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Abstract 
Software projects are often described by linguistic 
variables such as the experience of programmers and 
the complexity of  modules. Because the existing 
software projects similarity measures take into account 
only numerical data,  we have proposed a set of 
measures based on fuzzy logic to evaluate the 
similarity between two software projects when they are 
described by linguistic values. In this work, we 
improve the proposed measures by using linguistic 
quantifiers such as ‘most’, ‘many’ and ‘few’ in the 
computing process for the various measures. 
 
1. Introduction 
The software project similarity attribute has not yet 
been the subject of in-depth study, even though it is 
often used when estimating software development 
effort by analogy. The similarity of two software 
projects, which are described and characterized by a 
set of attributes, is often evaluated by measuring the 
distance between these two projects through their sets 
of attributes. Among the inadequacies identified 
(Shepperd et al.) in most of the proposed measures for 
the software project similarity, the most critical is that 
they cannot be used when the software projects are 
described by linguistic values such as ‘low’ and ‘high’. 
To overcome this limitation, we have proposed a set of 
new measures based on fuzzy logic for software 
project similarity [4]. These measures evaluate the 
overall similarity of two projects P1 and P2, d(P1, P2), 
by combining the individual similarities of P1 and P2 

associated to the various linguistic variables (Vj) 
describing P1 and P2, ),( 21 PPd

jv . After an axiomatic 

validation of some proposed candidate measures for 
the individual distances ),( 21 PPd

jv , we have retained 

two measures [5]: 
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where Vj’s are the linguistic variables describing the 

projects P1 and P2, 
j

kA are the fuzzy sets associated to 

Vj, and j
kA

µ are the membership functions representing 

the fuzzy sets  j
kA . 

To evaluate the overall distance of P1 and P2, the 
individual distances ),( 21 PPd

jv  are aggregated by 

using three fuzzy sets operators (min, max and the i-
or): 
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In this work, we prove that the use of these three 
operators cannot be always a good choice in many 
organizations. Consequently, we suggest other 
alternatives based on linguistic quantifiers for 
combining the individual distances  ),( 21 PPd

jv . 

This paper is organized as follows: In the first section, 
we briefly outline the principles of linguistic 
quantifiers. In the second section, we discuss why 
linguistic quantifiers guided aggregations  can be used 
in the evaluation of software project similarity. In the 



 

 

third section, we present the formal procedure that will 
be used in the evaluation of the similarity.  In the 
fourth section, we illustrate, by an example, the 
computing process of the similarity using linguistic 
quantifiers. This illustration is based on COCOMO'81 
software projects database. A conclusion and an 
overview of future work conclude this paper. 
       
2. Linguistic Quantifiers 
Human discourse uses a large number of linguistic 
quantifiers. In [11], Zadeh distinguish between two 
classes of linguistic quantifiers: absolute and 
proportional . Absolute quantifiers such as ‘about 10’ 
and ‘about 20’ can be represented as a fuzzy set Q of 
the non-negative reals. In this work, our concern is 
with proportional quantifiers. 
  
A proportional linguistic quantifier indicates a 
proportional quantity such as ‘most’, ‘many’ and 
‘few’. Zadeh suggested that proportional quantifier can 
be represented as fuzzy set Q of the unit interval I. In 
this representation for any r ∈I, Q(r) is the degree to 
which the proportion r satisfies the concept represented 
by the term Q. Furthermore, Yager distinguished  three 
categories of proportional quantifiers [8]: 
(a) A Regular Increasing Monotone (RIM) quantifiers 

such as ‘many’, ‘most’ and ‘at least α’ are 
represented as fuzzy subset Q satisfying the 
followings conditions: 
1- Q(0)=0, 
2- Q(1)=1, and 
3- Q(x)≥Q(y) if x>y 

(b) A Regular Decreasing Monotone (RDM) 
Quantifiers such as ‘few’ and ‘at most α’ are 
represented as fuzzy subset Q satisfying the 
followings conditions: 
1. Q(0)=1, 
2. Q(1)=0, and       
3. Q(x)≤Q(y) if x>y 

(c) A Regular UniModal quantifiers such as ‘about α’ 
are represented as fuzzy subset Q satisfying the 
followings conditions:. 
1- Q(0)=0, 
2- Q(1)=1, and 
3- There exists two value a and b ∈ I, where 

a<b, such that: 
i. For y <a, Q(x)≤Q(y) if x<y 

ii. For y ∈[a,b], Q(y)=1 
iii. For y>b, Q(x)≥Q(y) if x<y 

 

Two interesting relationships exist between these three 
categories of proportional quantifier: 
§  If Q is a RIM quantifier then its antonym  is a RDM 
quantifier and a vice versa: Examples of these antonym 
pairs are ‘few’ and ‘many’, and ‘at least α’ and ‘at 
most α’. 
§  Any RUM quantifier can be expressed as the 
intersection of a RIM and RDM quantifier. 
 
3. Why linguistic quantifier guided aggregation 

can be used in the evaluation of software project 
similarity? 

In evaluating the overall distance d(P1, P2), we have 
used three fuzzy set operators to combine the 
individual distances, ),( 21 PPd

jv . The use of the min 

(or max) operator reflects a combining referred to as a 
universal ‘all’ linguistic quantifier by Zadeh [11] (or 
existential, ‘there exists’). As noted by Yager when 
studying multi-criteria decision problems, these types 
of aggregation cannot be always the appropriate 
relationship among the criteria. So, Yager suggested a 
softer combining by the use of what he called 
quantifier guided aggregation [7, 8]. These kinds of 
aggregation can be implemented by the Ordered 
Weight Averaging (OWA) operators [9]. Recently, 
Yager has applied this to implementing a soft 
aggregation for fuzzy constraint satisfaction in the E-
commerce domain [10]. For our case, we look at the 
aggregation of the individual similarities, ),( 21 PPd

jv , 

by using linguistic quantifiers such as ‘most’, ‘many’ 
and ‘few’. The reasons for this are as follows: 
 
§  Each organization can choose its appropriate 
linguistic quantifier to guide the aggregation of the 
individual similarities ),( 21 PPd

jv ; 

 
•  The min and max operators are not always a good 
combination of the individual distances. Let us 
suppose that we have two software projects P1 and P2 
such that ),( 21

0
PPd

jv =0, ),( 21 PPd
jv =1 for j ≠ j0 (or 

),( 21
0

PPd
jv =1, ),( 21 PPd

jv =0 for j ≠ j0) and Vj0 is the 

least significant of all the factors describing projects 
P1 and P2. When we use a min (or max) operator, the 
overall distance d(P1, P2) is null (or equal to 1), while a 
suitable combination would seem to give a value in the 
vicinity of 1 (or of 0); 
 



 

 

•  The min (or max) operator reflects a combining 
referred to as a universal ‘all’ (or existential, ‘there 
exists’) linguistic quantifier that is only  a special case; 
 
• Linguistic quantifiers can be used in environments 
in which the individual distances to be aggregated have 
an importance associated with them. This is often the 
case for software projects where the importance of 
some factors is greater than that of others. 
Consequently, the contributions of the various 
individual distances into the calculation of the overall 
distance should not be equal; 
 
• The i-or operator has been used because it is a 
hybrid between a T-norm and an S-norm [1]. This is 
also the case for linguistic quantifiers implemented by 
OWA operators. Although it is claimed that the i-or 
has a natural interpretation and can be used in many 
situations (evaluation of scientific papers, quality of a 
game developed by two tennis players in a doubles 
tennis match, for example), the i-or operator cannot be 
represented by an OWA operator. Indeed, for two 
values a and b in the unit interval, the following system 
does not have a solution: 
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Furthermore in our case, the formula given in [1] can 
generate undefined values when some individual 
distances are equal to 1 and others are equal to 0. So, 
we have adopted a modification in order to avoid this; 
however, the formula (2.3) remains inappropriate in 
many case. Let us suppose that we have for one Vj0 
(the least significant of all factors), the corresponding 
individual distance is equal to 1 and for all others Vj, 
the corresponding individual distances are in the 
vicinity of 0. When applying the formula (2.3), the 
overall distance d(P1,P2) is equal to 1, while a suitable 
combination seems to give other than 1. Clearly, there 
is a need for further investigation into the acceptance 
or rejection of the use of the i-or operator in the 
evaluation of the overall distance d(P1, P2) from the 
various individual distances. 
 
4.  How linguistic quantifiers guided aggregations 

can be used in the evaluation of software project 
similarity? 

In the process of linguistic quantifiers guided 
aggregations, we must provide the appropriate 
linguistic quantifier Q to be used in a given 

environment.  Q indicates the proportion of individual 
distances that we feel is necessary for a good  
evaluation of the overall distance. The following 
formal procedure is used to evaluate the overall 
distance d(P1, P2) in a given environment. First, the 
linguistic quantifier, Q, is used to generate an OWA 
weighting vector W (w1, w2, .., wM) of dimension M 
(M is the number of variables describing the software 
projects) such that the wis are in the unit interval and 
the sum of wis is equal to 1. Second, we calculated the 
overall distance d(P1, P2) by: 
 

(3)          ),(),( 21
1

21 PPdwPPd
jv

M

j
j∑

=
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where ),( 21 PPd
jv  is the jth largest individual distance. 

The procedure used for generating the weights from 
the linguistic quantifier Q depends upon the type of  Q.  
In our case, Q must be a RIM (Regular Increasing 
Monotone) quantifier. The use of a RIM quantifier to 
guide the evaluation of the overall distance essentially 
implies that more individual distances are satisfied the 
higher the similarity of two software projects it is. In 
the case of a RIM quantifier Q, the weights are 
generated as follows [8]: 
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where uk is the importance weight associated to the kth 
variable describing software project, and T is the total 
sum of all importance weights uk  
We note that the weights wj used in the formula (3) will 
generally be different for each (P1, P2). This is due to 
the fact that the ordering of the individual distances 

),( 21 PPd
jv  will be different and consequently lead to 

different uk 

  
5.   Illustration 
In this section, we illustrate, by an example, the 
computing process of the overall distance using 
different linguistic quantifiers and we compare the 
obtained results with those obtained in the case of 'all' 
and 'there exists' quantifiers. The original intermediate 
COCOMO’81 database was chosen as the basis for this 
example [2]. It contains 63 software projects. Each 
project is described by 17 attributes: the software size 
measured in KDSI (Kilo Delivered Source 
Instructions), the project mode is defined as either 
‘organic’, ‘semi-detached’ or ‘embedded’, and the 
remaining 15 cost drivers are generally related to the 
software environment. Each cost driver is measured 



 

 

using a rating scale of six linguistic values: ‘very low’, 
‘low’, ‘nominal’, ‘high’, ‘very high’ and ‘extra high’. 
The assignment of linguistic values to the cost drivers 
uses conventional quantization where the values are 
classical intervals (see [2], pp. 119). To use the 
proposed measures and because the advantages of 
representation by fuzzy sets rather than classical 
intervals, the 15 cost drivers must be fuzzified. Among 
these, we have retained 12 attributes that we had 
already fuzzified (see the case of the DATA cost driver 
in the appendices); the other attributes are not studied 
because these relative descriptions are insufficient [3]. 
The goal of this illustration is to evaluate the similarity 
between the COCOMO’81 software projects assuming 
that are described by these 12 cost drivers. 
   
For simplification,  we discuss only the case of the 
similarity of the first project P1 and the five first 
projects (P1, P2, P3, P4, P5) of the COCOMO’81 
database. Because our measures are computationally 

intensive, we have developed a software prototype to 
automate the calculations. This prototype uses 
Microsoft Access to store data and Microsoft Visual 
Basic to implement the various processing steps.  The 
prototype allows us to try various RIM linguistic 
quantifiers Q to the COCOMO’81 historical data; 
normally, each environment must define its appropriate  
quantifier by studying its features and its requirements. 
In this illustration, we use RIM quantifiers defined by : 

0)( >= ααrrQ  

To calculate the weights wj’s, we must determine the 
importance weights uk’s associated to the 12 variables 
describing COCOMO’81 software projects (Table 1). 
For this, we use the productivity  ratio which is the 
project’s productivity ratio (expressed in Delivered 
Source Instructions by Man-Months) for the best 
possible variable rating to its worst possible variable 
rating, assuming that the ratings for all other variables 
remain constant (Figure 1).  

 
 

 
Figure 1. Comparison of the productivity ratios for the 12 variables describing COCOMO’81 software 
projects. 
 
 

Cost driver (Vj) Weight Uj Cost driver (Vj) Weight 
Uj 

ACAP 2,05 VIRT-MIN 1,49 
PCAP 2,30 VEXP 1,34 
TIME 1,66 TURN 1,32 
AEXP 1,57 DATA 1,23 
STOR 1,56 LEXP 1,20 
VIRT-MAJ 1,49 SCED 1,11 

 
Table 1 : The weights uj’s associated to the 12 COCOMO’81 cost drivers 
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   P1 P2 P3 P4 P5 
Max 1 1 1 1 0,84096 

1/100 0.99824 0,98529 0,97938 0,99095 0,82482 
1/30 0,99416 0,95189 0,93298 0,97018 0,78841 
1/20 0,99128 0,92879 0,90124 0,95564 0,76343 
1/15 0,98842 0,90629 0,87061 0,94134 0,73927 
1/10 0,98275 0,86304 0,81253 0,91344 0,69331 
1/7 0,97559 0,81069 0,74370 0,87890 0,63855 
1/5 0,96625 0,74617 0,66117 0,83505 0,57245 
1/3 0,94533 0,61618 0,50335 0,74178 0,44446 
1 0,85691 0,24612 0,132939 0,417857 0,13026 
3 0,69875 2,0948E-02 2,9783E-03 8,4882E-02 4,4606E-03 
5 0,62337 2,3918E-03 7,4220E-05 1,9233E-02 2,0768E-04 
7 0,58426 3,2462E-04 1,8898E-06 4,6167E-03 1,1676E-05 
10 0,55523 1,8895E-05 7,7274E-09 5,7808E-04 1,8904E-07 
15 0,53637 1,8861E-07 8,0929E-13 2,0205E-05 2,3544E-10 
20 0,52940 1,9602E-09 8,4763E-17 7,9559E-07 3,0742E-13 
30 0,52445 2,1614E-13 9,2985E-25 1,7490E-09 5,3075E-19 
100 0,52145 4,4160E-41 1,7777E-80 1,1339E-26 2,4419E-59 

 
 
 
 
 
 
 
 
 
P1 

 
 
 
 
 
 
 
 
 
αα 

Min 0,52144 0 0 0 0 
Table 2. Results obtained for d(P1, Pi) when aggregation uses various linguistic quantifiers 

 
The table 2 shows the results obtained using only the 
max-min aggregation to evaluate the individual 
distances (formulas (1.1)). We have not used sum-
product aggregation (formula (1.2)) for two reasons 
[5]: 
§  We have proved, under what we have called normal 
condition, that max-min and sum product aggregations 
give approximately the same results. This is the case 
for the COCOMO’81 database. 
§  The sum-product aggregation does not respect all 
established axioms. 
In this application, we have used different values for α 
(1/100, 1/30,…,1,…,30,100) to evaluate the overall 
distance d(P1,Pi). From the obtained results, we 
conclude that d(P1,Pi) using α-Rim quantifiers is 
always between the min and the max of  ),( 1 iv PPd

j
. 

Also, d(P1,Pi) tends towards the max of  ),( 1 iv PPd
j

 

when α tends towards zero ( see the case of α equal to 
1/100); d(P1,Pi) tends towards the min of  

),( 1 iv PPd
j

when α tends towards infinity (see the case 

of α equal to 100). Indeed, the min (max) aggregation 
is the less (more) softer combining for RIM linguistic 
quantifiers; so, d(P1,Pi) is null (equal to 1) when using 
min (max) operator if only one ),( 1 iv PPd

j
 is the same. 

By contrast, the other α-RIM quantifiers can tolerate 
some restrictions associated with  the needs of a given 
environment. First, we can choose the appropriate 
weights associated to each linguistic variable 
describing software project (uk). These weights 
represent the importance of the variables in the 
environment. Second, we can choose the appropriate 
linguistic quantifier to combine the individual 
distances; this linguistic quantifier is used to generate 
the weights wj,'s. These weights represent the 
importance associated to the individual distances when 
evaluating the overall distance. They depend upon the 
weights uk and the chosen linguistic quantifier.  An 
interesting case arises if uk is equal to wk; this is where 
α is equal to 1. Consequently, formula (3) gives the 
ordinary weighted average.   

 
 
6.  Conclusion 
In this paper, we have proposed to use linguistic 
quantifier guided aggregations to evaluate the 
similarity between two software projects; this improve 
our measures for software project similarity proposed 

in [5]. The most significant advantage of this is that for 
each organization, the appropriate quantifier can be 
chosen and used in the evaluation of the similarity. 
Further research work has been initiated to look at the 
use these measures to complete the empirical 



 

 

validation of  the estimation effort by analogy 
approach started in [5]. 
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Appendices : Fuzzification of the DATA cost driver 
 

Low Nominal HIGH Very High 

D/P<10 10≤D/P<100 100≤D/P<1000 D/P≥1000 
Table 3. DATA cost driver ratings. 
where: 
 

DSIin  size Program

charactersor  bytesin  size Database
=

P

D  

 
 

 
 
 
 
 
 
 
 
 
 
Figure 2. Membership functions of fuzzy sets defined for the DATA cost driver
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