

Evaluating Software Project Similarity by using Linguistic Quantifiers
Guided Aggregations

Ali Idri and Alain Abran

Software Engineering Management Research Laboratory
Department of Computer Science

UQÀM, P.O Box. 8888,. Centre-Ville Postal Station
Montréal, Québec, Canada, H3C 3P8

idri@ensias.um5souissi.ac.ma
abran.alain@uqam.ca

Abstract
Software projects are often described by linguistic
variables such as the experience of programmers and
the complexity of modules. Because the existing
software projects similarity measures take into account
only numerical data, we have proposed a set of
measures based on fuzzy logic to evaluate the
similarity between two software projects when they are
described by linguistic values. In this work, we
improve the proposed measures by using linguistic
quantifiers such as ‘most’, ‘many’ and ‘few’ in the
computing process for the various measures.

1. Introduction
The software project similarity attribute has not yet
been the subject of in-depth study, even though it is
often used when estimating software development
effort by analogy. The similarity of two software
projects, which are described and characterized by a
set of attributes, is often evaluated by measuring the
distance between these two projects through their sets
of attributes. Among the inadequacies identified
(Shepperd et al.) in most of the proposed measures for
the software project similarity, the most critical is that
they cannot be used when the software projects are
described by linguistic values such as ‘low’ and ‘high’.
To overcome this limitation, we have proposed a set of
new measures based on fuzzy logic for software
project similarity [4]. These measures evaluate the
overall similarity of two projects P1 and P2, d(P1, P2),
by combining the individual similarities of P1 and P2

associated to the various linguistic variables (Vj)
describing P1 and P2,),(21 PPd

jv . After an axiomatic

validation of some proposed candidate measures for
the individual distances),(21 PPd

jv , we have retained

two measures [5]:














−

×

−
= ∑

)(1.2

)()(

)1.1(minmax

))(),(min(max

),(
21

21

21

naggregatioproductsum

PP

naggregatio

PP

PPd

k
AA

AAk

v
j

k
j

k

j
k

j
k

j µµ

µµ

where Vj’s are the linguistic variables describing the

projects P1 and P2,
j

kA are the fuzzy sets associated to

Vj, and j
kA

µ are the membership functions representing

the fuzzy sets j
kA .

To evaluate the overall distance of P1 and P2, the
individual distances),(21 PPd

jv are aggregated by

using three fuzzy sets operators (min, max and the i-
or):
















+−

==∃

=−














−

=

∏ ∏

∏

= =

=
otherwise

PPdPPd

PPd

PPdandPPdhk

PPdori

PPdori

PPd

PPd

PPd

M

j

M

j
vv

M

j
v

vv

v
j

v
j

v
j

v
j

jj

j

hk

j

j

j

j

1 1
2121

1
21

2121

21

21

21

21

21

),()),(1(

),(

1),(0),(/,0

)),((

where

(2.3))),((

(2.2))),((max

2.1) ()),((min

),(

In this work, we prove that the use of these three
operators cannot be always a good choice in many
organizations. Consequently, we suggest other
alternatives based on linguistic quantifiers for
combining the individual distances),(21 PPd

jv .

This paper is organized as follows: In the first section,
we briefly outline the principles of linguistic
quantifiers. In the second section, we discuss why
linguistic quantifiers guided aggregations can be used
in the evaluation of software project similarity. In the

third section, we present the formal procedure that will
be used in the evaluation of the similarity. In the
fourth section, we illustrate, by an example, the
computing process of the similarity using linguistic
quantifiers. This illustration is based on COCOMO'81
software projects database. A conclusion and an
overview of future work conclude this paper.

2. Linguistic Quantifiers
Human discourse uses a large number of linguistic
quantifiers. In [11], Zadeh distinguish between two
classes of linguistic quantifiers: absolute and
proportional . Absolute quantifiers such as ‘about 10’
and ‘about 20’ can be represented as a fuzzy set Q of
the non-negative reals. In this work, our concern is
with proportional quantifiers.

A proportional linguistic quantifier indicates a
proportional quantity such as ‘most’, ‘many’ and
‘few’. Zadeh suggested that proportional quantifier can
be represented as fuzzy set Q of the unit interval I. In
this representation for any r ∈I, Q(r) is the degree to
which the proportion r satisfies the concept represented
by the term Q. Furthermore, Yager distinguished three
categories of proportional quantifiers [8]:
(a) A Regular Increasing Monotone (RIM) quantifiers

such as ‘many’, ‘most’ and ‘at least α’ are
represented as fuzzy subset Q satisfying the
followings conditions:
1- Q(0)=0,
2- Q(1)=1, and
3- Q(x)≥Q(y) if x>y

(b) A Regular Decreasing Monotone (RDM)
Quantifiers such as ‘few’ and ‘at most α’ are
represented as fuzzy subset Q satisfying the
followings conditions:
1. Q(0)=1,
2. Q(1)=0, and
3. Q(x)≤Q(y) if x>y

(c) A Regular UniModal quantifiers such as ‘about α’
are represented as fuzzy subset Q satisfying the
followings conditions:.
1- Q(0)=0,
2- Q(1)=1, and
3- There exists two value a and b ∈ I, where

a<b, such that:
i. For y <a, Q(x)≤Q(y) if x<y

ii. For y ∈[a,b], Q(y)=1
iii. For y>b, Q(x)≥Q(y) if x<y

Two interesting relationships exist between these three
categories of proportional quantifier:
§ If Q is a RIM quantifier then its antonym is a RDM
quantifier and a vice versa: Examples of these antonym
pairs are ‘few’ and ‘many’, and ‘at least α’ and ‘at
most α’.
§ Any RUM quantifier can be expressed as the
intersection of a RIM and RDM quantifier.

3. Why linguistic quantifier guided aggregation

can be used in the evaluation of software project
similarity?

In evaluating the overall distance d(P1, P2), we have
used three fuzzy set operators to combine the
individual distances,),(21 PPd

jv . The use of the min

(or max) operator reflects a combining referred to as a
universal ‘all’ linguistic quantifier by Zadeh [11] (or
existential, ‘there exists’). As noted by Yager when
studying multi-criteria decision problems, these types
of aggregation cannot be always the appropriate
relationship among the criteria. So, Yager suggested a
softer combining by the use of what he called
quantifier guided aggregation [7, 8]. These kinds of
aggregation can be implemented by the Ordered
Weight Averaging (OWA) operators [9]. Recently,
Yager has applied this to implementing a soft
aggregation for fuzzy constraint satisfaction in the E-
commerce domain [10]. For our case, we look at the
aggregation of the individual similarities,),(21 PPd

jv ,

by using linguistic quantifiers such as ‘most’, ‘many’
and ‘few’. The reasons for this are as follows:

§ Each organization can choose its appropriate
linguistic quantifier to guide the aggregation of the
individual similarities),(21 PPd

jv ;

• The min and max operators are not always a good
combination of the individual distances. Let us
suppose that we have two software projects P1 and P2
such that),(21

0
PPd

jv =0,),(21 PPd
jv =1 for j ≠ j0 (or

),(21
0

PPd
jv =1,),(21 PPd

jv =0 for j ≠ j0) and Vj0 is the

least significant of all the factors describing projects
P1 and P2. When we use a min (or max) operator, the
overall distance d(P1, P2) is null (or equal to 1), while a
suitable combination would seem to give a value in the
vicinity of 1 (or of 0);

• The min (or max) operator reflects a combining
referred to as a universal ‘all’ (or existential, ‘there
exists’) linguistic quantifier that is only a special case;

• Linguistic quantifiers can be used in environments
in which the individual distances to be aggregated have
an importance associated with them. This is often the
case for software projects where the importance of
some factors is greater than that of others.
Consequently, the contributions of the various
individual distances into the calculation of the overall
distance should not be equal;

• The i-or operator has been used because it is a
hybrid between a T-norm and an S-norm [1]. This is
also the case for linguistic quantifiers implemented by
OWA operators. Although it is claimed that the i-or
has a natural interpretation and can be used in many
situations (evaluation of scientific papers, quality of a
game developed by two tennis players in a doubles
tennis match, for example), the i-or operator cannot be
represented by an OWA operator. Indeed, for two
values a and b in the unit interval, the following system
does not have a solution:





=+

∈

+=
+−−

1

]1,0[,

)1)(1(

21

21

21

ww

ww

bwaw
abba

ab

Furthermore in our case, the formula given in [1] can
generate undefined values when some individual
distances are equal to 1 and others are equal to 0. So,
we have adopted a modification in order to avoid this;
however, the formula (2.3) remains inappropriate in
many case. Let us suppose that we have for one Vj0
(the least significant of all factors), the corresponding
individual distance is equal to 1 and for all others Vj,
the corresponding individual distances are in the
vicinity of 0. When applying the formula (2.3), the
overall distance d(P1,P2) is equal to 1, while a suitable
combination seems to give other than 1. Clearly, there
is a need for further investigation into the acceptance
or rejection of the use of the i-or operator in the
evaluation of the overall distance d(P1, P2) from the
various individual distances.

4. How linguistic quantifiers guided aggregations

can be used in the evaluation of software project
similarity?

In the process of linguistic quantifiers guided
aggregations, we must provide the appropriate
linguistic quantifier Q to be used in a given

environment. Q indicates the proportion of individual
distances that we feel is necessary for a good
evaluation of the overall distance. The following
formal procedure is used to evaluate the overall
distance d(P1, P2) in a given environment. First, the
linguistic quantifier, Q, is used to generate an OWA
weighting vector W (w1, w2, .., wM) of dimension M
(M is the number of variables describing the software
projects) such that the wis are in the unit interval and
the sum of wis is equal to 1. Second, we calculated the
overall distance d(P1, P2) by:

(3)),(),(21
1

21 PPdwPPd
jv

M

j
j∑

=
=

where),(21 PPd
jv is the jth largest individual distance.

The procedure used for generating the weights from
the linguistic quantifier Q depends upon the type of Q.
In our case, Q must be a RIM (Regular Increasing
Monotone) quantifier. The use of a RIM quantifier to
guide the evaluation of the overall distance essentially
implies that more individual distances are satisfied the
higher the similarity of two software projects it is. In
the case of a RIM quantifier Q, the weights are
generated as follows [8]:

)()(),(

1

11
21 T

u
Q

T

u
QPPw

j

k
k

j

k
k

j

∑∑
−

== −=

where uk is the importance weight associated to the kth
variable describing software project, and T is the total
sum of all importance weights uk
We note that the weights wj used in the formula (3) will
generally be different for each (P1, P2). This is due to
the fact that the ordering of the individual distances

),(21 PPd
jv will be different and consequently lead to

different uk

5. Illustration
In this section, we illustrate, by an example, the
computing process of the overall distance using
different linguistic quantifiers and we compare the
obtained results with those obtained in the case of 'all'
and 'there exists' quantifiers. The original intermediate
COCOMO’81 database was chosen as the basis for this
example [2]. It contains 63 software projects. Each
project is described by 17 attributes: the software size
measured in KDSI (Kilo Delivered Source
Instructions), the project mode is defined as either
‘organic’, ‘semi-detached’ or ‘embedded’, and the
remaining 15 cost drivers are generally related to the
software environment. Each cost driver is measured

using a rating scale of six linguistic values: ‘very low’,
‘low’, ‘nominal’, ‘high’, ‘very high’ and ‘extra high’.
The assignment of linguistic values to the cost drivers
uses conventional quantization where the values are
classical intervals (see [2], pp. 119). To use the
proposed measures and because the advantages of
representation by fuzzy sets rather than classical
intervals, the 15 cost drivers must be fuzzified. Among
these, we have retained 12 attributes that we had
already fuzzified (see the case of the DATA cost driver
in the appendices); the other attributes are not studied
because these relative descriptions are insufficient [3].
The goal of this illustration is to evaluate the similarity
between the COCOMO’81 software projects assuming
that are described by these 12 cost drivers.

For simplification, we discuss only the case of the
similarity of the first project P1 and the five first
projects (P1, P2, P3, P4, P5) of the COCOMO’81
database. Because our measures are computationally

intensive, we have developed a software prototype to
automate the calculations. This prototype uses
Microsoft Access to store data and Microsoft Visual
Basic to implement the various processing steps. The
prototype allows us to try various RIM linguistic
quantifiers Q to the COCOMO’81 historical data;
normally, each environment must define its appropriate
quantifier by studying its features and its requirements.
In this illustration, we use RIM quantifiers defined by :

0)(>= ααrrQ

To calculate the weights wj’s, we must determine the
importance weights uk’s associated to the 12 variables
describing COCOMO’81 software projects (Table 1).
For this, we use the productivity ratio which is the
project’s productivity ratio (expressed in Delivered
Source Instructions by Man-Months) for the best
possible variable rating to its worst possible variable
rating, assuming that the ratings for all other variables
remain constant (Figure 1).

Figure 1. Comparison of the productivity ratios for the 12 variables describing COCOMO’81 software
projects.

Cost driver (Vj) Weight Uj Cost driver (Vj) Weight
Uj

ACAP 2,05 VIRT-MIN 1,49
PCAP 2,30 VEXP 1,34
TIME 1,66 TURN 1,32
AEXP 1,57 DATA 1,23
STOR 1,56 LEXP 1,20
VIRT-MAJ 1,49 SCED 1,11

Table 1 : The weights uj’s associated to the 12 COCOMO’81 cost drivers

 Max-min aggregation

)P,(Pd n1jv

 d(P1, Pn)

0
0,5

1
1,5

2
2,5

A
C

A
P

P
C

A
P

T
IM

E

A
E

X
P

S
T

O
R

V
IR

T
-M

IN

V
IR

T
-M

A
J

V
E

X
P

T
U

R
N

D
A

T
A

LE
X

P

S
C

E
D

 P1 P2 P3 P4 P5
Max 1 1 1 1 0,84096

1/100 0.99824 0,98529 0,97938 0,99095 0,82482
1/30 0,99416 0,95189 0,93298 0,97018 0,78841
1/20 0,99128 0,92879 0,90124 0,95564 0,76343
1/15 0,98842 0,90629 0,87061 0,94134 0,73927
1/10 0,98275 0,86304 0,81253 0,91344 0,69331
1/7 0,97559 0,81069 0,74370 0,87890 0,63855
1/5 0,96625 0,74617 0,66117 0,83505 0,57245
1/3 0,94533 0,61618 0,50335 0,74178 0,44446
1 0,85691 0,24612 0,132939 0,417857 0,13026
3 0,69875 2,0948E-02 2,9783E-03 8,4882E-02 4,4606E-03
5 0,62337 2,3918E-03 7,4220E-05 1,9233E-02 2,0768E-04
7 0,58426 3,2462E-04 1,8898E-06 4,6167E-03 1,1676E-05
10 0,55523 1,8895E-05 7,7274E-09 5,7808E-04 1,8904E-07
15 0,53637 1,8861E-07 8,0929E-13 2,0205E-05 2,3544E-10
20 0,52940 1,9602E-09 8,4763E-17 7,9559E-07 3,0742E-13
30 0,52445 2,1614E-13 9,2985E-25 1,7490E-09 5,3075E-19
100 0,52145 4,4160E-41 1,7777E-80 1,1339E-26 2,4419E-59

P1

αα

Min 0,52144 0 0 0 0
Table 2. Results obtained for d(P1, Pi) when aggregation uses various linguistic quantifiers

The table 2 shows the results obtained using only the
max-min aggregation to evaluate the individual
distances (formulas (1.1)). We have not used sum-
product aggregation (formula (1.2)) for two reasons
[5]:
§ We have proved, under what we have called normal
condition, that max-min and sum product aggregations
give approximately the same results. This is the case
for the COCOMO’81 database.
§ The sum-product aggregation does not respect all
established axioms.
In this application, we have used different values for α
(1/100, 1/30,…,1,…,30,100) to evaluate the overall
distance d(P1,Pi). From the obtained results, we
conclude that d(P1,Pi) using α-Rim quantifiers is
always between the min and the max of),(1 iv PPd

j
.

Also, d(P1,Pi) tends towards the max of),(1 iv PPd
j

when α tends towards zero (see the case of α equal to
1/100); d(P1,Pi) tends towards the min of

),(1 iv PPd
j

when α tends towards infinity (see the case

of α equal to 100). Indeed, the min (max) aggregation
is the less (more) softer combining for RIM linguistic
quantifiers; so, d(P1,Pi) is null (equal to 1) when using
min (max) operator if only one),(1 iv PPd

j
 is the same.

By contrast, the other α-RIM quantifiers can tolerate
some restrictions associated with the needs of a given
environment. First, we can choose the appropriate
weights associated to each linguistic variable
describing software project (uk). These weights
represent the importance of the variables in the
environment. Second, we can choose the appropriate
linguistic quantifier to combine the individual
distances; this linguistic quantifier is used to generate
the weights wj,'s. These weights represent the
importance associated to the individual distances when
evaluating the overall distance. They depend upon the
weights uk and the chosen linguistic quantifier. An
interesting case arises if uk is equal to wk; this is where
α is equal to 1. Consequently, formula (3) gives the
ordinary weighted average.

6. Conclusion
In this paper, we have proposed to use linguistic
quantifier guided aggregations to evaluate the
similarity between two software projects; this improve
our measures for software project similarity proposed

in [5]. The most significant advantage of this is that for
each organization, the appropriate quantifier can be
chosen and used in the evaluation of the similarity.
Further research work has been initiated to look at the
use these measures to complete the empirical

validation of the estimation effort by analogy
approach started in [5].

7. References

[1] J.M. Benitez, J.L. Castro, and I. Requena, “Are
Artificial Neural Networks Black Boxes?”, IEEE
Transactions on Neural Networks, Vol. 8, no. 5,
September, 1997, pp. 1156-1164
[2] B.W. Boehm, Software Engineering Economics,
Prentice-Hall, 1981.
[3] A. Idri, L. Kjiri, and A. Abran, “COCOMO Cost
Model Using Fuzzy Logic”, 7th Intenational
Conference on Fuzzy Theory & Technology, Atlantic
City, NJ, February, 2000. pp. 219-223
[4] A. Idri, and A. Abran, “Towards A Fuzzy Logic
Based Measures For Software Project Similarity”,
Sixth Maghrebian Conference on Computer Sciences,
Fes, Morroco, November, 2000. pp. 9-18
[5] A. Idri, and A. Abran, “A Fuzzy Logic Based Set
of Measures For Software Project Similarity:
Validation and Possible Improvements”, accepted at
IEEE Metrics 2001, London, 2-6 Avril, 2001.

[6] M. Shepperd, and C. Schofield, “Estimating
Software Project Effort Using Analogies”, IEEE
Trans. on Software Engineering, Vol. 23, no. 12,
November, 1997, pp. 736-743
[7] R.R. Yager, “On ordred weighted averaging
aggregation operators in multi-criteria decision
making”, IEEE Trans. on Systems, Man and
Cybernetics, Vol. 18, 1988, pp. 183-190
[8] R.R. Yager, “Quantifier Guided Aggregation using
OWA Operators”, International Journal of Intelligent
Systems, 11, 1996, pp.49-73
[9] R.R. Yager, and J. Kacprzyk, The Ordered
Weighted Averaging Operators: Theory and
Applications” Kluwer: Norwell, MA, 1997.
[10] R.R. Yager, “Fuzzy Constraint Satisfaction for E-
commerce Agents”, 7th International Conference on
Fuzzy Theory & Technology, Atlantic City, NJ,
February, 2000. pp. 111-114
[11] L.A. Zadeh, “A computational approach to fuzzy
quantifiers in natural languages”, Computing and
Mathematics with Applications, 9, 1983, pp. 149-184

Appendices : Fuzzification of the DATA cost driver

Low Nominal HIGH Very High

D/P<10 10≤D/P<100 100≤D/P<1000 D/P≥1000
Table 3. DATA cost driver ratings.
where:

DSIin size Program

charactersor bytesin size Database
=

P

D

Figure 2. Membership functions of fuzzy sets defined for the DATA cost driver

5 10 55 100 550 1000

1
Low Nominal High Very High

D/P

