in the environment. Here also, the meaning of a 
linguistic quantifier depends on human judgement. However, other learning characteristics 
that are not included in our approach remain to be examined. For example, Fuzzy Analogy 
must be able to provide its user with a subset of linguistic variables that have always led to 
accurate estimates in the past. We may then use this subset in the ‘identification of cases’ step 
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of Fuzzy Analogy. Thus, the attribute selection problem can also be addressed. Moreover, 
Fuzzy Analogy must be able to identify the appropriate linguistic quantifier to be used in 
‘retrieval of similar cases’ step by detecting those that have often yielded accurate cost 
estimates.  

 
Also, neural networks can be used in Fuzzy Analogy to integrate a supervised learning 

approach  by comparing the estimated and the actual values. However, there are some 
shortcomings that prevent neural networks from being well accepted in cost estimation 
modeling. The most important is that they are considered as a ‘black boxes’. Consequently, it 
is not easy to understand and explain their process. To avoid this limitation, we have studied 
the interpretation of a cost estimation model based on a Backpropagation three- layer 
Perceptron network. This study has shown promising results [21]. 
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