

A Fuzzy Logic Based Set of Measures for Software Project Similarity:
Validation and Possible Improvements

Ali Idri and Alain Abran

Software Engineering Management Research Laboratory
Department of Computer Science

UQAM, P.O Box. 8888,. Centre-Ville Postal Station
Montréal, Québec, Canada, H3C 3P8

idri@ensias.um5souissi.ac.ma
alain.abran@uqam.ca

Abstract

The software project similarity attribute has not yet
been the subject of in-depth study, even though it is often
used when estimating software development effort by
analogy. Among the inadequacies identified (Shepperd et
al.) in most of the proposed measures for the software
project similarity attribute, the most critical is that they
are used only when the software projects are described by
numerical variables (interval, ratio or absolute scale).
However, in practice, many factors which describe
software projects, such as the experience of programmers
and the complexity of modules, are measured in terms of
an ordinal (or nominal) scale composed of qualifications
such as ‘very low’, ‘low’ and ‘high’. To overcome this
limitation, we propose a set of new measures for
similarity when the software projects are described by
categorical data. These measures are based on fuzzy
logic: the categorical data are represented by fuzzy sets
and the process of computing the various measures uses
fuzzy reasoning. In this work, the proposed measures are
validated by means of an axiomatic validation approach,
using a set of axioms representing our intuition about the
similarity attribute and verifying whether or not each
measure contradicts any of the axioms. We also present
in this paper the results of an empirical validation of our
similarity measures, based on the COCOMO’81
database.

1. Introduction

The similarity of two software projects, which are
described and characterized by a set of attributes, is often
evaluated by measuring the distance between these two
projects through their sets of attributes. Thus, two projects
are not considered similar if the differences between their
sets of attributes are obvious. It is important to note that
the similarity of two software projects also depends on

their environment: projects which are similar in a specific
type of environment may not necessarily be similar in
other environments. So, according to Fenton’s definitions
[5], similarity will be considered as an external product
attribute and, consequently, one which can only be
measured indirectly.

The way in which the similarity of software projects is
gauged is fundamental to the estimation of software
development effort by analogy, and a variety of
approaches have been proposed in the literature [12].
Shepperd et al. [13,14] found three major inadequacies
while investigating similarity measures. The first of these
is that they are computationally intensive, and,
consequently, many Case-Based Reasoning systems have
been developed, such as ESTOR[15] and ANGEL[13].
The second is that the algorithms are intolerant of noise
and of irrelevant features. The third and most critical is
that they cannot handle categorical data other than binary-
valued variables. However, in software metrics,
specifically in software cost estimation models, many
factors (linguistic variables in fuzzy logic), such as the
experience of programmers and the complexity of
modules, are measured on an ordinal scale composed of
qualifications such as ‘very low’ and ‘low’ (linguistic
values in fuzzy logic). For example, in the COCOMO’81
model, 15 attributes out of 17 (22 out of 24 in the
COCOMO II model) are measured with six linguistic
values: ‘very low’, ‘low’, ‘nominal’, ‘high’, ‘very high’
and ‘extra-high’ [2,3,4]. Another example is the Function
Points measurement method, in which the level of
complexity for each item (input, output, inquiry, logical
file or interface) is assigned using three qualifications
(‘low’, ‘average’ and ‘high’). Then there are the General
System Characteristics, the calculation of which is based
on 14 attributes measured on an ordinal scale of six
linguistic values (from ‘irrelevant’ to ‘essential’) [8]. To
overcome this problem, we are proposing a set of
similarity measures which are based on fuzzy logic and
which can therefore be used when software projects are

described by categorical variables [7]. Such proposed
measures must, of course, be validated. Consequently, in
this work we present the results of an axiomatic validation
approach for our measures, as well as the results of an
initial empirical validation. This empirical validation is
based on the COCOMO’81 database.

This paper is organized as follows: In the first section,
we briefly outline the principles of fuzzy logic and we
stress what we called the normal condition. In the second
section, we present a set of candidate measures for
similarity when software projects are described by
categorical variables. In the third section, we validate the
measures by using an axiomatic validation approach. The
axiomatic validation of measures is the process whereby
we ensure that the measures do not contradict any
intuitive notions about the similarity of two software
projects. Our intuition will be codified by a set of axioms.
In the fourth section, the similarity measures, which were
declared valid in the previous section, will be empirically
validated; many remarks and observations will be made
on the basis of this empirical validation. Consequently, in
the fifth section, we present suggestions for improving our
similarity measures. A conclusion and an overview of
future work conclude this paper.

2. Fuzzy logic

Since its foundation by Zadeh in 1965 [20], Fuzzy
Logic (FL) has been the subject of important
investigations. At the beginning of the nineties, fuzzy
logic was firmly grounded in terms of its theoretical
foundations and its application in the various fields in
which it was being used (robotics, medicine, image
processing, etc.). The aim in this section is not to discuss
fuzzy logic in depth, but rather to present those parts of
the subject that are necessary for an understanding of this
paper.

According to Zadeh [22], the term “fuzzy logic” is
currently used in two different senses. In a narrow sense,
FL is a logical system aimed at a formalization of
approximate reasoning. In a broad sense, FL is almost
synonymous with fuzzy set theory. Fuzzy set theory, as its
name suggests, is basically a theory of classes with

unsharp boundaries. It is considered as an extension of
classical set theory. The membership function µA(x) of x
in a classical set A, as a subset of the universe X, is
defined by:





∉
∈

=
Axiff

Axiff
xA 0

1
)(µ

This means that an element x is either a member of set

A (µA(x)=1) or not (µA(x)=0). Classical sets are also
referred to as crisp sets. For many classifications,
however, it is not quite clear whether x belongs to a set A
or not. For example, in [10], if set A represents PCs which
are too expensive for a student’s budget, then it is obvious
that this set has no clear boundary. Of course, it could be
said that a PC priced at $2500 is too expensive, but what
about a PC priced at $2495 or $2502? Are these PCs too
expensive? Clearly, a boundary could be determined
above which a PC is too expensive for the average
student, say $2500, and a boundary below which a PC is
certainly not too expensive, say $1000. Between those
two boundaries, however, there remains an interval in
which it is not clear whether a PC is too expensive or not.
In this interval, a grade could be assigned to classify the
price as partly too expensive. This is where fuzzy sets
come in: sets in which the membership has grades in the
interval (0,1). The higher the membership x has in fuzzy
set A, the more true it is that x is A.

The fuzzy set, introduced by Zadeh, is a set with
graded membership in the real interval (0,1). It is denoted
by:

∫=
X

A xxA /)(µ

where µA(x) is known as the membership function and X
is known as the universe of discourse. Figure 1 shows two
representations of the linguistic value ‘too expensive’; the
first using a fuzzy set (Figure 1 (a)) and the second using
a classical set (Figure 1 (b)). The major advantage of the
fuzzy set representation is that it is a gradual function
rather than an abrupt-step function between the two
boundaries of $1000 and $2500.

Figure 1. Fuzzy set (a) and Classical set (b) for the linguistic value ‘too expensive

$

)(exp xensivetooµ

2500 1000
(a)

0

1

2500 1000 $ 0

1

(b)

)(exp xensivetooµ

2.1 Operations on fuzzy sets

As for classical sets, operations are defined on fuzzy
sets, such as intersection, union, complement, etc. In the
literature on fuzzy sets, a large number of possible
definitions are proposed to implement intersection, union
and complement. For example, general forms of
intersection and union are represented by triangular
norms (T-norms) and triangular conorms (T-conorms or
S-norms) respectively. A T-norm is a two-place function
from [0,1]×[0,1] to [0,1] satisfying the following criteria
[10]:
T-1 T(a, 1) = a
T-2 T(a, b) ≤ T(c, d), whenever a≤c, b≤d
T-3 T(a, b) = T(b, a)
T-4 T(T(a, b),c) = T(a, T(b, c))
The condition defining a T-conorm (S-norm), besides T-2,
T3 and T-4, is:
S-1 S(a, 0) = a
Table 1 gives examples of the operators used most often.

T-norm µA∩B = min (µA(x), µB(x))
µA∩B = µA(x) ×µB(x)
µA∩B = max (µA(x)+µB(x)-1, 0)

S-norm µA∪B = max (µA(x),µB(x))
µA∪B = min (µA(x)+µB(x)-1, 0)

Table 1. Examples of T-norm and S-norm operators

2.2 Properties of fuzzy sets

In the following, we present three commonly used
fuzzy set properties [10]:
Property 1: Fuzzy set A is called normal if the height of
A, hgt(A), is equal to 1.

)(sup)(xAhgt A
Xx

µ
∈

=

Property 2: Fuzzy set A is called convex if it is
characterized by:

))(),(min()(

,,

312

321321

xxx

xxxXxxx

AAA µµµ ≥
≤≤∈∀

Property 3: A tuple of fuzzy sets (A1, A2, .., AM) is called
a fuzzy partition of universe X if:

XAandAxXx jj

M

j
A j

≠Φ≠=∈∀ ∑
=

1)(,
1

µ

An important condition, which it is often satisfied in
practice, arises if a fuzzy partition (A1, A2, .., AM) is
formed by normal and convex fuzzy sets. In the rest of
this paper, such a condition will be called a normal
condition (NC):

A tuple of fuzzy sets (A1, A2, .., AM) satisfy the normal
condition if (A1, A2, .., AM) is a fuzzy partition and each Ai
is normal and convex

Among the other branches of fuzzy set theory are
fuzzy arithmetic, fuzzy graph theory and fuzzy data
analysis.

3. Similarity measures based on fuzzy logic

The goal is to measure the similarity of two software

projects P1 and P2 when their attributes are described by
categorical values (linguistic values in fuzzy logic). In the
software measurement literature, these categorical data
are represented by classical intervals (or step functions).
So, no project can occupy more than one interval. This is
a serious problem in that it can lead to a great difference
in effort estimations in the case of similar projects with a
small incremental size difference, since each would be
placed in a different interval of a step function [6].
Consequently, we have used fuzzy sets with a
membership function rather than classical intervals to
represent the categorical data. The advantages of this
representation are as follows:
§ It is more general;
§ It mimics the way in which humans interpret linguistic

values;
§ The transition for one linguistic value to a contiguous

linguistic value is gradual rather than abrupt.
Using such a representation, new similarity measures

have been proposed [7]. Let projects P1 and P2 be
described by M linguistic variables (Vj), and, for each
linguistic variable Vj, a measure with linguistic values is
defined (j

kA). Each linguistic value, j
kA , is represented by

a fuzzy set with a membership function (j
kAµ). Our

measures of the similarity of P1 and P2 operate on two
levels:
§ Measurement of similarity of P1 and P2 according to

only one dimension at a time (one variable Vj),
),(21 PPd

jv .

§ Measurement of similarity of P1 and P2 according to all
dimensions (all variables Vj), d(P1, P2).

Figure 2 summarizes the process for computing the
various measures.

3.1 First step: Project similarity according to one
dimension,)P,(Pd 21v j

The first step consists in calculating the similarity of P1

and P2 according to each individual attribute with a
linguistic variable Vj,),(21 PPd

jv . Since each Vj is

measured by fuzzy sets, the distance),(21 PPd
jv must

expresses the fuzzy equality according to Vj of P1 and P2.

Figure 2. The computing process for the various measures,)P,(Pd 21v j

 and d(P1, P2)

This fuzzy set must have a membership function with two
variables (Vj(P1) and Vj(P2)). This type of fuzzy set is
referred to in fuzzy set theory as a fuzzy relation. Such a
fuzzy relation can represent an association or a correlation
between elements of the product space. In our case, the
association that will be represented by this fuzzy relation
is the statement P1 and P2 are approximately equal

according to Vj. We denote this fuzzy relation by jvR≈ .
jvR≈ is a combination of a set of fuzzy relations jv

kR ,≈ . Each

jv
kR ,≈ represents the equality of Vj according to one of its

linguistic values j
kA . Indeed, jv

kR ,≈ represents the fuzzy if-

then rule, where the premise and the consequence consist
of fuzzy propositions:

j
kj

j
kj

v
, k AisPVthenAisPVifR j)()(: 21≈

Hence, for each variable Vj, we have a rule base
(RBASE_Vj) which contains the same number of fuzzy if-
then rules as the number of fuzzy sets defined for Vj. Each
RBASE_Vj expresses the fuzzy equality of two software
projects according to Vj,),(21 PPd

jv . When we consider all

variables Vj, we obtain a rule base (RBASE) which
contains all rules associated with all variables. RBASE
expresses the fuzzy equality of two software projects
according to all variables Vj, d(P1, P2).),(21 PPd

jv is

defined by combining all fuzzy rules in DBASE_Vj to

obtain one fuzzy relation (jvR≈) which represents

DBASE_Vj. This combining of fuzzy if-then rules jv
kR ,≈

into a fuzzy relation jvR≈ is called aggregation. The way

this is done is different for the various types of fuzzy
implication functions adopted for the fuzzy rules. These
fuzzy implication functions are based on distinguishing
between two basic types of implication: the fuzzy
implication which complies with the classical conjunction
and the fuzzy implication which complies with the
classical implication [10]. Using this basic distinction of
two types of fuzzy implication, we have obtained three
formulas for),(21 PPd

jv :


















−−

−
−

−

=
∑

(1.3) min

))(),(1max(min

)(1.2

)(),(

)1.1(minmax

))(),(min(max

),(

21

21

21

21

naggregatioDienesKleene

PP

naggregatioproductsum

PP

naggregatio

PP

PPd

j
k

j
k

j
k

j
k

j
k

j
k

j

AAk

k
AA

AAk

v

µµ

µµ

µµ

),(21 PPd
jv equal to 1 implies a perfect similarity between

P1 and P2 according to Vj; equal to 0, a total absence of
similarity; between 0 and 1, a partial similarity.

3.2 Second step: Project similarity according to
all dimensions, d(P1, P2)

We calculate the distance d(P1, P2) from the various
distances),(21 PPd

jv :

)),(),...,,((),(212121 1
PPdPPdFPPd

Mvv=

where M is the number of variables describing the
projects P1 and P2, and F can be any function with M
variables from [0,1]M to IR+. Because the various

RBASE_VM

RBASE_V2

RBASE_V1 Aggregation

Aggregation

Aggregation

RBASE

P1

),(211
PPdv

),(212
PPdv

),(21 PPd
Mv

















− ORI

MAX

MIN
d(P1, P2)

P2

),(21 PPd
jv are membership functions associated with fuzzy

relations jvR≈ , we have defined F as one of the three
operators: min as a T-norm, max as an S-norm and the i-
or operator as a hybrid between a T-norm and an S-norm.
Since in our case, the formula given in [1] can generate
undefined values, we have adopted a modification in
order to avoid this. Also, the modification will allow the i-
or operator to work as a very conservative T-norm. The
three formulas obtained are:
















+−

==∃

=−














−

=

∏ ∏

∏

= =

= otherwise

PPdPPd

PPd

PPdandPPdhk

PPdori

PPdori

PPd

PPd

PPd

M

j

M

j
vv

M

j
v

vv

v
j

v
j

v
j

v
j

jj

j

hk

j

j

j

j

1 1
2121

1
21

2121

21

21

21

21

21

),()),(1(

),(

1),(0),(/,0

)),((

where

2.3)),((

2.2)),((max

2.1)),((min

),(

We note that d(P1, P2) using these three formulas is
always in the unit interval. The natural interpretation of
these three formulas will be discussed in section 5.

4. Axiomatic validation of the similarity
measures

The software engineering community has always been
aware of the need for validation. As new measures are
proposed, it is appropriate to ask whether or not they
capture the attribute they claim to describe. This allows us
to choose the best measures from a very large number of
software measures for a given attribute. However,
validation of software measures is one of the most
misunderstood procedures in the software measurement
area. The first question is: What is a valid measure? A
number of authors in software metrics have attempted to
answer this question [5, 9, 11, 23, 24]. However, the
validation problem has up to now been tackled from
different points of view (mathematical, empirical, etc.)
and by interpreting the expression ”metrics validation”
differently; as suggested by Kitchenham et al: ‘What has
been missing so far is a proper discussion of relationships
among the different approaches’ [11]. Beyond this
interesting issue, we use Fenton’s definitions to validate
the two measures,),(21 PPd

jv and d(P1, P2) [8]:

Validating a software measure is the process of
ensuring that the measure is a proper numerical
characterization of the claimed attribute by showing that
the representation condition is satisfied.

This is validation in the narrow sense, meaning it is
internally valid; if the measure is a component of a valid

prediction system, the measure is valid in the wide sense.
In this section, we deal with the validation of),(21 PPd

jv

and d(P1, P2) in the narrow sense.
),(21 PPd

jv and d(P1, P2) satisfy the representation

condition if they do not contradict any intuitive notions
about the similarity of P1 and P2. Our initial understanding
of the similarity of projects will be codified by a set of
axioms. This axiom-based approach is common in many
sciences. For example, mathematicians learned about the
world by defining axioms for a geometry. Then, by
combining axioms and using their results to support or
refute their observations, they expanded their
understanding and the set of rules that governs the
behavior of objects. Below, we present a set of axioms
that represents our intuition about the similarity attribute
between software projects and we check whether or not
the two measures,),(21 PPd

jv and d(P1, P2), satisfy these

axioms.

4.1 Axiom 0 (specific to),(iv PPd

j
)

The similarity of two projects, according to a variable

Vj, is not null if these two projects have a degree of
membership different from 0 to at least one same fuzzy set
of Vj

000 ≠≠∃≠)(Pand (P)/ Aiff)(P,Pd iAAkiv j

k
j

kj
µµ

To illustrate this axiom, we use the following figure:

Figure 3. An explanatory example of Axiom 0

1

P

Fuzzy Sets for Vj

 1
Interval 1 (0,1)

 Interval 2 0
Interval 3

Vj

),(iv PPd
j

§),(iv PPd
j

 must be equal to 1 if Vj(Pi) is in Interval 1;

§),(iv PPd
j

 must decrease strictly from 1 to 0 if Vj(Pi) is in

Interval 2;
§),(iv PPd

j
 must be equal to 0 if Vj(Pi) is in Interval 3.

It is easy to show that similarity according to Vj
measured by max-min or sum-product aggregations
(formulas (1.1) and (1.2)) respects Axiom 0. This is not
the case when it is measured by min-Kleene-Dienes
aggregation (formula (1.3)). Intuitively, P and P4 are not
similar according to Vj (Figure 4). So,),(4PPd

jv must be

equal to 0; but by applying the formula (1.3),),(4PPd
jv is

equal to 0.5!

Figure 4. A counter-example showing that min-Kleene-
Dienes aggregation does not respect Axiom 0

4.2 Axiom 1

We expect any measure m of the similarity of two
projects to be positive:

m(P1, P2)≥0; m(P, P)>0

),(21 PPd
jv , in all cases formulas (1.1), (1.2) and (1.3), is

always higher than or equal to 0. So, it is also the case
that d(P1, P2).),(PPd

jv , when using min-Kleene-Dienes

aggregation, is higher than 0. But when it uses max-min or
sum–product aggregations, it can be equal to 0. This is the
case when)(Pj

kAµ is equal to 0 for all j
kA . This implies

that project P does not have any qualification for the
variable Vj. This case can be avoided if the fuzzy sets
(jA1 , jA2 …, j

kA , …, j
N j

A) form a fuzzy partition for Vj.

This is always the case in practice. Consequently),(PPd
jv

will be considered higher than 0 for all types of
aggregation.

4.3 Axiom 2

The degree of similarity of any project to P must be
lower than the degree of similarity of P to itself:

m(P, Pi)≤ m(P, P)

4.3.1)P(P,d iv j

using max-min aggregation. We show

that, for any project Pi,),(iv PPd
j

≤),(PPd
jv (Appendix 1,

Proof 1).
4.3.2)P(P,d iv j

using sum-product aggregation. We

show by a counter-example that),(iv PPd
j

does not respect

Axiom 2:
§ For Pi,)(

0
iA Pj

k
µ is equal to 1 and for all other j

kA (k≠k0),

)(iA Pj
k

µ is null.

§ For P,)(
0

Pj
kAµ is equal to 0,7,)(

1
Pj

kAµ is equal to 0.3,

and, for all other j
kA (k≠k0 and k≠k1),)(Pj

kAµ is null.

In this case,),(iv PPd
j

 is equal to 0.7, while),(PPd
jv is

equal to 0.58 (0,58=0.72 + 0,32).
4.3.3)P(P,d iv j

 using min-Kleene-Dienes aggregation.

In general,),(iv PPd
j

 does not respect Axiom 2 (Figure 5).

But, if (jA1 , jA2 …, j
kA , …, j

N j
A) satisfy the normal

condition, then min-Kleene-Dienes aggregation respects
Axiom 2 (Appendix 1, Proof 2). The normal condition
involves that (jA1 , jA2 …, j

kA , …, j
N j

A) does not contain

more than two overlapping fuzzy sets.

Figure 5: A counter-example showing that)P(P,d iv j

using

min-Kleene-Dienes aggregation does not respect Axiom 2

4.3.4 Distance d(P, Pi). It is calculated from the distances
),(iv PPd

j
 by using the min, the max or the i-or operators.

Thus, to check whether or not d(P, Pi) respects Axiom 2,
we will use the results of the validation of the distance

),(iv PPd
j

. It is easy to show that d(P, Pi) respects Axiom 2,

some is the operator used, when),(iv PPd
j

 uses max-min

aggregation (Appendix 1, Proof 3). We proceed in the

1

 P P4

Fuzzy Sets for Vj

0.5

 P1 P

Fuzzy Sets for Vj

5.0),(

7.0),(1

=

=

PPd

PPd

j

j

v

v

0.8
0.7

0.5

0.3

same way to validate the distance d(P, Pi) when
),(iv PPd

j
uses sum-product or min- Kleene-dienes

aggregation. Table 2 shows the results obtained.

d(P, Pi)
)P(P,d iv j

 Min Max i-or

Max-min Yes Yes Yes
Sum-product No No No

Kleene-
Dienes

Yes if NC Yes if NC Yes if NC

Table 2: Results of the validation of the distance d(P,Pi) for
Axiom 2

4.4 Axiom 3

We expect any measure m of the similarity of two
projects to be commutative:

m(P1, P2)= m(P2, P1)

),(iv PPd

j
 respects Axiom 3 when it uses max-min or

sum-product aggregation. Consequently, d(P1,P2) is also
some is the operator used. But, this is not the case when

),(21 PPd
jv uses min-Kleene-Dienes aggregation. We can

check that),(1PPd
jv is equal to 0.7 and),(1 PPd

jv is equal to

0.5 (Figure 5).
By looking at the results of this validation, which takes

into account four axioms (Table 3), we can conclude that
),(iv PPd

j
 using max-min aggregation respects all the

axioms (as, consequently, does d(P,Pi)). So, according to
Fenton [8], this is a valid similarity measure in the narrow
sense.),(iv PPd

j
, using sum-product aggregation does not

respect Axiom 2. Although Axiom 2 is interesting, we
will retain sum-product aggregation in order to be
validated in the wide sense. There are three reasons for
this:
§ The difference between),(iv PPd

j
 and),(PPd

jv is not

obvious if the fuzzy sets associated with Vj satisfy the
normal condition. We can show that this difference,
in the case where),(iv PPd

j
 is higher than),(PPd

jv , is

in the interval [-1/8, 0].
§ Sum-product aggregation respects the other axioms,

specifically Axiom 0.
§ As was noted by Zuse [24], validation in the narrow

sense, contrary to validation in the wide sense, is not
yet widely accepted and mostly neglected in practice.

),(iv PPd
j

, using min-Kleene-Dienes aggregation does

not respect Axiom 0 and Axiom 3. Although it respects
Axiom 1 and Axiom 2, we rejected it because of Axiom
0. For us, Axiom 0 represents the definition of the

similarity of two software projects according to a fuzzy
variable. Consequently, any similarity measure must
satisfy this axiom.

)P(P,d iv j

/d(P, Pi)

max-min sum-product Kleene-Dienes
Axion0 Yes/ Yes/ No/
Axiom1 Yes/Yes Yes/Yes Yes/Yes
Axiom2 Yes/Yes No/No Yes /Yes if NC
Axiom3 Yes/Yes Yes/Yes No/No

Table 3: Results of the validation of the distance
)P(P,d iv j

 and d(P, Pi)

5. Towards an empirical validation of the
proposed similarity measures

After validation in the narrow sense of the similarity

measures (the measures are measuring what they claim to
measure), we present, in this section, the first results of an
incomplete empirical validation (validation in the wide
sense) of our measures. According to Fenton [8], a
measure is valid in the wide sense if it is both valid in the
narrow sense and a component of a valid prediction
system. The prediction system that we consider here is the
estimation of software development effort by analogy. It
is based on three steps. First, each project must be
described by a set of linguistic variables which must be
relevant, independent, operational and comprehensive.
Second, we must determine the similarity between the
candidate project and each project in the historical
database by using the measures that are declared valid in
the narrow sense. Third, we use the known effort values
from the historical projects to derive an estimate for the
new project. Below, we present only the results of the two
first steps. The intermediate COCOMO’81 database was
chosen as the basis for this empirical validation.

The original intermediate COCOMO’81 database
contains 63 projects. Each project is described by 17
attributes: the software size is measured in KDSI (Kilo
Delivered Source Instructions), the project mode is
defined as either organic, semi-detached or embedded,
and the remaining 15 cost drivers are generally related to
the software environment. Each cost driver is measured
using a rating scale of six linguistic values: ‘very low’,
‘low’, ‘nominal’, ‘high’, ‘very high’ and ‘extra high’. The
assignment of linguistic values to the cost drivers (or
project attributes) uses conventional quantification where
the values are intervals (see [3], pp. 119). For example,
the DATA cost driver is measured by the following ratio:

DSIin size Program

charactersor bytesin size Database
=

P
D

Then, a linguistic value is assigned to the DATA,
according to the following table:

Low Nominal High Very High

D/P<10 10≤D/P<100 100≤D/P<1000 D/P≥1000
Table 4. DATA cost driver ratings.

To use the proposed similarity measures, and because

of the advantages of representation by fuzzy sets rather
than classical intervals (section 2), the 15 cost drivers
must be fuzzified. For example, in the case of the DATA
cost driver, we have defined a fuzzy set for each linguistic
value with a trapezoid-shaped membership function µ
(Figure 6). We note that the fuzzy sets associated with the
DATA cost driver satisfy the normal condition. For the
other cost drivers of the intermediate COCOMO’81
database, we proceed in the same way as for DATA. Of
the 15 cost drivers, the four factors RELY, CPLX, MODP
and TOOL are not studied because their relative

descriptions are insufficient. So, we consider the 12 cost
drivers that we have fuzzified [6].

Because the original COCOMO’81 database contains
only the effort multipliers, our evaluation of the
similarity will be made on an artificial dataset deduced
from the original COCOMO’81 database. This artificial
dataset contains 63 projects with the real values that are
necessary to determine)(Pj

kAµ of the formulas (1.1) and

(1.2). For example, the DATA cost driver for the fifth
project in the COCOMO’81 database is declared ‘low’;
thus, the randomly generated value for the fifth project in
the artificial dataset is between 0 and 10. For
simplification, we calculate the similarity of the first five
projects (P1, P2, P3, P4, P5) of the COCOMO’81 database.
Because our measures are computationally intensive, we
have developed a software prototype to automate the
calculations. This prototype uses Microsoft Excel to store
data and Microsoft Visual Basic to implement the various
processing steps. The tables 5 and 6 shows the results
obtained for the similarity measured by max-min and sum-
product aggregation (formulas (1.1) and (1.2)).

Figure 6. Membership functions of fuzzy sets defined for the DATA cost driver

 Max-min aggregation
)P,(Pd nmv j

 d(Pm, Pn)
 Min Max i-or

 P1 P2 P3 P4 P5 P1 P2 P3 P4 P5 P1 P2 P3 P4 P5
P1 .521 0 0 0 0 1 1 1 1 .849 1 0 0 0 0
P2 0 .742 0 0 0 1 1 1 1 1 0 1 0 0 0
P3 0 0 .659 0 0 1 1 1 1 1 0 0 1 0 0
P4 0 0 0 .849 0 1 1 1 1 1 0 0 0 1 0
P5 0 0 0 0 .897 .849 1 1 1 1 0 0 0 0 1

Table 5. Results obtained for d(Pm, Pn) when)P,(Pd nmv j
 uses max-min aggregation.

 Sum-product aggregation
)P,(Pd nmv j

5 10 55 100 550 1000

1
Low Nominal High Very High

D/P

 d(Pm, Pn)
 Min Max i-or

 P1 P2 P3 P4 P5 P1 P2 P3 P4 P5 P1 P2 P3 P4 P5
P1 .501 0 0 0 0 1 1 1 1 .807 1 0 0 0 0
P2 0 .610 0 0 0 1 1 1 1 1 0 1 0 0 0
P3 0 0 .550 0 0 1 1 1 1 1 0 0 1 0 0
P4 0 0 0 .744 0 1 1 1 1 1 0 0 0 1 0
P5 0 0 0 0 .815 .807 1 1 1 1 0 0 0 0 1

Table 6. Results obtained for d(Pm, Pn) when)P,(Pd nmv j
 uses sum-product aggregation.

d(Pm, Pn) combines the various),(nmv PPd

j
 in three

ways:
§ In the first, the ‘and’ logical operation is used. It is

implemented by the min operator; so, the distance
between two projects, d(Pm, Pn), is null if only one

),(nmv PPd
j

 is the same; it is equal to 1 if all),(nmv PPd
j

are the same. From the results obtained (Min columns
in Tables 5 and 6), we note that d(Pm, Pn) is null for the
two types of aggregation if Pm is other than Pn. This can
be explained by the fact that often in the COCOMO’81
database two projects have at least one variable for
which the associated linguistic values are different. The
results obtained for d(Pm, Pm) are different for the two
types of aggregation. We can show that the absolute
value of this difference is lower than 1/8 if all the
variables describing software projects satisfy the
normal condition; this is our case with the
COCOMO’81 database (Appendix 1, Proof 4). An
interesting observation is that d(Pm, Pm) is not equal to
1; but, with the normal condition, it is always higher
than 1/2.

§ In the second, the ‘or’ logical operation is used. It is
implemented by the max operator; so, d(Pm, Pn) is null
if all),(nmv PPd

j
 are the same; it is equal to 1 if only one

),(nmv PPd
j

 is the same. Contrary to the case of the min

operator, d(Pm, Pn) is not null if Pm is other than Pn. This
implies that often in the COCOMO’81 database two
projects have at least one variable for which the
associated linguistic values are the same. In general,
d(Pm, Pn) for the two types of aggregation should be
different (as in the case of d(P1,P5)), and, as in the case
of the min operator, if the normal condition is satisfied,
the absolute value of this difference is lower than 1/8.
We note that d(Pm, Pm) is equal to 1.

§ In the third, between the ‘and’ and the ‘or’ logical
operations by using the i-or operator; d(Pm, Pn) is null if
only one),(nmv PPd

j
is the same; it is equal to 1 if only

one),(nmv PPd
j

 is the same and all other),(nmv PPd
j

 are

different from 0. From the results obtained (i-or
columns in Tables 5 and 6), we note that d(Pm, Pn) is
null for the two types of aggregation if Pm is other than
Pn. This is true for the same reason that it is true in the

case of min operator. In general, d(Pm, Pn) for the two
types of aggregation should be different if all),(nmv PPd

j

are other than 0 and 1. This case is not represented in
the COCOMO’81 database. If the normal condition is
verified, this difference is not obvious because that
between),(nmv PPd

j
 using max-min aggregation and

),(nmv PPd
j

 using sum-product aggregation is always

lower than 1/8 and the i-or function is continuous.
Contrary to the case of the min operator, d(Pm, Pm) is
equal to 1 because for all the variables),(mmv PPd

j
 are

different from 0, and it is likely that according to at
least one variable),(mmv PPd

j
is equal to 1.

From these results, we can conclude that there is no
significant difference between max-min and sum-product
aggregation if the normal condition is satisfied; while the
differences are obvious when evaluating d(Pm, Pn) by
using the min, max or i-or operators. In the following
section, we discuss the meanings and the uses of these
three operators.

6. Discussion

In evaluating the overall distance d(P, Pi), we have
used three fuzzy set operators to combine the individual
distances,),(iv PPd

j
. The use of the min (or max) operator

reflects a combining referred to as a universal ‘all’
linguistic quantifier by Zadeh [21] (or existential, ‘there
exists’). As noted by Yager when studying multi-criteria
decision problems, these two combinations may not
always be the appropriate relationships among the criteria.
For example, a decision-maker may be satisfied if ‘most’
of the criteria are satisfied; other linguistic quantifiers can
be used, such as ‘many’, ‘at least half’, ‘some’ and ‘few’.
So, Yager suggested a softer combining by the use of
what he called quantifier guided aggregations [16,18].
These kinds of aggregation are implemented by the
Ordered Weight Averaging (OWA) operators [17].
Recently, Yager has applied this to implementing a soft
aggregation for fuzzy constraint satisfaction in the E-
commerce domain [19]. For our case, we are now looking

to use OWA operators to calculate the overall distance
d(P,Pi). The reasons for this are as follows:
§ The min and max operators are not always a good

combination of the individual distances. Let us suppose
that we have two software projects P1 and P2 such that

),(21
0

PPd
jv =0,),(21 PPd

jv =1 for j ≠ j0 (or),(21
0

PPd
jv =1,

),(21 PPd
jv =0 for j ≠ j0) and Vj0 is the least significant of

all the factors describing projects P1 and P2. When we
use a min (or max) operator, the overall distance d(P1,
P2) is null (or equal to 1), while a suitable combination
would seem to give a value in the vicinity of 1 (or of 0).

§ The min and max operators are special cases of OWA
operators.

§ The OWA operators can be used in environments in
which the individual distances to be aggregated have an
importance associated with them. This is often the case
for software projects where the importance of some
factors is greater than that of others. Consequently, the
contributions of the various individual distances into
the calculation of the overall distance should not be
equal.

§ The OWA operators can implement other linguistic
quantifiers used in practice, such as ‘most’, ‘few’ and
‘many’.

§ The i-or operator has been used because it is a hybrid
between a T-norm and an S-norm. This is also the case
for an OWA operator. Although it is claimed that the i-
or has a natural interpretation and can be used in many
situations (evaluation of scientific papers, quality of a
game developed by two tennis players in a doubles
tennis match, for example), the i-or operator cannot be
represented by a linguistic quantifier; so, it is not an
OWA operator. Indeed, for two values a and b in the
unit interval, the following system does not have a
solution:





=+
∈

+=
+−−

1

]1,0[,

)1)(1(

21

21

21

ww

ww

bwaw
abba

ab

Clearly, there is a need for further investigation into
the acceptance or rejection of the use of the i-or operator
in the evaluation of the overall distance d(P, Pi) from the
various individual distances),(iv PPd

j
.

In a further empirical validation, we used the following
formal procedure rather than the formulas (2) to evaluate
the overall distance d(P, Pi) in a given environment. First,
we had to determine the appropriate linguistic quantifier
to be used in such an environment. Second, this linguistic
quantifier is used to generate an OWA weighting vector
W (w1, w2, .., wM) of dimension M (M is the number of
variables describing the software projects) such that the

wis are in the unit interval and the sum of wis is equal to
1. Third, we calculated the overall distance d(P, Pi) by:

(3)),(),(
1

iv

M

j
ji PPdwPPd

j∑
=

=

where),(iv PPd
j

 is the Jth largest individual distance.

We can then check that the axiomatic validation of d(P,
Pi) using a softer combining of),(iv PPd

j
 (formula (3))

gives the same results as those in Table 3.

7. Conclusion & future work

In this paper, we have validated a set of new similarity
measures based on fuzzy logic. They can be used when
the software project attributes are described with
linguistic variables. Our measures are also applicable
when the variables are numeric while relocating numeric
values into a singleton fuzzy set (no uncertainty) or into a
fuzzy number (uncertainty). Our measures operate on two
levels. The similarity measures according to only one
variable),(iv PPd

j
 and those according to all variables,

d(P, Pi). We have adopted Fenton’s definitions to validate
these two measures. First, the measures are validated in
the narrow sense by using four axioms. These axioms
codify our initial understanding of the similarity of
software projects and can also be used in the case of the
similarity of entities other than software projects. From
this axiomatic validation, we have retained the individual
distance),(iv PPd

j
 using max-min or sum-product

aggregation and rejected the using of min-Kleene-Dienes
aggregation. The overall distance combines the individual
distances by means of three operators. So, its axiomatic
validation depends on the axiomatic validation of

),(iv PPd
j

. Second, we have started the validation in the

wide sense of the retained measures that are declared
valid in the narrow sense. We have chosen estimation by
analogy of software development effort and the
COCOMO’81 database as the basis for this validation.
The results obtained from the application of the first two
steps of estimation effort by analogy have shown that
there is no significant difference between max-min and
sum-product aggregation; while the use of the three
operators (min, max and i-or) in the evaluation of d(P, Pi)
from the individual distances),(iv PPd

j
 gives significant

differences and cannot be always a good choice.
Consequently, we have proposed other alternatives for
combining the individual distances. These alternatives,
such as ‘most’, ‘few’ and ‘many’, are implemented by the
OWA operators. The most significant advantage of this is
that for each environment the appropriate linguistic
quantifier (alternative) can be chosen for use in the
evaluation of the overall distance. To complete the
empirical validation of the retained measures, we must

validate the estimation of effort by analogy approach.
This validation will consist in comparing the accuracy of
the estimated effort values with actual effort values.

8. References

[1] J.M. Benitez, J.L. Castro, and I. Requena, “Are Artificial
Neural Networks Black Boxes?”, IEEE Transactions on Neural
Networks, Vol. 8, no. 5, September, 1997, pp. 1156-1164
[2] B.W. Boehm, Software Engineering Economics, Prentice-
Hall, 1981.
[3] B.W. Boehm, and al., “Cost Models for Future Software Life
Cycle Processes: COCOMO 2.0”, Annals of Software
Engineering on Software Process and Product Measurement,
Amsterdam, 1995.
[4] D.S. Chulani, “Incorporating Bayesian Analysis to Improve
the Accuracy of COCOMO II and Its Quality Model Extension”,
Ph.D. Qualifying Exam Report, USC, February, 1998.
[5] N. Fenton, and S.L. Pfleeger, Software metrics: A Rigorous
and Practical Approach, International Computer, Thomson
Press, 1997.
[6] A. Idri, L. Kjiri, and A. Abran, “COCOMO Cost Model
Using Fuzzy Logic”, 7th Intenational Conference on Fuzzy
Theory & Technology, Atlantic City, NJ, February, 2000. pp.
219-223
[7] A. Idri, and A. Abran, “Towards A Fuzzy Logic Based
Measures For Software Project Similarity”, Sixth Maghrebian
Conference on Computer Sciences, Fes, Morroco, November,
2000. pp. 9-18
[8] IFPUG, “Function Point Counting Practices Manual”,
Release 4.0, International Function Point Users Group –
IFPUG, Westerville, Ohio, 1994.
[9] J.P. Jacquet, and A. Abran, “Metrics Validation Proposals: A
Structured Analysis”, 8th International Workshop on Software
Measurement, Magdeburg, Germany, September 1998.
[10] R. Jager, “Fuzzy Logic in Control”, Ph.D. Thesis, Technic
University Delft, Holland, 1995.
[11] B. Kitchenham, S.L. Pfleeger, and N. Fenton, “Towards a
Framework for Software Measurement Validation”, IEEE Trans.
on Software Engineering, Vol. 21, December, 1995.
[12] J.L. Kolodner, Case-Based Reasoning, Morgan Kaufmann,
1993
[13] M. Shepperd, C. Schofield, and B. Kitchenham, “Effort
Estimation using Analogy”, ICSE-18, Berlin, 1996, pp. 170-178
[14] M. Shepperd, and C. Schofield, “Estimating Software
Project Effort Using Analogies”, IEEE Trans. on Software
Engineering, Vol. 23, no. 12, November, 1997, pp. 736-743
[15] S. Vicinanza, and M.J. Prietolla, “Case Based Reasoning in
Software Effort Estimation”, Proceedings 11th Int. Conf. on
Information Systems, 1990
[16] R.R. Yager, “On ordred weighted averaging aggregation
operators in multi-criteria decision making”, IEEE Trans. on
Systems, Man and Cybernetics, Vol. 18, 1988, pp. 183-190
[17] R.R. Yager, and J. Kacprzyk, The Ordered Weighted
Averaging Operators: Theory and Applications” Kluwer:
Norwell, MA, 1997.
[18] R.R. Yager, “Quantifier Guided Aggregation using OWA
Operators”, International Journal of Intelligent Systems, 11,
1996, pp.49-73

[19] R.R. Yager, “Fuzzy Constraint Satisfaction for E-commerce
Agents”, 7th International Conference on Fuzzy Theory &
Technology, Atlantic City, NJ, February, 2000. pp. 111-114
[20] L.A. Zadeh, “Fuzzy Set”, Information and Control, Vol. 8,
1965, pp. 338-353
[21] L.A. Zadeh, “A computational approach to fuzzy
quantifiers in natural languages”, Computing and Mathematics
with Applications, 9, 1983, pp. 149-184
[22] L.A. Zadeh, “Fuzzy Logic, Neural Networks, and Soft
Computing”, Comm. ACM, Vol. 37, no. 3, March, 1994, pp.77-
84
[23] H. Zuse, “Foundations of Validation, Prediction and
Software Measures”, Proceedings of the AOSW, Portland, April,
1994
[24] H. Zuse, “Validation of Measures and Prediction Models”,
9th International Workshop on Software Measurement, Lac-
Supérieur, Canada, September, 1999.

Appendix 1

Proof 1:)P(P,d iv j

 using max-min aggregation

),(),(

))(),(min(max))(),(min(max

))(),(min()())(),(min(

PPdPPd

PPPP

PPPPPk

jj

j
k

j
k

j
k

j
k

j
k

j
k

j
k

j
k

j
k

viv

AAk
iAAk

AAAiAA

≤

≤

=≤∀

µµµµ

µµµµµ

Proof 2:)P(P,d iv j

 using min-Kleene-Dienes

aggregation

),(),(

))(),(1max()(),(1max(

)()(1sin

)(1)()(1)(1

)()(

10)()()(

),())(),(1max(),(

))(),(1max(),(

))(),(1max())(),(1max(

)()(

)),(),(1max()),(),(1min(max(),(

))(),(1max())(),(1max(),(

))(),(1max())(),(1max(

1)()(

))(),(1max()),(),(1min(max(),(

1)()(,0)(,0)(/!

1)()(,0)(,0)(/!

11

1

1

11

11

11

1

11

11

11

PPdPPd

PPPP

PPce

PPPP

PPhkif

hkouhkPPPif

PPdPPPPd

PPPPdor

PPPP

PPif

PPPPPPd

PPPPPPd

PPPP

PPOr

PPPPPPd

PPPPh

PPPPk

jj

j
k

j
k

j
k

j
k

j
k

j
k

j
k

j
k

j
k

j
k

j
k

j
k

j
k

j
k

j
k

j
j

k
j

kj

j
k

j
kj

j
k

j
k

j
k

j
k

j
k

j
k

j
k

j
k

j
k

j
kj

j
k

j
k

j
k

j
kj

j
k

j
k

j
k

j
k

j
k

j
k

j
k

j
k

j
k

j
kj

j
h

j
h

j
h

j
h

j
k

j
k

j
k

j
k

viv

AAiAA

AA

AiAAiA

AiA

iAAiA

vAAiv

iAAiv

AAiAA

AiA

iAAiAAiv

AAAAv

AAAA

AA

AAAAv

iAiAiAiA

AAAA

≤⇒

−≤−

=−

−≤⇒−≤−⇒

≥=

+==⇒≠⇒>

=−≤⇒

−≤

−≤−⇒

≤

−−=

−=−=⇒

−=−⇒

=+

−−=

=+≠≠∃

=+≠≠∃

++

+

+

++

++

++

+

++

++

++

µµµµ

µµ

µµµµ

µµ

µµµ

µµ

µµ

µµµµ

µµ

µµµµ

µµµµ

µµµµ

µµ

µµµµ

µµµµ

µµµµ

),(),(

))(),(1max()(1))(),(1max(

0)(1

11111

1

PPdPPd

PPPPP

Phkif

jj

j
k

j
k

j
k

j
k

j
k

j
k

viv

AAAiAA

iA

≤⇒

−≤−=−

=⇒+=

+++++

+

µµµµµ

µ

Proof 3: distance d(P, Pi) with)P(P,d iv j
 using max-

min aggregation

),(),()),((max)),((max

),(),(

),(),()),((min)),((min

),(),(

),(),(1

),(

)),(1(

1

),(

)),(1(

)),(1()),(1(

),(),(

),(),(

1

1

1

1

1 1

1 1

PPdPPdPPdPPd

PPdPPd

PPdPPdPPdPPd

PPdPPd

PPdPPd

PPd

PPd

PPd

PPd

PPdPPd

PPdPPd

PPdPPd

iv
j

iv
j

viv

iv
j

iv
j

viv

iM

j
v

M

j
v

Mj

j
iv

Mj

j
iv

M

j

M

j
viv

M

j

M

j
viv

viv

jj

jj

jj

jj

j

j

j

j

jj

jj

jj

≤⇒≤⇒

≤

≤⇒≤⇒

≤

≤⇒+

−

≥+

−

⇒

−≥−⇒

≤⇒

≤

∏

∏

∏

∏

∏ ∏

∏ ∏

=

=
=

=

=

=

= =

= =

Proof 4: Difference between d(Pm, Pn) using max-min
aggregation and d(Pm, Pn) using sum-product
aggregation

We want to prove that the absolute value of the
difference between d(Pm, Pn) using formula (2.1) with

),(nmv PPd
j

 which uses max-min aggregation and d(Pm, Pn)

using the formula (2.1) with),(nmv PPd
j

 which uses sum-

product aggregation is lower than 1/8. In the case of d(Pm,
Pn) using formula (2.2), the proof is the same. We suppose
that all variables satisfy the normal condition.

First, we prove that the absolute value of the difference
between),(nmv PPd

j
 using max-min aggregation and

),(nmv PPd
j

 using sum-product aggregation is lower than

1/8.









>
>
=−

=

<−−=−−

====







=+

=+
∃

++

+

+

x wif 1)-x(2w

w xif 1)-w(2x

w xif)12(

),max()),min(),,max(min(

)()(),(),(

: uses esimplify w to

1)()(

1)()(
/

11

1

1

xx

zxifwyxzwxywxzwyzx

PwandPzPyPx

PP

PP
k

nAnAmAmA

nAnA

mAmA

j
k

j
k

j
k

j
k

j
k

j
k

j
k

j
k

µµµµ

µµ

µµ

By studying these three functions, we can note that
each of them has a minimum equal to –1/8 or a maximum
equal to 1/8.

Second, d(Pm, Pn) combines),(nmv PPd
j

 by the min

operator. d(Pm, Pn) with),(nmv PPd
j

 using max-min

aggregation is denoted by d(Pm, Pn)max-min and d(Pm, Pn)
with),(nmv PPd

j
 using sum-product aggregation is denoted

by d(Pm, Pn)sum-product:

8

1
),(),(

),(),(

),(),(

),(),(

8

1
)),((min)),((min

),(),(/

)),((min),(),(/

00

00

0000

00

0

0

00

0

minmax0

≤−⇒

≥

±≤±⇒

≤⇒≠

≤±=

==∃

==∃

−

−

nm
MM
vnm

SP
v

nm
MM
vnm

MM
v

inm
MM
vjnm

MM
v

nm
SP
vnm

SP
v

jjnm
MM
v

j
nm

SP
v

j

nm
SP
vproductsumnm

nm
MM
v

j
nm

MM
vnm

PPdPPd

PPdPPdwhile

PPdPPd

PPdPPdjiif

PPdPPd

PPdPPdj

PPdPPdPPdi

ij

ij

ij

ij

jj

j

ji

εε

εε

