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Abstract 

Estimation models in software engineering are used to 
predict some important attributes of future entities such 
as software development effort, software reliability and 
programmers productivity. Among these models, those 
estimating software effort have motivated considerable 
research in recent years. Estimation by analogy is one 
of the most attractive technique in software effort 
estimation field. However, the procedure used in 
estimation by analogy is not yet able to handle 
correctly categorical data such as ‘very low’, 
‘complex’ and ‘average’. In this paper, we propose a 
new approach based on reasoning by analogy, fuzzy 
logic and linguistic quantifiers to estimate effort when 
the software project is described either by categorical 
or numerical data.  

1. Introduction 

Estimating the work-effort and the schedule required to 
develop and/or to maintain a software system is one of 
the most critical activities in managing software 
projects. This task is known as Software Cost 
Estimation. During the development process, the cost 
and time estimates are useful for the initial rough 
validation and monitoring of the project's progress; 
after completion, these estimates may be useful for 
project productivity assessment for example. Several 
cost estimation techniques are used within an 
organisation; these techniques may be grouped into two 
major categories [26]: 

• algorithmic models, and 
• non-algorithmic models  

The first is the most popular techniques (at least in the 
literature), and is illustrated by estimations models 
such as COCOMO [5,6,8], PUTNAM-SLIM[24], and 
function points analysis [2, 21]. Algorithmic models 
are derived from the statistical or numerical analysis of 
historical projects data (simple/multiple/stepwise 
regression, bayesian approach, Principal Components 
Analysis, polynomial interpolation, …). The 
disadvantages of these models are: 

• They make assumptions about the form of the 
prediction function, that almost is: 

βα sizeEffort ×=  where α represents a 

productivity coefficient and β an economies (or 
diseconomies) of scale coefficient 

• They need to be adjusted or calibrated to local 
circumstances (an example of calibrating and 
reformulating COCOMO'81 model is published in 
[10]) 

• They are not very understandable because there 
are no effective natural interpretations to their 
behaviour.  

Next, the non-algorithmic models are developed to 
avoid the above weaknesses. Recently, many 
researchers have begun to turn their attention to this 
alternative, and in particular to a set of approach based 
on neural networks, regression trees, rule induction, 
and case-based reasoning. These alternatives have 
some advantages: 

• Capabilities to adequately model the complex set 
of relationship between factors (cost drivers) or 
between effort (the independent variable) and the 
cost drivers (dependent variables) 

• Capabilities to learn from historical projects data 
(specifically for neural networks) 

• Contrary to the algorithmic models, their 
behaviour is easier to understand; an exception 
can be made for neural networks which are 
considered as ‘black boxes’. Recently, this 
significant weakness can be avoided by 
establishing not just the equivalence but the 
equality between Artificial Neural Networks 
(ANN’s) and Fuzzy Rule -Based Systems 
(FRBS’s) [4]. 

This paper concerns the case-based reasoning. This 
approach is an enhanced form of estimation by analogy 
[8]. Boehm has suggested an informal use of analogies 
between software projects as one of seven possible 
techniques for software cost estimation [5]. Recently, it 
has been presented by Shepperd et al. in the form of a 
formal detailed methodology and has been applied on a 
number of software projects data sets [19, 25, 26]. 
After years of application of the estimation by analogy, 
it has not seemed to generate often more accurate 
results than traditional regression based techniques. 
Indeed, Shepperd et al., Niessink and van Vliet found 
that estimation by analogy generated better results than 
stepwise regression [23, 25, 26]; by contrast, Briand et 
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al., Stensrud and Myrtveit reported the reverse, namely 
that regression based analysis generated more accurate 
models than using analogy [7, 22]. Recent research has 
been initiated to explain the relationship which exists 
between different properties of the dataset (size, 
number of attributes, …) and the accuracy of a 
prediction system [27]. Beyond this interesting issue, in 
this work we deal with an important limitation of 
estimation by analogy which arises when software 
projects are described by categorical data (nominal or 
ordinal scale). Here the principal problem is in the 
evaluation of the similarity between two software 
projects when theirs attributes are measured by 
qualifications such as ‘very low’, ‘low’ and ‘high’; 
these qualifications are called linguistic values in fuzzy 
logic 1. To overcome this limitation, we have developed 
and validated a set of candidate measures for software 
projects similarity. These measures are based on fuzzy 
sets, fuzzy reasoning and linguistic quantifiers [12, 13, 
14]. Consequently, the purpose of this paper is to 
provide a new approach to estimate effort by analogy 
when software projects are described either by 
numerical (interval, ratio or absolute scale) or 
categorical (nominal and ordinal scale) data  

This paper is organized as follows: In the first section, 
we briefly outline the principles of fuzzy logic and 
linguistic quantifiers. In the second section, we present 
the classical procedure of estimation by analogy; which 
procedure cannot handle categorical data. To overcome 
this limitation, we propose, in the fourth section, a new 
approach which can be seen as a fuzzification of the 
classical approach of estimation by analogy. We 
illustrate, by means of the COCOMO’81 dataset, the 
computing process of each step composing the life 
cycle of our approach. A conclusion and overview of 
future work conclude this paper.  

2. Fuzzy Logic and Linguistic Quantifiers  

2.1 Fuzzy Logic 

Since its foundation by Zadeh in 1965 [32], Fuzzy 
Logic (FL) has been the subject of important 
investigations. At the beginning of the nineties, fuzzy 
logic was firmly grounded in terms of its theoretical 
foundations and its application in the various fields in 
which it was being used (robotics, medicine, image 
processing, etc.). 

According to Zadeh [34], the term “fuzzy logic” is 
currently used in two different senses. In a narrow 
sense, FL is a logical system aimed at a formalization 
of approximate reasoning. In a broad sense, FL is 
                                                                 
1  In the rest of this paper, categorical or linguistic values will be 

used as synonymous.  

almost synonymous with fuzzy set theory. Fuzzy set 
theory, as its name suggests, is basically a theory of 
classes with unsharp boundaries. It is considered as an 
extension of classical set theory. The membership 
function µA(x) of x in a classical set A, as a subset of 
the universe X, is defined by:  




∉
∈

=
Axiff
Axiff

xA 0
1

)(µ  

This means that an element x is either a member of set 
A  (µA(x)=1) or not (µA(x)=0). Classical sets are also 
referred to as crisp sets. For many classifications, 
however, it is not quite clear whether x belongs to a set 
A or not. For example, in [16], if set A represents PCs 
which are too expensive for a student’s budget, then it 
is obvious that this set has no clear boundary. Of 
course, it could be said that a PC priced at $2500 is too 
expensive, but what about a PC priced at $2495 or 
$2502? Are these PCs too expensive? Clearly, a 
boundary could be determined above which a PC is too 
expensive for the average student, say $2500, and a 
boundary below which a PC is certainly not too 
expensive, say $1000. Between those two boundaries, 
however, there remains an interval in which it is not 
clear whether a PC is too expensive or not. In this 
interval, a grade could be assigned to classify the price 
as partly too expensive. This is where fuzzy sets come 
in: sets in which the membership has grades in the 
interval (0,1). The higher the membership x has in 
fuzzy set A, the more true it is that x is A. 

The fuzzy set, introduced by Zadeh, is a set with 
graded membership in the real interval (0,1). It is 
denoted by: 

∫=
X

A xxA /)(µ  

where µA(x) is known as the membership function and 
X is known as the universe of discourse. Figure 1 
shows two representations of the linguistic value ‘too 
expensive’; the first using a fuzzy set (Figure 1 (a)) and 
the second using a classical set (Figure 1 (b)). The 
major advantage of the fuzzy set representation is that 
it is a gradual function rather than an abrupt-step 
function between the two boundaries of $1000 and 
$2500. 

Among the other branches of fuzzy set theory are fuzzy 
arithmetic, fuzzy graph theory and fuzzy data analysis. 

2.2 Linguistic Quantifiers 

A large number of linguistic quantifiers are used in 
human discourse. In [33], Zadeh distinguishes between 
two classes of linguistic quantifiers: absolute and 
proportional. Absolute quantifiers such as ‘about 10’ 
and ‘about 20’ can be represented as a fuzzy set Q of 
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Figure 1. Fuzzy set (a) and Classical set (b) for the linguistic value ‘too expensive’ 

 

the non-negative reals. In this work, we are concerned 
with proportional quantifiers. 

A proportional linguistic quantifie r indicates a 
proportional quantity such as ‘most’, ‘many’ and ‘few’. 
Zadeh has suggested that proportional quantifiers can 
be represented as fuzzy set Q of the unit interval I. In 
this representation, for any r ∈I, Q(r) is the degree to 
which the proportion r satisfies the concept represented 
by the term Q. Furthermore, Yager distinguished three 
categories of proportional quantifier [29, 30]: 

(a) A Regular Increasing Monotone (RIM) quantifier 
such as ‘many’, ‘most’ and ‘at least α’ is 
represented as fuzzy subset Q satisfying the 
followings conditions: 
1- Q(0)=0, 
2- Q(1)=1, and 
3- Q(x)≥Q(y) if x>y 

(b) A Regular Decreasing Monotone (RDM) 
Quantifier such as ‘few’ and ‘at most α’ is 
represented as fuzzy subset Q satisfying the 
followings conditions: 
1. Q(0)=1, 
2. Q(1)=0, and  
3. Q(x)≤Q(y) if x>y 

(c) A Regular UniModal quantifier, such as ‘about α’, 
is represented as fuzzy subset Q satisfying the 
followings conditions:. 
1- Q(0)=0, 
2- Q(1)=1, and 
3- There exist two values a and b ∈ I, where a<b, 

such that: 
i. For y <a, Q(x)≤Q(y) if x<y 
ii. For y ∈[a,b], Q(y)=1 

iii. For y>b, Q(x)≥Q(y) if x<y 

Two interesting relationships exist between these three 
categories of proportional quantifiers: 

• If Q is an RIM quantifier, then its antonym is an 
RDM quantifier and vice versa: Examples of 

these antonym pairs are ‘few’ and ‘many’, and ‘at 
least α’ and ‘at most α’. 

• Any RUM quantifier can be expressed as the 
intersection of an RIM and an RDM quantifier. 

3. Estimation by analogy 

Estimation by analogy is essentially a form of Case-
Based Reasoning. Case-Based Reasoning has four 
steps [1]: 

1- Retrieve the most similar case or cases 
2- Reuse the information and knowledge in that 

case to solve the problem 
3- Revise the proposed solution 
4- Retain the parts of this experience likely to be 

useful for future problem solving 
In the situation of effort estimation, CBR is based on 
the following affirmation: similar software projects 
have similar cost. It has been deployed as follows: 
First, each project must be described by a set of 
attributes which must be relevant and independent. 
Second, we must determine the similarity between the 
candidate project and each project in the historical 
database. Third, we use the known effort values from 
the historical projects to derive an estimate for the new 
project; this later step is known as case adaptation. 

 Since it was first used by Vancinanza et al. [28] who 
suggested that CBR might be usefully adapted to make 
accurate software effort predictions, estimation by 
analogy has been the subject of studies aimed at to 
evaluating, enhancing, reformulating and adapting the 
CBR life cycle according to the features of the software 
effort prediction context. Shepperd et al. has been 
involved in the development of CBR techniques and 
tools to build software effort prediction systems for 
five years ago [25, 26]. In their recent work, they tried 
to explain why different research teams have reported 
widely different results by using CBR technology; 
other that the characteristics of the historical software 
projects database being used, Sheppered et al. 

)(exp xensivetooµ

2500 1000 
(a) 

0 

1 

2500 1000 0 

1 

(b) 

)(exp xensivetooµ
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examined the impact of the choice of number of 
analogies and adaptation strategies when making 
predictions by using a dataset of software projects 
collected by a Canadian software house. They found 
that, first, choosing analogies is important; more 
specifically, three analogies seemed to be optimal 
although a fixed value for k (number of analogies) was 
more effective for the larger dataset while distance 
based analogies selection appeared more effective for 
the smaller dataset. Second, case adaptation strategies 
seemed to have little imp act on the accuracy of the 
estimation by analogy [19].  

Angelis and Stamelos, when studying the estimation by 
analogy method for Albrecht’s software projects, 
explored the problem of determining the parameters for 
configuration of the analogy procedure before its 
application to a new software project. Indeed, they 
studied three parameters. First, the choice of distance 
measure that will be used to evaluate the similarity 
between software projects. Second, the number of 
analogies to take into account in the effort estimation. 
Third, the statistic that will be used to calculate the 
unknown effort from the efforts of the similar projects. 
They suggested that these three parameters must be 
configured by using the bootstrap method which 
consists of drawing news samples of software projects 
from the available dataset and testing the performance 
of the chosen parameters on these large numbers of 
samples. This is allow to the user to identify which 
parameters values give often accurate estimates; so, 
these values can be used to generate prediction for a 
new software project. This kind of search for optimal 
parameters is called calibration of the estimation 
procedure [3]. 

However, even tough it is well recognized that 
estimation by analogy is a promising technique to 
contribute to the software estimation problem, there are 
certain limitations that prevent it from being more 
popular. The most important is that until now it cannot 
handle categorical data such as ‘very low’, ‘low’ and 
‘high’ whereas many factors such as experience of 
programmers, complexity of modules and software 
reliability are measured on at least an ordinal or 
nominal scale. For example, the well-known 
COCOMO’81 model uses 15 attributes out of 17 (22 
out of 24 in the COCOMOII) which are measured with 
six linguistics values: ‘very low’, ‘low’, ‘nominal’, 
‘high’, ‘very high’ and ‘extra-high’ [5, 6, 8]. Another 
example is the Function Points measurement method, 
in which the level of complexity for each item (input, 
output, inquiry, logical file or interface) is assigned 
using three qualifications (‘low’, ‘average’ and ‘high’). 
Then there are the General System Characteristics, the 
calculation of which is based on 14 attributes measured 
on an ordinal scale of six linguistic values (from 

‘irrelevant’ to ‘essential’) [15]. To overcome this 
limitation, we present in the next section a new method 
which can be seen as a fuzzification of the classical 
analogy to deal with categorical data. This method will 
be christened, in the rest of this paper, Fuzzy Analogy.  

4. Estimation by Analogy using Fuzzy 
Logic: Fuzzy Analogy 

The key activities for estimating software project effort 
by analogy are the identification of a candidate 
software project as a new case, the retrieval of similar 
software projects from a repository, the reuse of 
knowledge derived from previous software projects 
(essentially the actual effort) to generate an estimate for 
the candidate software project. Estimation by analogy 
has motivated considerable research in recent years. 
However, none has yet dealt with categorical data. We 
present here a new approach based on reasoning by 
analogy and fuzzy logic which extends the classical 
analogy in the sense that it can be used when the 
software projects are described either par numerical or 
categorical data.  

Fuzzy Analogy is a fuzzification of the classical 
analogy procedure. It is also composed of three steps: 
identification of cases, retrieval of similar cases and 
case adaptation; each step is a fuzzification of its 
equivalent in the classical analogy procedure. In the 
following sub-sections, each step is further detailed.  

4.1 Identification of cases 

The goal of this step is the characterization of all 
software projects by a set of attributes. Selecting 
attributes which well describe software projects is a 
complex task in the analogy procedure. Indeed, the 
selection of attributes depends on the objective of the 
CBR system; in our case, the objective is to estimate 
the software project effort. Consequently, the attributes 
must be relevant for the effort estimation task. The 
problem is how to know all attributes which exhibit a 
significant relationship with effort in a given 
environment? The solution adopted by cost estimation 
researchers and practitioners is to test the correlation 
between effort and all attributes for which data in the 
studied environment is available. So, this solution does 
not take into account attributes, which can affect 
largely the effort, if they have not yet recorded data. 
Another interesting criteria that each relevant attribute 
must satisfy is the independence with respect to the 
other attributes. Shepperd et al., in the ANGEL tool, 
propose to resolve the attributes selection problem by 
applying a brute force search of all possible attributes 
subsets. They recognized that this is an NP-hard search 
problem and consequently this is not feasible solution 
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where the number of the candidate attributes is large. 
On the other hand, Briand et al. propose to use a t-test 
procedure to select the set of attributes. Sheppered 
claimed that this is not a good solution because the 
stepwise procedure is not efficient to model the 
potential interactions between the software project 
attributes [19]. There are two other criteria, which have 
not yet been the subject of in dept-study in the cost 
estimation literature, to which each relevant and 
independent attribute must obey: the attribute must be 
comprehensive which means that must be well defined 
and the attribute must be operational which means that 
must be easy to measure. We believe that the best way 
to solve the attributes selection problem is by 
integrating a learning procedure in the analogy 
approach. We are deferring here to give more details 
about this alternative until we develop a complete 
learning procedure for our Fuzzy Analogy procedure. 
Before the learning phase and in the training phase of 
our approach, we adopt a variation of Sheppered’s 
solution by allowing to the estimators the freedom to 
utilise the attributes that they believe best characterize 
their projects and more appropriate to their 
environment.  

The objective of our Fuzzy Analogy approach is to deal 
with categorical data. So, in the identification step, 
each software project is described by a set of selected 
attributes which can be measured by numerical or 
categorical values. These values will be represented by 
fuzzy sets. In the case of a numerical value x0 (no 
uncertainty), its fuzzification will be done by the 
membership function which takes the value of 1 when 
x is equal to x0 and 0 otherwise. For categorical value, 
let us suppose that we have M attributes and for each 
attribute Vj, a measure with linguistic values is defined 
( j

kA ). Each linguistic value, j
kA , is represented by a 

fuzzy set with a membership function ( j
kAµ ). It is 

preferable that these fuzzy sets satisfy the normal 
condition  as it was defined in [13]. The use of fuzzy 
sets to represent categorical data, such as ‘very low’ 
and ‘low’, mimics the way in which humans interpret 
these values and consequently it allows us to deal with 
vagueness, imprecision and uncertainty in the case 
identification step. Another advantage of our Fuzzy 
Analogy approach is that it takes into account the 
importance of each selected attribute in the cases 
identification step; indeed, it is obvious that all selected 
attributes have not necessarily the same influence on 
the software project effort. So, we are required to 
indicate the weights, uk, associated with all selected 
attributes in the cases identification step.  

To illustrate the cases identification step, we use the 
COCOMO’81 dataset. Each software project in this 
dataset is described by 17 attributes which are declared 
relevant and independent [5]. Among these, the DATA 

cost driver is measured by four linguistic values: ‘low’, 
‘nominal’, ‘high’ and ‘very high’. These linguistic 
values are represented by classical intervals in the 
original version of the COCOMO’81; because the 
advantage of the representation by fuzzy sets rather 
than classical intervals, we have proposed to use the 
representation given in figure 2. The weight associated 
to the DATA cost driver, udata, is equal to 1.23. It is 
evaluated by its productivity ratio2 . 

4.2 Retrieval of similar cases 

This step is based on the choice of a software project 
similarity measure. This choice is very important since 
it will influence which analogies are found. In the 
literature, most researchers have used the Euclidean 
distance when the projects are described by numerical 
data and the equality distance when they are described 
by categorical data [26]. These two measures are not 
suitable when the categorical data are represented by 
fuzzy sets. Consequently, we have proposed a set of 
candidate measures for software project similarity to 
avoid this limitation [12]. These measures evaluate the 
overall similarity of two projects P1 and P2, d(P1, P2), 
by combining the individual similarities of P1 and P2  
associated with the various linguistic variables 
(attributes) (Vj) describing P1 and P2, ),( 21 PPd

jv . After 

an axiomatic validation of some proposed candidate 
measures for the individual distances ),( 21 PPd

jv , we 

have retained two measures [13]: 
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where Vj are the linguistic variables describing projects 

P1 and P2, j
kA are the fuzzy sets associated with Vj, and 

j
kA

µ are the membership functions representing fuzzy 

sets j
kA . 

To evaluate the overall distance of P1 and P2, the 
individual distances ),( 21 PPd

jv  are aggregated by 

using RIM linguistic quantifiers such as ‘all’, ‘most’, 
‘many’, ‘at most α’ or ‘there exists’. The choice of the 
appropriate RIM linguistic quantifier, Q, depends on 

                                                                 
2  The productivity ratio is the project’s productivity ration 

expressed in Delivered Source Instructions by Man-Months for 
the best possible attribute rating to its worst possible variable 
rating, assuming that all the ratings for all other attributes remain 
constant. 
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Figure 2. Membership functions of fuzzy sets defined for the DATA cost driver [13] 

 
the characteristics and the needs of each environment. 
Q indicates the proportion of individual distances that 
we feel is necessary for a good evaluation of the 
overall distance. The overall similarity of P1 and P2 , 
d( P1 , P2) is given by one of the following formulas 
[14]:  
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When choosing the appropriate RIM linguistic 
quantifier to guide the aggregation of the individual 
distances, its implementation is realized by an 
Ordered Weight Averaging operator [14, 30]. 
Consequently, the overall distance, d(  P1 , P2), is 
calculated by means of the following formula:  
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where ),( 21 PPd
jv  is the jth largest individual 

distance, uk is the importance weight associated with 
the kth variable describing the software project, and T 
is the total sum of all importance weights uk which 
are provided in the cases identification step.  

To illustrate the retrieval of similar cases step, we 
suppose that ‘most’ is the appropriate RIM linguistic 
quantifier for the COCOMO’81 dataset and it is 
represented by the fuzzy subset Qmost (r)=r3. Table 1 
shows the results obtained for the overall similarity, 
between the first project and the first five projects in 
the COCOMO’81 dataset, using the max-min 
aggregation (formula 1.1) to evaluate the individual 
similarities. 

 
  Max-min aggregation 

)P,(Pd n1jv  

  d(P1, Pn) 
   P1 P2 P3 P4 P5 
P1 M

ost 
0.69
875 

2.0948
E-02 

2.9783
E-03 

8.4882
E-02 

4.4606
E-03 

Table 1. Results obtained for d(P1, Pi) when 
aggregation uses the ‘most’ linguistic quantifier 

4.3 Case adaptation 

The objective of this step is to derive an estimate for 
the new project by using the known effort values of 
similar projects. There are two problems here. First, 
how many similar projects will be used in the 
adaptation? In the literature, one can notice that there 
is no clear rule to guide the choice of the number of 
analogies, k . Shepperd et al. have tested two strategies 
to calculate the number k : a) it can be set to some 
constant value, they explore values between 1 and 5; 
b) it can be determined dynamically as the number of 
cases that fall within distance d, of the new project 
[19]. Briand et al. have used a single analogy [7]. 
Angelis and Stamelos have tested a number of 
analogies in the range of 1 to 10 when studying the 
calibration of the analogy procedure for the 
Albrecht’s dataset [3]. The results obtained from 
these experimentations seemed to favour the case 
where k  is equal to 2 or 3.  

We are not convinced by the approach fixing the 
number of analogies to be considered in the case 
adaptation step. The principle of this approach is to 
take only the k first projects which are similar to the 
new project. Let us suppose that the distances 
between the first three projects of one dataset (P1, P2, 
P3) and the new project (P) are respectively: 3.30, 
4.00 and 4.01; consequently, when we consider k  is 
equal to 2, we will use only the two projects P1 and P2 

5 10 55 100 550 1000 

1
Low Nominal  High Very High 

D/P 
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in the calculation of an estimate of P; the project P3 
will not be considered in this case although there is 
no clear difference between d(P2, P), 4.00, and d(P3, 
P), 4.01!! We believe that the use of the number k 
hides behind the use of the classical logic principle: 
each project in the dataset is either or not similar to 
the new project. In our approach, we propose to use 
all of the projects in the dataset to derive an estimate 
of the new project. Each historical project will 
contribute, in the calculation of the effort of the new 
project, according to its degree of similarity with this 
project. This alternative seems not to be in conformity 
with what it is recognized within the cost estimation 
researchers community. Indeed, it is unanimously 
established that increasing number of analogies lead 
to extremely high level of estimation error[3, 19, 25, 
26]. This is not true in our Fuzzy Analogy approach 
because there are significant differences between our 
similarity measures and Euclidean (or equality) 
distance [12, 13, 14]. Moreover, d( P1 , P2) using 
Euclidean distance has no clear natural interpretation; 
contrary to our similarity measures where d( P1, P2) is 
a membership function which expresses the truth 
value of the fuzzy proposition ‘P1 and P2 are similar’ 
[13, 14].  

The second question in this step is how to adapt the 
chosen analogies in order to generate an estimate for 
the new project? The most used formulas are those 
using the (weighted) mean or the median of the k  
chosen analogies. In the case of weighted mean 
formula, the weights can be the similarity distances or 
the ranks of the projects. For our Fuzzy Analogy 
approach, we use the weighted mean of all known 
effort projects in the dataset; the weights are our 
similarity distances. The formula is then: 
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• If d(P,Pi) is null then this implies that Pi does not 

influence the estimated effort of P. This is 
reasonable because d(P,Pi) is the truth value of 
the fuzzy proposition ‘P and Pi are similar’.  

• If d(P,Pi) is equal to 1 then this implies that Pi 
influences to the maximum the estimated effort 
of P. 

• If d(P,Pi) is between 0 and 1 then this implies 
that Pi influences partially, according to the 
value of d(P,Pi), the estimated effort of P.  

• If all d(P,Pi) are equal to 0 then the effort of P is 
indeterminate. This is the case if all projects in 
database differ very widely in nature from P; so, 
the effort of P can be any value including all the 

known effort values of historical software 
projects Pi in the dataset. 

To illustrate the case adaptation step, we calculated 
the estimated effort for the first project, P1, in the 
COCOMO’81 dataset by considering only the first 
five projects ( P1, P2, P3, P4, P5) for which the 
similarity distances are given in table 1. We found 
that the estimated effort is equal to 1824Man-Months 
whereas the actual effort is 2040Man-Months.  

5. Conclusions and Future Work 

In this paper, we have proposed a new approach to 
estimate the software project effort. This approach is 
based on reasoning by analogy, fuzzy logic and 
linguistic quantifiers. Such an approach can be used 
when the software projects are described by 
categorical and/or numerical data. Thus, our approach 
improves the classical analogy procedure which does 
not take into account categorical data. In the Fuzzy 
Analogy approach, both categorical or numerical data 
are represented by fuzzy sets . The advantage of this is 
to handle correctly the imprecision and the 
uncertainty when describing a software project. Also, 
by using RIM linguistic quantifier to guide the 
aggregation of the individual similarities between two 
projects, the Fuzzy Analogy approach can be easily 
adapted and configured according to the needs of 
each environment. There are two other characteristics 
which can be integrated in our approach: 

• first, it can learn from previous situations in 
order to generate more accurate predictions. The 
learning procedure can be implemented in the 
three steps of our approach. For example, in the 
identification step, it will be possible to propose 
a set of attributes which have often led to 
accurate results. This set of attributes will be 
used to describe the new project and 
consequently the attributes selection problem 
can be solved by learning. 

• Second, our approach must handle the 
uncertainty when estimating the effort of the 
new project. Indeed, Kitchenham and Linkman 
have suggested that it is safer to produce interval 
estimates with a probability distribution rather 
than a point estimates which could lead to 
wrong managerial decisions and project failure. 
The estimation by interval with probability 
distribution provides the basis for risk analysis 
[18]. 

When integrating these two characteristics in the 
Fuzzy Analogy approach, it will satisfy the famous 
concept ‘Soft Computing’ defined by Zadeh in [34].  

To complete this work, the Fuzzy Analogy prediction 
system must be validated. According to Fenton, a 
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prediction system is valid if it generates accurate 
predictions [9]. Further research has been initiated to 
validate our effort prediction system. 
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