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Abstract 
 

The software project similarity attribute has not yet 
been the subject of in-depth study, even though it is often 
used when estimating software development effort by 
analogy. Among the inadequacies identified (Shepperd et 
al.) in most of the proposed measures for the software 
project similarity attribute, the most critical is that they 
are used only when the software projects are described by 
numerical variables (interval, ratio or absolute scale). 
However, in practice, many factors which describe 
software projects, such as the experience of programmers 
and the complexity of modules, are measured in terms of 
an ordinal (or nominal) scale composed of qualifications 
such as ‘very low’, ‘low’ and ‘high’. To overcome this 
limitation, we propose a set of new measures for 
similarity when the software projects are described by 
categorical data. These measures are based on fuzzy 
logic: the categorical data are represented by fuzzy sets 
and the process of computing the various measures uses 
fuzzy reasoning. In this work, the proposed measures are 
validated by means of an axiomatic validation approach, 
using a set of axioms representing our intuition about the 
similarity attribute and verifying whether or not each 
measure  contradicts any of the axioms. We also present 
in this paper the results of an empirical validation of our 
similarity measures, based on the COCOMO’81 
database. 
  
1. Introduction 
 

The similarity of two software projects, which are 
described and characterized by a set of attributes, is often 
evaluated by measuring the distance between these two 
projects through their sets of attributes. Thus, two projects 
are not considered similar if the differences between their 
sets of attributes are obvious. It is important to note that 
the similarity of two software projects also depends on 

their environment: projects which are similar in a specific 
type of environment may not necessarily be similar in 
other environments. So, according to Fenton’s definitions 
[5], similarity will be considered as an external product 
attribute and, consequently, one which can only be 
measured indirectly. 

The way in which the similarity of software projects is 
gauged is fundamental to the estimation of software 
development effort by analogy, and a variety of 
approaches have been proposed in the literature [12]. 
Shepperd et al. [13,14] found three major inadequacies 
while investigating similarity measures. The first of these 
is that they are computationally intensive, and, 
consequently, many Case-Based Reasoning systems have 
been developed, such as ESTOR[15] and ANGEL[13]. 
The second is that the algorithms are intolerant of noise 
and of irrelevant features. The third and most critical is 
that they cannot handle categorical data other than binary-
valued variables. However, in software metrics, 
specifically in software cost estimation models, many 
factors (linguistic variables in fuzzy logic), such as the 
experience of programmers and the complexity of 
modules, are measured on an ordinal scale composed of 
qualifications such as ‘very low’ and ‘low’ (linguistic 
values in fuzzy logic). For example, in the COCOMO’81 
model, 15 attributes out of 17 (22 out of 24 in the 
COCOMO II model) are measured with six linguistic 
values: ‘very low’, ‘low’, ‘nominal’, ‘high’, ‘very high’ 
and ‘extra-high’ [2,3,4]. Another example is the Function 
Points measurement method, in which the level of 
complexity for each item (input, output, inquiry, logical 
file or interface) is assigned using three qualifications 
(‘low’, ‘average’ and ‘high’). Then there are the General 
System Characteristics, the calculation of which is based 
on 14 attributes measured on an ordinal scale of six 
linguistic values (from ‘irrelevant’ to ‘essential’) [8]. To 
overcome this problem, we are proposing a set of 
similarity measures which are based on fuzzy logic and 
which can therefore be used when software projects are 



described by categorical variables [7]. Such proposed 
measures must, of course, be validated. Consequently, in 
this work we present the results of an axiomatic validation 
approach for our measures, as well as the results of an 
initial empirical validation. This empirical validation is 
based on the COCOMO’81 database. 

This paper is organized as follows: In the first section, 
we briefly outline the principles of fuzzy logic and we 
stress what we called the normal condition. In the second 
section, we present a set of candidate measures for 
similarity when software projects are described by 
categorical variables. In the third section, we validate the 
measures by using an axiomatic validation approach. The 
axiomatic validation of measures is the process whereby 
we ensure that the measures do not contradict any 
intuitive notions about the similarity of two software 
projects. Our intuition will be codified by a set of axioms. 
In the fourth section, the similarity measures, which were 
declared valid in the previous section, will be empirically 
validated; many remarks and observations will be made 
on the basis of this empirical validation. Consequently, in 
the fifth section, we present suggestions for improving our 
similarity measures. A conclusion and an overview of 
future work conclude this paper. 
 
2. Fuzzy logic 
 

Since its foundation by Zadeh in 1965 [20], Fuzzy 
Logic (FL) has been the subject of important 
investigations. At the beginning of the nineties, fuzzy 
logic was firmly grounded in terms of its theoretical 
foundations and its application in the various fields in 
which it was being used (robotics, medicine, image 
processing, etc.). The aim in this section is not to discuss 
fuzzy logic in depth, but rather to present those parts of 
the subject that are necessary for an understanding of this 
paper. 

According to Zadeh [22], the term “fuzzy logic” is 
currently used in two different senses. In a narrow sense, 
FL is a logical system aimed at a formalization of 
approximate reasoning. In a broad sense, FL is almost 
synonymous with fuzzy set theory. Fuzzy set theory, as its 
name suggests, is basically a theory of classes with 

unsharp boundaries. It is considered as an extension of 
classical set theory. The membership function µA(x) of x 
in a classical set A, as a subset of the universe X, is 
defined by:  
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This means that an element x is either a member of set 

A (µA(x)=1) or not (µA(x)=0). Classical sets are also 
referred to as crisp sets. For many classifications, 
however, it is not quite clear whether x belongs to a set A 
or not. For example, in [10], if set A represents PCs which 
are too expensive for a student’s budget, then it is obvious 
that this set has no clear boundary. Of course, it could be 
said that a PC priced at $2500 is too expensive, but what 
about a PC priced at $2495 or $2502? Are these PCs too 
expensive? Clearly, a boundary could be determined 
above which a PC is too expensive for the average 
student, say $2500, and a boundary below which a PC is 
certainly not too expensive, say $1000. Between those 
two boundaries, however, there remains an interval in 
which it is not clear whether a PC is too expensive or not. 
In this interval, a grade could be assigned to classify the 
price as partly too expensive. This is where fuzzy sets 
come in: sets in which the membership has grades in the 
interval (0,1). The higher the membership x has in fuzzy 
set A, the more true it is that x is A. 

The fuzzy set, introduced by Zadeh, is a set with 
graded membership in the real interval (0,1). It is denoted 
by: 

∫=
X

A xxA /)(µ  

where µA(x) is known as the membership function and X 
is known as the universe of discourse. Figure 1 shows two 
representations of the linguistic value ‘too expensive’; the 
first using a fuzzy set (Figure 1 (a)) and the second using 
a classical set (Figure 1 (b)). The major advantage of the 
fuzzy set representation is that it is a gradual function 
rather than an abrupt-step function between the two 
boundaries of $1000 and $2500. 

 
 
 
 
 
 
 

 
 
 
 

Figure 1. Fuzzy set (a) and Classical set (b) for the linguistic value ‘too expensive
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2.1 Operations on fuzzy sets 
 

As for classical sets, operations are defined on fuzzy 
sets, such as intersection, union, complement, etc. In the 
literature on fuzzy sets, a large number of possible 
definitions are proposed to implement intersection, union 
and complement. For example, general forms of 
intersection and union are represented by triangular 
norms (T-norms) and triangular conorms (T-conorms or 
S-norms) respectively. A T-norm is a two-place function 
from [0,1]×[0,1] to [0,1] satisfying the following criteria 
[10]: 
T-1  T(a, 1) = a 
T-2  T(a, b) ≤ T(c, d), whenever a≤c, b≤d 
T-3  T(a, b) = T(b, a) 
T-4  T(T(a, b),c) = T(a, T(b, c)) 
The condition defining a T-conorm (S-norm), besides T-2, 
T3 and T-4, is: 
S-1  S(a, 0) = a 
Table 1 gives examples of the operators used most often. 
 

T-norm µA∩B = min (µA(x), µB(x)) 
µA∩B =  µA(x) ×µB(x) 
µA∩B = max (µA(x)+µB(x)-1, 0) 
 

S-norm µA∪B = max (µA(x),µB(x)) 
µA∪B = min (µA(x)+µB(x)-1, 0) 
 

Table 1. Examples of T-norm and S-norm operators 
 
2.2 Properties of fuzzy sets 
 

In the following, we present three commonly used 
fuzzy set properties [10]: 
Property 1:  Fuzzy set A is called normal if the height of 
A, hgt(A), is equal to 1. 

)(sup)( xAhgt A
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Property 2:  Fuzzy set A is called convex if it is 
characterized by: 
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Property 3:  A tuple of fuzzy sets (A1, A2, .., AM) is called 
a fuzzy partition of universe X if: 

XAandAxXx jj

M
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An important condition, which it is often satisfied in 
practice, arises if a fuzzy partition (A1, A2, .., AM) is 
formed by normal and convex fuzzy sets. In the rest of 
this paper, such a condition will be called a normal 
condition (NC): 

A tuple of fuzzy sets (A1, A2, .., AM) satisfy the normal 
condition if  (A1, A2, .., AM) is a fuzzy partition and each Ai 
is normal and convex 

Among the other branches of fuzzy set theory are 
fuzzy arithmetic, fuzzy graph theory and fuzzy data 
analysis. 
 
3. Similarity measures based on fuzzy logic 

 
The goal is to measure the similarity of two software 

projects P1 and P2 when their attributes are described by 
categorical values (linguistic values in fuzzy logic). In the 
software measurement literature, these categorical data 
are represented by classical intervals (or step functions). 
So, no project can occupy more than one interval. This is 
a serious problem in that it can lead to a great difference 
in effort estimations in the case of similar projects with a 
small incremental size difference, since each would be 
placed in a different interval of a step function [6]. 
Consequently, we have used fuzzy sets with a 
membership function rather than classical intervals to 
represent the categorical data. The advantages of this 
representation are as follows: 
§ It is more general; 
§ It mimics the way in which humans interpret linguistic 

values; 
§ The transition for one linguistic value to a contiguous 

linguistic value is gradual rather than abrupt. 
Using such a representation, new similarity measures 

have been proposed [7]. Let projects P1 and P2 be 
described by M linguistic variables (Vj), and, for each 
linguistic variable Vj, a measure with linguistic values is 
defined ( j

kA ). Each linguistic value, j
kA , is represented by 

a fuzzy set with a membership function ( j
kAµ ). Our 

measures of the similarity of P1 and P2 operate on two 
levels:  
§ Measurement of similarity of P1 and P2 according to 

only one dimension at a time (one variable Vj), 
),( 21 PPd

jv . 

§ Measurement of similarity of P1 and P2 according to all 
dimensions (all variables Vj), d(P1, P2). 

Figure 2 summarizes the process for computing the 
various measures. 
 
3.1 First step: Project similarity according to one 
dimension, )P,(Pd 21v j

  

 
The first step consists in calculating the similarity of P1 

and P2 according to each individual attribute with a 
linguistic variable Vj, ),( 21 PPd

jv . Since each Vj is 

measured by fuzzy sets, the distance ),( 21 PPd
jv must 

expresses the fuzzy equality according to Vj of P1 and P2.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. The computing process for the  various measures, )P,(Pd 21v j

 and d(P1, P2) 

 
This fuzzy set must have a membership function with two 
variables (Vj(P1) and Vj(P2)). This type of fuzzy set is 
referred to in fuzzy set theory as a fuzzy relation. Such a 
fuzzy relation can represent an association or a correlation 
between elements of the product space. In our case, the 
association that will be represented by this fuzzy relation 
is the statement P1 and P2 are approximately equal 

according to Vj. We denote this fuzzy relation by jvR≈ . 
jvR≈  is a combination of a set of fuzzy relations jv

kR ,≈ . Each 

jv
kR ,≈ represents the equality of Vj according to one of its 

linguistic values j
kA . Indeed, jv

kR ,≈ represents the fuzzy if-

then rule, where the premise and the consequence consist 
of fuzzy propositions: 

j
kj

j
kj

v
, k AisPVthenAisPVifR j )()(: 21≈  

Hence, for each variable Vj, we have a rule base 
(RBASE_Vj) which contains the same number of fuzzy if-
then rules as the number of fuzzy sets defined for Vj. Each 
RBASE_Vj expresses the fuzzy equality of two software 
projects according to Vj, ),( 21 PPd

jv . When we consider all 

variables Vj, we obtain a rule base (RBASE) which 
contains all rules associated with all variables. RBASE 
expresses the fuzzy equality of two software projects 
according to all variables Vj, d(P1, P2). ),( 21 PPd

jv  is 

defined by combining all fuzzy rules in DBASE_Vj to 

obtain one fuzzy relation ( jvR≈ ) which represents 

DBASE_Vj. This combining of fuzzy if-then rules jv
kR ,≈  

into a fuzzy relation jvR≈ is called aggregation. The way 

this is done is different for the various types of fuzzy 
implication functions adopted for the fuzzy rules. These 
fuzzy implication functions are based on distinguishing 
between two basic types of implication: the fuzzy 
implication which complies with the classical conjunction 
and the fuzzy implication which complies with the 
classical implication [10]. Using this basic distinction of 
two types of fuzzy implication, we have obtained three 
formulas for ),( 21 PPd

jv : 
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),( 21 PPd
jv  equal to 1 implies a perfect similarity between 

P1 and P2 according to Vj; equal to 0, a total absence of 
similarity; between 0 and 1, a partial similarity. 
 
3.2 Second step: Project similarity according to 
all dimensions, d(P1, P2) 
 

We calculate the distance d(P1, P2) from the various 
distances ),( 21 PPd

jv : 

)),(),...,,((),( 212121 1
PPdPPdFPPd

Mvv=  

where M is the number of variables describing the 
projects P1 and P2, and F can be any function with M 
variables from [0,1]M to IR+. Because the various 
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),( 21 PPd
jv  are membership functions associated with fuzzy 

relations jvR≈ , we have defined F as one of the three 
operators: min as a T-norm, max as an S-norm and the i-
or operator as a hybrid between a T-norm and an S-norm. 
Since in our case, the formula given in [1] can generate 
undefined values, we have adopted a modification in 
order to avoid this. Also, the modification will allow the i-
or operator to work as a very conservative T-norm. The 
three formulas obtained are: 
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We note that d(P1, P2) using these three formulas is 
always in the unit interval. The natural interpretation of 
these three formulas will be discussed in section 5. 
 
4. Axiomatic validation of the similarity 
measures 
 

The software engineering community has always been 
aware of the need for validation. As new measures are 
proposed, it is appropriate to ask whether or not they 
capture the attribute they claim to describe. This allows us 
to choose the best measures from a very large number of 
software measures for a given attribute. However, 
validation of software measures is one of the most 
misunderstood procedures in the software measurement 
area. The first question is: What is a valid measure? A 
number of authors in software metrics have attempted to 
answer this question [5, 9, 11, 23, 24]. However, the 
validation problem has up to now been tackled from 
different points of view (mathematical, empirical, etc.) 
and by interpreting the expression ”metrics validation” 
differently; as suggested by Kitchenham et al: ‘What has 
been missing so far is a proper discussion of relationships 
among the different approaches’ [11]. Beyond this 
interesting issue, we use Fenton’s definitions to validate 
the two measures, ),( 21 PPd

jv  and d(P1, P2) [8]: 

Validating a software measure is the process of 
ensuring that the measure is a proper numerical 
characterization of the claimed attribute by showing that 
the representation condition is satisfied. 

This is validation in the narrow sense, meaning it is 
internally valid; if the measure is a component of a valid 

prediction system, the measure is valid in the wide sense. 
In this section, we deal with the validation of ),( 21 PPd

jv  

and d(P1, P2) in the narrow sense. 
),( 21 PPd

jv  and d(P1, P2) satisfy the representation 

condition if they do not contradict any intuitive notions 
about the similarity of P1 and P2. Our initial understanding 
of the similarity of projects will be codified by a set of 
axioms. This axiom-based approach is common in many 
sciences. For example, mathematicians learned about the 
world by defining axioms for a geometry. Then, by 
combining axioms and using their results to support or 
refute their observations, they expanded their 
understanding and the set of rules that governs the 
behavior of objects. Below, we present a set of axioms 
that represents our intuition about the similarity attribute 
between software projects and we check whether or not 
the two measures, ),( 21 PPd

jv  and d(P1, P2), satisfy these 

axioms. 
 
4.1 Axiom 0 (specific to ),( iv PPd

j
) 

 
The similarity of two projects, according to a variable 

Vj, is not null if these two projects have a degree of 
membership different from 0 to at least one same fuzzy set 
of Vj 
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To illustrate this axiom, we use the following figure: 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
Figure 3. An explanatory example of Axiom 0 
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§ ),( iv PPd
j

 must be equal to 1 if Vj(Pi) is in Interval 1; 

§ ),( iv PPd
j

 must decrease strictly from 1 to 0 if Vj(Pi) is in 

Interval 2; 
§ ),( iv PPd

j
 must be equal to 0 if Vj(Pi) is in Interval 3. 

It is easy to show that similarity according to Vj 
measured by max-min or sum-product aggregations 
(formulas (1.1) and (1.2)) respects Axiom 0. This is not 
the case when it is measured by min-Kleene-Dienes 
aggregation (formula (1.3)). Intuitively, P and P4 are not 
similar according to Vj (Figure 4). So, ),( 4PPd

jv  must be 

equal to 0; but by applying the formula (1.3), ),( 4PPd
jv is 

equal to 0.5! 
 

 
 
 
 
 
 
 
 
 
 
 
Figure 4. A counter-example showing that min-Kleene-
Dienes aggregation does not respect Axiom 0 
 
4.2 Axiom 1 
 

We expect any measure m of the similarity of two 
projects to be positive: 

m(P1, P2)≥0; m(P, P)>0 
 

),( 21 PPd
jv , in all cases formulas (1.1), (1.2) and (1.3), is 

always higher than or equal to 0. So, it is also the case 
that d(P1, P2). ),( PPd

jv , when using min-Kleene-Dienes 

aggregation, is higher than 0. But when it uses max-min or 
sum–product aggregations, it can be equal to 0. This is the 
case when )(Pj

kAµ  is equal to 0 for all j
kA . This implies 

that project P does not have any qualification for the 
variable Vj. This case can be avoided if the fuzzy sets 
( jA1 , jA2  …, j

kA , …, j
N j

A ) form a fuzzy partition for Vj. 

This is always the case in practice. Consequently ),( PPd
jv  

will be considered higher than 0 for all types of 
aggregation. 
 
4.3 Axiom 2 
 

The degree of similarity of any project to P must be 
lower than the degree of similarity of P to itself: 

 
m(P, Pi)≤ m(P, P) 

 
4.3.1 )P(P,d iv j

using max-min aggregation. We show 

that, for any project Pi, ),( iv PPd
j

≤ ),( PPd
jv  (Appendix 1, 

Proof 1). 
4.3.2 )P(P,d iv j

using sum-product aggregation. We 

show by a counter-example that ),( iv PPd
j

does not respect 

Axiom 2: 
§ For Pi, )(

0
iA Pj

k
µ  is equal to 1 and for all other j

kA  (k≠k0), 

)( iA Pj
k

µ  is null. 

§ For P, )(
0

Pj
kAµ is equal to 0,7, )(

1
Pj

kAµ is equal to 0.3, 

and, for all other j
kA  (k≠k0 and k≠k1), )(Pj

kAµ is null. 

In this case, ),( iv PPd
j

 is equal to 0.7, while ),( PPd
jv is 

equal to 0.58 (0,58=0.72 + 0,32). 
4.3.3 )P(P,d iv j

 using min-Kleene-Dienes aggregation. 

In general, ),( iv PPd
j

 does not respect Axiom 2 (Figure 5). 

But, if ( jA1 , jA2  …, j
kA , …, j

N j
A ) satisfy the normal 

condition, then min-Kleene-Dienes aggregation respects 
Axiom 2 (Appendix 1, Proof 2). The normal condition 
involves that ( jA1 , jA2  …, j

kA , …, j
N j

A ) does not contain 

more than two overlapping fuzzy sets. 
 

 
 
 
 
 
 
 
 
 
 
 

 
 

 
Figure 5: A counter-example showing that )P(P,d iv j

using 

min-Kleene-Dienes aggregation does not respect Axiom 2 
 

4.3.4 Distance d(P, Pi). It is calculated from the distances 
),( iv PPd

j
 by using the min, the max or the i-or operators. 

Thus, to check whether or not d(P, Pi) respects Axiom 2, 
we will use the results of the validation of the distance 

),( iv PPd
j

. It is easy to show that d(P, Pi) respects Axiom 2, 

some is the operator used, when ),( iv PPd
j

 uses max-min 

aggregation (Appendix 1, Proof 3). We proceed in the 
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same way to validate the distance d(P, Pi) when 
),( iv PPd

j
uses sum-product or min- Kleene-dienes 

aggregation. Table 2 shows the results obtained. 
 

d(P, Pi)  
)P(P,d iv j

 Min Max i-or 

Max-min Yes Yes Yes 
Sum-product No No No 

Kleene-
Dienes 

Yes if  NC Yes if NC Yes if NC 

Table 2: Results of the validation of the distance d(P,Pi) for 
Axiom 2 

 
4.4 Axiom 3 
 

We expect any measure m of the similarity of two 
projects to be commutative: 

 
m(P1, P2)= m(P2, P1) 

 
),( iv PPd

j
 respects Axiom 3 when it uses max-min or 

sum-product aggregation. Consequently, d(P1,P2) is also 
some is the operator used. But, this is not the case when 

),( 21 PPd
jv  uses min-Kleene-Dienes aggregation. We can 

check that ),( 1PPd
jv  is equal to 0.7 and ),( 1 PPd

jv  is equal to 

0.5 (Figure 5).  
By looking at the results of this validation, which takes 

into account four axioms (Table 3 ), we can conclude that 
),( iv PPd

j
 using max-min aggregation respects all the 

axioms (as, consequently, does d(P,Pi)). So, according to 
Fenton [8], this is a valid similarity measure in the narrow 
sense. ),( iv PPd

j
, using sum-product aggregation does not 

respect Axiom 2. Although Axiom 2 is interesting, we 
will retain sum-product aggregation in order to be 
validated in the wide sense. There are three reasons for 
this: 
§ The difference between ),( iv PPd

j
 and ),( PPd

jv  is not 

obvious if the fuzzy sets associated with Vj satisfy the 
normal condition. We can show that this difference, 
in the case where ),( iv PPd

j
 is higher than ),( PPd

jv , is 

in the interval [-1/8, 0]. 
§ Sum-product aggregation respects the other axioms, 

specifically Axiom 0. 
§ As was noted by Zuse [24], validation in the narrow 

sense, contrary to validation in the wide sense, is not 
yet widely accepted and mostly neglected in practice. 

),( iv PPd
j

, using min-Kleene-Dienes aggregation does 

not respect Axiom 0 and Axiom 3. Although it respects 
Axiom 1 and Axiom 2, we rejected it because of Axiom 
0. For us, Axiom 0 represents the definition of the 

similarity of two software projects according to a fuzzy 
variable. Consequently, any similarity measure must 
satisfy this axiom. 

 
)P(P,d iv j

/d(P, Pi)  
 

max-min sum-product  Kleene-Dienes 
Axion0 Yes/ Yes/ No/ 
Axiom1 Yes/Yes Yes/Yes Yes/Yes 
Axiom2 Yes/Yes No/No Yes /Yes if  NC 
Axiom3 Yes/Yes Yes/Yes No/No 

Table 3: Results of the validation  of the distance 
)P(P,d iv j

 and d(P, Pi) 

 
5. Towards an empirical validation of the 
proposed similarity measures 

 
After validation in the narrow sense of the similarity 

measures (the measures are measuring what they claim to 
measure), we present, in this section, the first results of an 
incomplete empirical validation (validation in the wide 
sense) of our measures. According to Fenton [8], a 
measure is valid in the wide sense if it is both valid in the 
narrow sense and a component of a valid prediction 
system. The prediction system that we consider here is the 
estimation of software development effort by analogy. It 
is based on three steps. First, each project must be 
described by a set of linguistic variables which must be 
relevant, independent, operational and comprehensive. 
Second, we must determine the similarity between the 
candidate project and each project in the historical 
database by using the measures that are declared valid in 
the narrow sense. Third, we use the known effort values 
from the historical projects to derive an estimate for the 
new project. Below, we present only the results of the two 
first steps. The intermediate COCOMO’81 database was 
chosen as the basis for this empirical validation. 

The original intermediate COCOMO’81 database 
contains 63 projects. Each project is described by 17 
attributes: the software size is measured in KDSI (Kilo 
Delivered Source Instructions), the project mode is 
defined as either organic, semi-detached or embedded, 
and the remaining 15 cost drivers are generally related to 
the software environment. Each cost driver is measured 
using a rating scale of six linguistic values: ‘very low’, 
‘low’, ‘nominal’, ‘high’, ‘very high’ and ‘extra high’. The 
assignment of linguistic values to the cost drivers (or 
project attributes) uses conventional quantification where 
the values are intervals (see [3], pp. 119). For example, 
the DATA cost driver is measured by the following ratio: 

 

DSIin  size Program

charactersor  bytesin  size Database
=

P
D

 

 



Then, a linguistic value is assigned to the DATA, 
according to the following table: 
 

Low Nominal High Very High 

D/P<10 10≤D/P<100 100≤D/P<1000 D/P≥1000 
Table 4. DATA cost driver ratings. 

 
To use the proposed similarity measures, and because 

of the advantages of representation by fuzzy sets rather 
than classical intervals (section 2), the 15 cost drivers 
must be fuzzified. For example, in the case of the DATA 
cost driver, we have defined a fuzzy set for each linguistic 
value with a trapezoid-shaped membership function µ 
(Figure 6). We note that the fuzzy sets associated with the 
DATA cost driver satisfy the normal condition. For the 
other cost drivers of the intermediate COCOMO’81 
database, we proceed in the same way as for DATA. Of 
the 15 cost drivers, the four factors RELY, CPLX, MODP 
and TOOL are not studied because their relative 

descriptions are insufficient. So, we consider the 12 cost 
drivers that we have fuzzified [6]. 

Because the original COCOMO’81 database contains 
only the effort multipliers,  our evaluation of the 
similarity will be made on an artificial dataset deduced 
from the original COCOMO’81 database. This artificial 
dataset contains 63 projects with  the real values that are 
necessary to determine )(Pj

kAµ  of the formulas (1.1) and 

(1.2). For example,  the DATA cost driver for the fifth 
project in the COCOMO’81 database is declared ‘low’;  
thus,  the randomly generated value for the fifth project in 
the artificial dataset is between 0 and 10.  For 
simplification,  we calculate the similarity of the first five 
projects (P1, P2, P3, P4, P5) of the COCOMO’81 database. 
Because our measures are computationally intensive, we 
have developed a software prototype to automate the 
calculations. This prototype uses Microsoft Excel to store 
data and Microsoft Visual Basic to implement the various 
processing steps. The tables 5 and 6 shows the results 
obtained for the similarity measured by max-min and sum-
product aggregation (formulas (1.1) and (1.2)). 

 
 
 
 
 
 
 

 
 
 

 
 
 

Figure 6. Membership functions of fuzzy sets defined for the DATA cost driver 
 
 

 
 

 Max-min aggregation 
)P,(Pd nmv j

 

 d(Pm, Pn) 
 Min Max i-or 

 P1 P2 P3 P4 P5 P1 P2 P3 P4 P5 P1 P2 P3 P4 P5 
P1 .521 0 0 0 0 1 1 1 1 .849 1 0 0 0 0 
P2 0 .742 0 0 0 1 1 1 1 1 0 1 0 0 0 
P3 0 0 .659 0 0 1 1 1 1 1 0 0 1 0 0 
P4 0 0 0 .849 0 1 1 1 1 1 0 0 0 1 0 
P5 0 0 0 0 .897 .849 1 1 1 1 0 0 0 0 1 

Table 5. Results obtained for d(Pm, Pn) when )P,(Pd nmv j
 uses max-min aggregation. 

 
 

 Sum-product aggregation 
)P,(Pd nmv j

 

5 10 55 100 550 1000 

1
Low Nominal  High Very High 

D/P 



 d(Pm, Pn) 
 Min Max i-or 

 P1 P2 P3 P4 P5 P1 P2 P3 P4 P5 P1 P2 P3 P4 P5 
P1 .501 0 0 0 0 1 1 1 1 .807 1 0 0 0 0 
P2 0 .610 0 0 0 1 1 1 1 1 0 1 0 0 0 
P3 0 0 .550 0 0 1 1 1 1 1 0 0 1 0 0 
P4 0 0 0 .744 0 1 1 1 1 1 0 0 0 1 0 
P5 0 0 0 0 .815 .807 1 1 1 1 0 0 0 0 1 

Table 6. Results obtained for d(Pm, Pn) when )P,(Pd nmv j
 uses sum-product aggregation. 

 
d(Pm, Pn) combines the various ),( nmv PPd

j
 in three 

ways: 
§ In the first, the ‘and’ logical operation is used. It is 

implemented by the min operator; so, the distance 
between two projects, d(Pm, Pn), is null if only one 

),( nmv PPd
j

 is the same; it is equal to 1 if all ),( nmv PPd
j

 

are the same. From the results obtained (Min columns 
in Tables 5 and 6), we note that d(Pm, Pn) is null for the 
two types of aggregation if Pm is other than Pn. This can 
be explained by the fact that often in the COCOMO’81 
database two projects have at least one variable for 
which the associated linguistic values are different. The 
results obtained for d(Pm, Pm) are different for the two 
types of aggregation. We can show that the absolute 
value of this difference is lower than 1/8 if all the 
variables describing software projects satisfy the 
normal condition; this is our case with the 
COCOMO’81 database (Appendix 1, Proof 4). An 
interesting observation is that d(Pm, Pm) is not equal to 
1; but, with the normal condition, it is always higher 
than 1/2. 

§ In the second, the ‘or’ logical operation is used. It is 
implemented by the max operator; so, d(Pm, Pn) is null 
if all ),( nmv PPd

j
 are the same; it is equal to 1 if only one 

),( nmv PPd
j

 is the same. Contrary to the case of the min 

operator, d(Pm, Pn) is not null if Pm is other than Pn. This 
implies that often in the COCOMO’81 database two 
projects have at least one variable for which the 
associated linguistic values are the same. In general, 
d(Pm, Pn) for the two types of aggregation should be 
different (as in the case of d(P1,P5)), and, as in the case 
of the min operator, if the normal condition is satisfied, 
the absolute value of this difference is lower than 1/8. 
We note that d(Pm, Pm) is equal to 1. 

§ In the third, between the ‘and’ and the ‘or’ logical 
operations by using the i-or operator; d(Pm, Pn) is null if 
only one ),( nmv PPd

j
is the same; it is equal to 1 if only 

one ),( nmv PPd
j

 is the same and all other ),( nmv PPd
j

 are 

different from 0. From the results obtained (i-or 
columns in Tables 5 and 6), we note that d(Pm, Pn) is 
null for the two types of aggregation if Pm is other than 
Pn. This is true for the same reason that it is true in the 

case of min operator. In general, d(Pm, Pn) for the two 
types of aggregation should be different if all ),( nmv PPd

j
 

are other than 0 and 1. This case is not represented in 
the COCOMO’81 database. If the normal condition is 
verified, this difference is not obvious because that 
between ),( nmv PPd

j
 using max-min aggregation and 

),( nmv PPd
j

 using sum-product aggregation is always 

lower than 1/8 and the i-or function is continuous. 
Contrary to the case of the min operator, d(Pm, Pm) is 
equal to 1 because for all the variables ),( mmv PPd

j
 are 

different from 0, and it is likely that according to at 
least one variable ),( mmv PPd

j
is equal to 1. 

From these results, we can conclude that there is no 
significant difference between max-min and sum-product 
aggregation if the normal condition is satisfied; while the 
differences are obvious when evaluating d(Pm, Pn) by 
using the min, max or i-or operators. In the following 
section, we discuss the meanings and the uses of these 
three operators. 
 
6. Discussion 
 

In evaluating the overall distance d(P, Pi), we have 
used three fuzzy set operators to combine the individual 
distances, ),( iv PPd

j
. The use of the min (or max) operator 

reflects a combining referred to as a universal ‘all’ 
linguistic quantifier by Zadeh [21] (or existential, ‘there 
exists’). As noted by Yager when studying multi-criteria 
decision problems, these two combinations may not 
always be the appropriate relationships among the criteria. 
For example, a decision-maker may be satisfied if ‘most’ 
of the criteria are satisfied; other linguistic quantifiers can 
be used, such as ‘many’, ‘at least half’, ‘some’ and ‘few’. 
So, Yager suggested a softer combining by the use of 
what he called quantifier guided aggregations [16,18]. 
These kinds of aggregation are implemented by the 
Ordered Weight Averaging (OWA) operators [17]. 
Recently, Yager has applied this to implementing a soft 
aggregation for fuzzy constraint satisfaction in the E-
commerce domain [19]. For our case, we are now looking 



to use OWA operators to calculate the overall distance 
d(P,Pi). The reasons for this are as follows: 
§ The min and max operators are not always a good 

combination of the individual distances. Let us suppose 
that we have two software projects P1 and P2 such that 

),( 21
0

PPd
jv =0, ),( 21 PPd

jv =1 for j ≠ j0 (or ),( 21
0

PPd
jv =1, 

),( 21 PPd
jv =0 for j ≠ j0) and Vj0 is the least significant of 

all the factors describing projects P1 and P2. When we 
use a min (or max) operator, the overall distance d(P1, 
P2) is null (or equal to 1), while a suitable combination 
would seem to give a value in the vicinity of 1 (or of 0). 

§ The min and max operators are special cases of OWA 
operators. 

§ The OWA operators can be used in environments in 
which the individual distances to be aggregated have an 
importance associated with them. This is often the case 
for software projects where the importance of some 
factors is greater than that of others. Consequently, the 
contributions of the various individual distances into 
the calculation of the overall distance should not be 
equal. 

§ The OWA operators can implement other linguistic 
quantifiers used in practice, such as ‘most’, ‘few’ and 
‘many’. 

§ The i-or operator has been used because it is a hybrid 
between a T-norm and an S-norm. This is also the case 
for an OWA operator. Although it is claimed that the i-
or has a natural interpretation and can be used in many 
situations (evaluation of scientific papers, quality of a 
game developed by two tennis players in a doubles 
tennis match, for example), the i-or operator cannot be 
represented by a linguistic quantifier; so, it is not an 
OWA operator. Indeed, for two values a and b in the 
unit interval, the following system does not have a 
solution: 





=+
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+=
+−−

1

]1,0[,
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21

21

21

ww

ww

bwaw
abba

ab

 

Clearly, there is a need for further investigation into 
the acceptance or rejection of the use of the i-or operator 
in the evaluation of the overall distance d(P, Pi) from the 
various individual distances ),( iv PPd

j
. 

In a further empirical validation, we used the following 
formal procedure rather than the formulas (2) to evaluate 
the overall distance d(P, Pi) in a given environment. First, 
we had to determine the appropriate linguistic quantifier 
to be used in such an environment. Second, this linguistic 
quantifier is used to generate an OWA weighting vector 
W (w1, w2, .., wM) of dimension M (M is the number of 
variables describing the software projects) such that the 

wis are in the unit interval and the sum of wis is equal to 
1. Third, we calculated the overall distance d(P, Pi) by: 

(3)                               ),(),(
1

iv

M

j
ji PPdwPPd

j∑
=

=  

where ),( iv PPd
j

 is the Jth largest individual distance. 

We can then check that the axiomatic validation of d(P, 
Pi) using a softer combining of ),( iv PPd

j
 (formula (3)) 

gives the same results as those in Table 3. 
 
7. Conclusion & future work 
 

In this paper, we have validated a set of new similarity 
measures based on fuzzy logic. They can be used when 
the software project attributes are described with 
linguistic variables. Our measures are also applicable 
when the variables are numeric while relocating numeric 
values into a singleton fuzzy set (no uncertainty) or into a 
fuzzy number (uncertainty). Our measures operate on two 
levels. The similarity measures according to only one 
variable ),( iv PPd

j
 and those according to all variables, 

d(P, Pi). We have adopted Fenton’s definitions to validate 
these two measures. First, the measures are validated in 
the narrow sense by using four axioms. These axioms 
codify our initial understanding of the similarity  of 
software projects and can also be used in the case of the 
similarity of entities other than software projects. From 
this axiomatic validation, we have retained the individual 
distance ),( iv PPd

j
 using max-min or sum-product 

aggregation and rejected the using of min-Kleene-Dienes 
aggregation. The overall distance combines the individual 
distances by means of three operators. So, its axiomatic 
validation depends on the axiomatic validation of 

),( iv PPd
j

. Second, we have started the validation in the 

wide sense of the retained measures that are declared 
valid in the narrow sense. We have chosen estimation by 
analogy of software development effort and the 
COCOMO’81 database as the basis for this validation. 
The results obtained from the application of the first two 
steps of estimation effort by analogy have shown that 
there is no significant difference between max-min and 
sum-product aggregation; while the use of the three 
operators (min, max and i-or) in the evaluation of d(P, Pi) 
from the individual distances ),( iv PPd

j
 gives significant 

differences and cannot be always a good choice. 
Consequently, we have proposed other alternatives for 
combining the individual distances. These alternatives, 
such as ‘most’, ‘few’ and ‘many’, are implemented by the 
OWA operators. The most significant advantage of this is 
that for each environment the appropriate linguistic 
quantifier (alternative) can be chosen for use in the 
evaluation of the overall distance. To complete the 
empirical validation of the retained measures, we must 



validate the estimation of effort by analogy approach. 
This validation will consist in comparing the accuracy of 
the estimated effort values with actual effort values. 
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Appendix 1 
 
Proof 1: )P(P,d iv j

 using max-min aggregation 
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Proof 2: )P(P,d iv j

 using  min-Kleene-Dienes 

aggregation 
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Proof 3: distance d(P, Pi) with )P(P,d iv j
 using max-

min aggregation 
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Proof 4: Difference between d(Pm, Pn) using max-min 
aggregation and d(Pm, Pn) using sum-product 
aggregation 
 

We want to prove that the absolute value of the 
difference between d(Pm, Pn) using formula (2.1) with 

),( nmv PPd
j

 which uses max-min aggregation and d(Pm, Pn) 

using the formula (2.1) with ),( nmv PPd
j

 which uses sum-

product aggregation is lower than 1/8. In the case of d(Pm, 
Pn) using formula (2.2), the proof is the same. We suppose 
that all variables satisfy the normal condition. 

First, we prove that the absolute value of the difference 
between ),( nmv PPd

j
 using max-min aggregation and 

),( nmv PPd
j

 using sum-product aggregation is lower than 

1/8. 
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By studying these three functions, we can note that 
each of them has a minimum equal to  –1/8 or a maximum 
equal to 1/8. 
 

Second, d(Pm, Pn) combines ),( nmv PPd
j

 by the min 

operator. d(Pm, Pn) with ),( nmv PPd
j

 using max-min 

aggregation is denoted by d(Pm, Pn)max-min and d(Pm, Pn) 
with ),( nmv PPd

j
 using sum-product aggregation is denoted 

by d(Pm, Pn)sum-product: 
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