
International Workshop on Software Measurement (IWSM’01) 93
Montréal, Québec, Canada – August 28-29, 2001

Fuzzy Analogy: A New Approach for Software Cost Estimation

Ali Idri
ENSIAS, BP. 713, Agdal, Rabat,

Morocco
idri@enisas.um5souissi.ac.ma

Alain Abran
École de Technologie Supérieure

Montréal, Canada
abran.alain@uqam.ca

Taghi M. Khosgoftaar
Florida Atlantic University

Boca Raton, USA
taghi@cse.fau.edu

Abstract

Estimation models in software engineering are used to
predict some important attributes of future entities such
as software development effort, software reliability and
programmers productivity. Among these models, those
estimating software effort have motivated considerable
research in recent years. Estimation by analogy is one
of the most attractive technique in software effort
estimation field. However, the procedure used in
estimation by analogy is not yet able to handle
correctly categorical data such as ‘very low’,
‘complex’ and ‘average’. In this paper, we propose a
new approach based on reasoning by analogy, fuzzy
logic and linguistic quantifiers to estimate effort when
the software project is described either by categorical
or numerical data.

1. Introduction

Estimating the work-effort and the schedule required to
develop and/or to maintain a software system is one of
the most critical activities in managing software
projects. This task is known as Software Cost
Estimation. During the development process, the cost
and time estimates are useful for the initial rough
validation and monitoring of the project's progress;
after completion, these estimates may be useful for
project productivity assessment for example. Several
cost estimation techniques are used within an
organisation; these techniques may be grouped into two
major categories [26]:

• algorithmic models, and
• non-algorithmic models

The first is the most popular techniques (at least in the
literature), and is illustrated by estimations models
such as COCOMO [5,6,8], PUTNAM-SLIM[24], and
function points analysis [2, 21]. Algorithmic models
are derived from the statistical or numerical analysis of
historical projects data (simple/multiple/stepwise
regression, bayesian approach, Principal Components
Analysis, polynomial interpolation, …). The
disadvantages of these models are:

• They make assumptions about the form of the
prediction function, that almost is:

βα sizeEffort ×= where α represents a

productivity coefficient and β an economies (or
diseconomies) of scale coefficient

• They need to be adjusted or calibrated to local
circumstances (an example of calibrating and
reformulating COCOMO'81 model is published in
[10])

• They are not very understandable because there
are no effective natural interpretations to their
behaviour.

Next, the non-algorithmic models are developed to
avoid the above weaknesses. Recently, many
researchers have begun to turn their attention to this
alternative, and in particular to a set of approach based
on neural networks, regression trees, rule induction,
and case-based reasoning. These alternatives have
some advantages:

• Capabilities to adequately model the complex set
of relationship between factors (cost drivers) or
between effort (the independent variable) and the
cost drivers (dependent variables)

• Capabilities to learn from historical projects data
(specifically for neural networks)

• Contrary to the algorithmic models, their
behaviour is easier to understand; an exception
can be made for neural networks which are
considered as ‘black boxes’. Recently, this
significant weakness can be avoided by
establishing not just the equivalence but the
equality between Artificial Neural Networks
(ANN’s) and Fuzzy Rule -Based Systems
(FRBS’s) [4].

This paper concerns the case-based reasoning. This
approach is an enhanced form of estimation by analogy
[8]. Boehm has suggested an informal use of analogies
between software projects as one of seven possible
techniques for software cost estimation [5]. Recently, it
has been presented by Shepperd et al. in the form of a
formal detailed methodology and has been applied on a
number of software projects data sets [19, 25, 26].
After years of application of the estimation by analogy,
it has not seemed to generate often more accurate
results than traditional regression based techniques.
Indeed, Shepperd et al., Niessink and van Vliet found
that estimation by analogy generated better results than
stepwise regression [23, 25, 26]; by contrast, Briand et

94

al., Stensrud and Myrtveit reported the reverse, namely
that regression based analysis generated more accurate
models than using analogy [7, 22]. Recent research has
been initiated to explain the relationship which exists
between different properties of the dataset (size,
number of attributes, …) and the accuracy of a
prediction system [27]. Beyond this interesting issue, in
this work we deal with an important limitation of
estimation by analogy which arises when software
projects are described by categorical data (nominal or
ordinal scale). Here the principal problem is in the
evaluation of the similarity between two software
projects when theirs attributes are measured by
qualifications such as ‘very low’, ‘low’ and ‘high’;
these qualifications are called linguistic values in fuzzy
logic 1. To overcome this limitation, we have developed
and validated a set of candidate measures for software
projects similarity. These measures are based on fuzzy
sets, fuzzy reasoning and linguistic quantifiers [12, 13,
14]. Consequently, the purpose of this paper is to
provide a new approach to estimate effort by analogy
when software projects are described either by
numerical (interval, ratio or absolute scale) or
categorical (nominal and ordinal scale) data

This paper is organized as follows: In the first section,
we briefly outline the principles of fuzzy logic and
linguistic quantifiers. In the second section, we present
the classical procedure of estimation by analogy; which
procedure cannot handle categorical data. To overcome
this limitation, we propose, in the fourth section, a new
approach which can be seen as a fuzzification of the
classical approach of estimation by analogy. We
illustrate, by means of the COCOMO’81 dataset, the
computing process of each step composing the life
cycle of our approach. A conclusion and overview of
future work conclude this paper.

2. Fuzzy Logic and Linguistic Quantifiers

2.1 Fuzzy Logic

Since its foundation by Zadeh in 1965 [32], Fuzzy
Logic (FL) has been the subject of important
investigations. At the beginning of the nineties, fuzzy
logic was firmly grounded in terms of its theoretical
foundations and its application in the various fields in
which it was being used (robotics, medicine, image
processing, etc.).

According to Zadeh [34], the term “fuzzy logic” is
currently used in two different senses. In a narrow
sense, FL is a logical system aimed at a formalization
of approximate reasoning. In a broad sense, FL is

1 In the rest of this paper, categorical or linguistic values will be

used as synonymous.

almost synonymous with fuzzy set theory. Fuzzy set
theory, as its name suggests, is basically a theory of
classes with unsharp boundaries. It is considered as an
extension of classical set theory. The membership
function µA(x) of x in a classical set A, as a subset of
the universe X, is defined by:

∉
∈

=
Axiff
Axiff

xA 0
1

)(µ

This means that an element x is either a member of set
A (µA(x)=1) or not (µA(x)=0). Classical sets are also
referred to as crisp sets. For many classifications,
however, it is not quite clear whether x belongs to a set
A or not. For example, in [16], if set A represents PCs
which are too expensive for a student’s budget, then it
is obvious that this set has no clear boundary. Of
course, it could be said that a PC priced at $2500 is too
expensive, but what about a PC priced at $2495 or
$2502? Are these PCs too expensive? Clearly, a
boundary could be determined above which a PC is too
expensive for the average student, say $2500, and a
boundary below which a PC is certainly not too
expensive, say $1000. Between those two boundaries,
however, there remains an interval in which it is not
clear whether a PC is too expensive or not. In this
interval, a grade could be assigned to classify the price
as partly too expensive. This is where fuzzy sets come
in: sets in which the membership has grades in the
interval (0,1). The higher the membership x has in
fuzzy set A, the more true it is that x is A.

The fuzzy set, introduced by Zadeh, is a set with
graded membership in the real interval (0,1). It is
denoted by:

∫=
X

A xxA /)(µ

where µA(x) is known as the membership function and
X is known as the universe of discourse. Figure 1
shows two representations of the linguistic value ‘too
expensive’; the first using a fuzzy set (Figure 1 (a)) and
the second using a classical set (Figure 1 (b)). The
major advantage of the fuzzy set representation is that
it is a gradual function rather than an abrupt-step
function between the two boundaries of $1000 and
$2500.

Among the other branches of fuzzy set theory are fuzzy
arithmetic, fuzzy graph theory and fuzzy data analysis.

2.2 Linguistic Quantifiers

A large number of linguistic quantifiers are used in
human discourse. In [33], Zadeh distinguishes between
two classes of linguistic quantifiers: absolute and
proportional. Absolute quantifiers such as ‘about 10’
and ‘about 20’ can be represented as a fuzzy set Q of

95

Figure 1. Fuzzy set (a) and Classical set (b) for the linguistic value ‘too expensive’

the non-negative reals. In this work, we are concerned
with proportional quantifiers.

A proportional linguistic quantifie r indicates a
proportional quantity such as ‘most’, ‘many’ and ‘few’.
Zadeh has suggested that proportional quantifiers can
be represented as fuzzy set Q of the unit interval I. In
this representation, for any r ∈I, Q(r) is the degree to
which the proportion r satisfies the concept represented
by the term Q. Furthermore, Yager distinguished three
categories of proportional quantifier [29, 30]:

(a) A Regular Increasing Monotone (RIM) quantifier
such as ‘many’, ‘most’ and ‘at least α’ is
represented as fuzzy subset Q satisfying the
followings conditions:
1- Q(0)=0,
2- Q(1)=1, and
3- Q(x)≥Q(y) if x>y

(b) A Regular Decreasing Monotone (RDM)
Quantifier such as ‘few’ and ‘at most α’ is
represented as fuzzy subset Q satisfying the
followings conditions:
1. Q(0)=1,
2. Q(1)=0, and
3. Q(x)≤Q(y) if x>y

(c) A Regular UniModal quantifier, such as ‘about α’,
is represented as fuzzy subset Q satisfying the
followings conditions:.
1- Q(0)=0,
2- Q(1)=1, and
3- There exist two values a and b ∈ I, where a<b,

such that:
i. For y <a, Q(x)≤Q(y) if x<y
ii. For y ∈[a,b], Q(y)=1

iii. For y>b, Q(x)≥Q(y) if x<y

Two interesting relationships exist between these three
categories of proportional quantifiers:

• If Q is an RIM quantifier, then its antonym is an
RDM quantifier and vice versa: Examples of

these antonym pairs are ‘few’ and ‘many’, and ‘at
least α’ and ‘at most α’.

• Any RUM quantifier can be expressed as the
intersection of an RIM and an RDM quantifier.

3. Estimation by analogy

Estimation by analogy is essentially a form of Case-
Based Reasoning. Case-Based Reasoning has four
steps [1]:

1- Retrieve the most similar case or cases
2- Reuse the information and knowledge in that

case to solve the problem
3- Revise the proposed solution
4- Retain the parts of this experience likely to be

useful for future problem solving
In the situation of effort estimation, CBR is based on
the following affirmation: similar software projects
have similar cost. It has been deployed as follows:
First, each project must be described by a set of
attributes which must be relevant and independent.
Second, we must determine the similarity between the
candidate project and each project in the historical
database. Third, we use the known effort values from
the historical projects to derive an estimate for the new
project; this later step is known as case adaptation.

 Since it was first used by Vancinanza et al. [28] who
suggested that CBR might be usefully adapted to make
accurate software effort predictions, estimation by
analogy has been the subject of studies aimed at to
evaluating, enhancing, reformulating and adapting the
CBR life cycle according to the features of the software
effort prediction context. Shepperd et al. has been
involved in the development of CBR techniques and
tools to build software effort prediction systems for
five years ago [25, 26]. In their recent work, they tried
to explain why different research teams have reported
widely different results by using CBR technology;
other that the characteristics of the historical software
projects database being used, Sheppered et al.

)(exp xensivetooµ

2500 1000
(a)

0

1

2500 1000 0

1

(b)

)(exp xensivetooµ

96

examined the impact of the choice of number of
analogies and adaptation strategies when making
predictions by using a dataset of software projects
collected by a Canadian software house. They found
that, first, choosing analogies is important; more
specifically, three analogies seemed to be optimal
although a fixed value for k (number of analogies) was
more effective for the larger dataset while distance
based analogies selection appeared more effective for
the smaller dataset. Second, case adaptation strategies
seemed to have little imp act on the accuracy of the
estimation by analogy [19].

Angelis and Stamelos, when studying the estimation by
analogy method for Albrecht’s software projects,
explored the problem of determining the parameters for
configuration of the analogy procedure before its
application to a new software project. Indeed, they
studied three parameters. First, the choice of distance
measure that will be used to evaluate the similarity
between software projects. Second, the number of
analogies to take into account in the effort estimation.
Third, the statistic that will be used to calculate the
unknown effort from the efforts of the similar projects.
They suggested that these three parameters must be
configured by using the bootstrap method which
consists of drawing news samples of software projects
from the available dataset and testing the performance
of the chosen parameters on these large numbers of
samples. This is allow to the user to identify which
parameters values give often accurate estimates; so,
these values can be used to generate prediction for a
new software project. This kind of search for optimal
parameters is called calibration of the estimation
procedure [3].

However, even tough it is well recognized that
estimation by analogy is a promising technique to
contribute to the software estimation problem, there are
certain limitations that prevent it from being more
popular. The most important is that until now it cannot
handle categorical data such as ‘very low’, ‘low’ and
‘high’ whereas many factors such as experience of
programmers, complexity of modules and software
reliability are measured on at least an ordinal or
nominal scale. For example, the well-known
COCOMO’81 model uses 15 attributes out of 17 (22
out of 24 in the COCOMOII) which are measured with
six linguistics values: ‘very low’, ‘low’, ‘nominal’,
‘high’, ‘very high’ and ‘extra-high’ [5, 6, 8]. Another
example is the Function Points measurement method,
in which the level of complexity for each item (input,
output, inquiry, logical file or interface) is assigned
using three qualifications (‘low’, ‘average’ and ‘high’).
Then there are the General System Characteristics, the
calculation of which is based on 14 attributes measured
on an ordinal scale of six linguistic values (from

‘irrelevant’ to ‘essential’) [15]. To overcome this
limitation, we present in the next section a new method
which can be seen as a fuzzification of the classical
analogy to deal with categorical data. This method will
be christened, in the rest of this paper, Fuzzy Analogy.

4. Estimation by Analogy using Fuzzy
Logic: Fuzzy Analogy

The key activities for estimating software project effort
by analogy are the identification of a candidate
software project as a new case, the retrieval of similar
software projects from a repository, the reuse of
knowledge derived from previous software projects
(essentially the actual effort) to generate an estimate for
the candidate software project. Estimation by analogy
has motivated considerable research in recent years.
However, none has yet dealt with categorical data. We
present here a new approach based on reasoning by
analogy and fuzzy logic which extends the classical
analogy in the sense that it can be used when the
software projects are described either par numerical or
categorical data.

Fuzzy Analogy is a fuzzification of the classical
analogy procedure. It is also composed of three steps:
identification of cases, retrieval of similar cases and
case adaptation; each step is a fuzzification of its
equivalent in the classical analogy procedure. In the
following sub-sections, each step is further detailed.

4.1 Identification of cases

The goal of this step is the characterization of all
software projects by a set of attributes. Selecting
attributes which well describe software projects is a
complex task in the analogy procedure. Indeed, the
selection of attributes depends on the objective of the
CBR system; in our case, the objective is to estimate
the software project effort. Consequently, the attributes
must be relevant for the effort estimation task. The
problem is how to know all attributes which exhibit a
significant relationship with effort in a given
environment? The solution adopted by cost estimation
researchers and practitioners is to test the correlation
between effort and all attributes for which data in the
studied environment is available. So, this solution does
not take into account attributes, which can affect
largely the effort, if they have not yet recorded data.
Another interesting criteria that each relevant attribute
must satisfy is the independence with respect to the
other attributes. Shepperd et al., in the ANGEL tool,
propose to resolve the attributes selection problem by
applying a brute force search of all possible attributes
subsets. They recognized that this is an NP-hard search
problem and consequently this is not feasible solution

 97

where the number of the candidate attributes is large.
On the other hand, Briand et al. propose to use a t-test
procedure to select the set of attributes. Sheppered
claimed that this is not a good solution because the
stepwise procedure is not efficient to model the
potential interactions between the software project
attributes [19]. There are two other criteria, which have
not yet been the subject of in dept-study in the cost
estimation literature, to which each relevant and
independent attribute must obey: the attribute must be
comprehensive which means that must be well defined
and the attribute must be operational which means that
must be easy to measure. We believe that the best way
to solve the attributes selection problem is by
integrating a learning procedure in the analogy
approach. We are deferring here to give more details
about this alternative until we develop a complete
learning procedure for our Fuzzy Analogy procedure.
Before the learning phase and in the training phase of
our approach, we adopt a variation of Sheppered’s
solution by allowing to the estimators the freedom to
utilise the attributes that they believe best characterize
their projects and more appropriate to their
environment.

The objective of our Fuzzy Analogy approach is to deal
with categorical data. So, in the identification step,
each software project is described by a set of selected
attributes which can be measured by numerical or
categorical values. These values will be represented by
fuzzy sets. In the case of a numerical value x0 (no
uncertainty), its fuzzification will be done by the
membership function which takes the value of 1 when
x is equal to x0 and 0 otherwise. For categorical value,
let us suppose that we have M attributes and for each
attribute Vj, a measure with linguistic values is defined
(j

kA). Each linguistic value, j
kA , is represented by a

fuzzy set with a membership function (j
kAµ). It is

preferable that these fuzzy sets satisfy the normal
condition as it was defined in [13]. The use of fuzzy
sets to represent categorical data, such as ‘very low’
and ‘low’, mimics the way in which humans interpret
these values and consequently it allows us to deal with
vagueness, imprecision and uncertainty in the case
identification step. Another advantage of our Fuzzy
Analogy approach is that it takes into account the
importance of each selected attribute in the cases
identification step; indeed, it is obvious that all selected
attributes have not necessarily the same influence on
the software project effort. So, we are required to
indicate the weights, uk, associated with all selected
attributes in the cases identification step.

To illustrate the cases identification step, we use the
COCOMO’81 dataset. Each software project in this
dataset is described by 17 attributes which are declared
relevant and independent [5]. Among these, the DATA

cost driver is measured by four linguistic values: ‘low’,
‘nominal’, ‘high’ and ‘very high’. These linguistic
values are represented by classical intervals in the
original version of the COCOMO’81; because the
advantage of the representation by fuzzy sets rather
than classical intervals, we have proposed to use the
representation given in figure 2. The weight associated
to the DATA cost driver, udata, is equal to 1.23. It is
evaluated by its productivity ratio2 .

4.2 Retrieval of similar cases

This step is based on the choice of a software project
similarity measure. This choice is very important since
it will influence which analogies are found. In the
literature, most researchers have used the Euclidean
distance when the projects are described by numerical
data and the equality distance when they are described
by categorical data [26]. These two measures are not
suitable when the categorical data are represented by
fuzzy sets. Consequently, we have proposed a set of
candidate measures for software project similarity to
avoid this limitation [12]. These measures evaluate the
overall similarity of two projects P1 and P2, d(P1, P2),
by combining the individual similarities of P1 and P2
associated with the various linguistic variables
(attributes) (Vj) describing P1 and P2,),(21 PPd

jv . After

an axiomatic validation of some proposed candidate
measures for the individual distances),(21 PPd

jv , we

have retained two measures [13]:

−

×

−
= ∑

)(1.2

)()(

)1.1(minmax

))(),(min(max

),(
21

21

21

naggregatioproductsum

PP

naggregatio

PP

PPd

k
AA

AAk

v
j

k
j

k

j
k

j
k

j µµ

µµ

where Vj are the linguistic variables describing projects

P1 and P2, j
kA are the fuzzy sets associated with Vj, and

j
kA

µ are the membership functions representing fuzzy

sets j
kA .

To evaluate the overall distance of P1 and P2, the
individual distances),(21 PPd

jv are aggregated by

using RIM linguistic quantifiers such as ‘all’, ‘most’,
‘many’, ‘at most α’ or ‘there exists’. The choice of the
appropriate RIM linguistic quantifier, Q, depends on

2 The productivity ratio is the project’s productivity ration

expressed in Delivered Source Instructions by Man-Months for
the best possible attribute rating to its worst possible variable
rating, assuming that all the ratings for all other attributes remain
constant.

98

Figure 2. Membership functions of fuzzy sets defined for the DATA cost driver [13]

the characteristics and the needs of each environment.
Q indicates the proportion of individual distances that
we feel is necessary for a good evaluation of the
overall distance. The overall similarity of P1 and P2 ,
d(P1 , P2) is given by one of the following formulas
[14]:

=

)),((

)),((

)),((

)),((

),(

21

21

21

21

21

PPdofexiststhere

PPdofmany

PPdofmost

PPdofall

PPd

j

j

j

j

v

v

v

v

When choosing the appropriate RIM linguistic
quantifier to guide the aggregation of the individual
distances, its implementation is realized by an
Ordered Weight Averaging operator [14, 30].
Consequently, the overall distance, d(P1 , P2), is
calculated by means of the following formula:

),()()(),(21
1

1

11
21 PPd

T

u
Q

T

u
QPPd

jv

M

j

j

k
k

j

k
k

∑
∑∑

=

−

== −=

where),(21 PPd
jv is the jth largest individual

distance, uk is the importance weight associated with
the kth variable describing the software project, and T
is the total sum of all importance weights uk which
are provided in the cases identification step.

To illustrate the retrieval of similar cases step, we
suppose that ‘most’ is the appropriate RIM linguistic
quantifier for the COCOMO’81 dataset and it is
represented by the fuzzy subset Qmost (r)=r3. Table 1
shows the results obtained for the overall similarity,
between the first project and the first five projects in
the COCOMO’81 dataset, using the max-min
aggregation (formula 1.1) to evaluate the individual
similarities.

 Max-min aggregation

)P,(Pd n1jv

 d(P1, Pn)
 P1 P2 P3 P4 P5
P1 M

ost
0.69
875

2.0948
E-02

2.9783
E-03

8.4882
E-02

4.4606
E-03

Table 1. Results obtained for d(P1, Pi) when
aggregation uses the ‘most’ linguistic quantifier

4.3 Case adaptation

The objective of this step is to derive an estimate for
the new project by using the known effort values of
similar projects. There are two problems here. First,
how many similar projects will be used in the
adaptation? In the literature, one can notice that there
is no clear rule to guide the choice of the number of
analogies, k . Shepperd et al. have tested two strategies
to calculate the number k : a) it can be set to some
constant value, they explore values between 1 and 5;
b) it can be determined dynamically as the number of
cases that fall within distance d, of the new project
[19]. Briand et al. have used a single analogy [7].
Angelis and Stamelos have tested a number of
analogies in the range of 1 to 10 when studying the
calibration of the analogy procedure for the
Albrecht’s dataset [3]. The results obtained from
these experimentations seemed to favour the case
where k is equal to 2 or 3.

We are not convinced by the approach fixing the
number of analogies to be considered in the case
adaptation step. The principle of this approach is to
take only the k first projects which are similar to the
new project. Let us suppose that the distances
between the first three projects of one dataset (P1, P2,
P3) and the new project (P) are respectively: 3.30,
4.00 and 4.01; consequently, when we consider k is
equal to 2, we will use only the two projects P1 and P2

5 10 55 100 550 1000

1
Low Nominal High Very High

D/P

 99

in the calculation of an estimate of P; the project P3
will not be considered in this case although there is
no clear difference between d(P2, P), 4.00, and d(P3,
P), 4.01!! We believe that the use of the number k
hides behind the use of the classical logic principle:
each project in the dataset is either or not similar to
the new project. In our approach, we propose to use
all of the projects in the dataset to derive an estimate
of the new project. Each historical project will
contribute, in the calculation of the effort of the new
project, according to its degree of similarity with this
project. This alternative seems not to be in conformity
with what it is recognized within the cost estimation
researchers community. Indeed, it is unanimously
established that increasing number of analogies lead
to extremely high level of estimation error[3, 19, 25,
26]. This is not true in our Fuzzy Analogy approach
because there are significant differences between our
similarity measures and Euclidean (or equality)
distance [12, 13, 14]. Moreover, d(P1 , P2) using
Euclidean distance has no clear natural interpretation;
contrary to our similarity measures where d(P1, P2) is
a membership function which expresses the truth
value of the fuzzy proposition ‘P1 and P2 are similar’
[13, 14].

The second question in this step is how to adapt the
chosen analogies in order to generate an estimate for
the new project? The most used formulas are those
using the (weighted) mean or the median of the k
chosen analogies. In the case of weighted mean
formula, the weights can be the similarity distances or
the ranks of the projects. For our Fuzzy Analogy
approach, we use the weighted mean of all known
effort projects in the dataset; the weights are our
similarity distances. The formula is then:

∑

∑

=

=

×
= N

i
i

N

i
ii

PPd

PEffortPPd
PEffort

1

1

),(

)(),(
)(

• If d(P,Pi) is null then this implies that Pi does not

influence the estimated effort of P. This is
reasonable because d(P,Pi) is the truth value of
the fuzzy proposition ‘P and Pi are similar’.

• If d(P,Pi) is equal to 1 then this implies that Pi
influences to the maximum the estimated effort
of P.

• If d(P,Pi) is between 0 and 1 then this implies
that Pi influences partially, according to the
value of d(P,Pi), the estimated effort of P.

• If all d(P,Pi) are equal to 0 then the effort of P is
indeterminate. This is the case if all projects in
database differ very widely in nature from P; so,
the effort of P can be any value including all the

known effort values of historical software
projects Pi in the dataset.

To illustrate the case adaptation step, we calculated
the estimated effort for the first project, P1, in the
COCOMO’81 dataset by considering only the first
five projects (P1, P2, P3, P4, P5) for which the
similarity distances are given in table 1. We found
that the estimated effort is equal to 1824Man-Months
whereas the actual effort is 2040Man-Months.

5. Conclusions and Future Work

In this paper, we have proposed a new approach to
estimate the software project effort. This approach is
based on reasoning by analogy, fuzzy logic and
linguistic quantifiers. Such an approach can be used
when the software projects are described by
categorical and/or numerical data. Thus, our approach
improves the classical analogy procedure which does
not take into account categorical data. In the Fuzzy
Analogy approach, both categorical or numerical data
are represented by fuzzy sets . The advantage of this is
to handle correctly the imprecision and the
uncertainty when describing a software project. Also,
by using RIM linguistic quantifier to guide the
aggregation of the individual similarities between two
projects, the Fuzzy Analogy approach can be easily
adapted and configured according to the needs of
each environment. There are two other characteristics
which can be integrated in our approach:

• first, it can learn from previous situations in
order to generate more accurate predictions. The
learning procedure can be implemented in the
three steps of our approach. For example, in the
identification step, it will be possible to propose
a set of attributes which have often led to
accurate results. This set of attributes will be
used to describe the new project and
consequently the attributes selection problem
can be solved by learning.

• Second, our approach must handle the
uncertainty when estimating the effort of the
new project. Indeed, Kitchenham and Linkman
have suggested that it is safer to produce interval
estimates with a probability distribution rather
than a point estimates which could lead to
wrong managerial decisions and project failure.
The estimation by interval with probability
distribution provides the basis for risk analysis
[18].

When integrating these two characteristics in the
Fuzzy Analogy approach, it will satisfy the famous
concept ‘Soft Computing’ defined by Zadeh in [34].

To complete this work, the Fuzzy Analogy prediction
system must be validated. According to Fenton, a

100

prediction system is valid if it generates accurate
predictions [9]. Further research has been initiated to
validate our effort prediction system.

6. References

[1] A. Aamodt, E. Plaza, “Case-Based Reasoning:
Foundational Issues, Methodological Variations,
and System Approaches”, AI Communications,
IOS Press, Vol. 7, no 1, 1994, pp. 39-59.

[2] A. Abran, P.N. Robbiard, “Functions points
analysis: an empirical study of its measurement
processes”, IEEE Trans. on Software
Engineering, Vol. 22, no 12, 1996, pp. 895-909.

[3] L. Angelis, I. Stamelos, “A Simulation Tool For
Efficient Analogy Based Cost Estimation”,
Empirical Software Engineering, Vol. 5, no 1,
2000, pp. 35-68.

[4] J.M. Benitez, J.L. Castro, and I. Requena, “Are
Artificial Neural Networks Black Boxes?”,
IEEE Transactions on Neural Networks, Vol. 8,
no 5, September, 1997, pp. 1156-1164.

[5] B.W. Boehm, Software Engineering Economics,
Prentice-Hall, 1981.

[6] B.W. Boehm, and al., “Cost Models for Future
Software Life Cycle Processes: COCOMO 2.0”,
Annals of Software Engineering on Software
Process and Product Measurement, Amsterdam,
1995.

[7] L. Briand, T. Langley, I. Wieczorek., “Using the
European Space Agency data set: A replicated
assessment and comparison of common software
cost modeling”, In Proc 22th IEEE International
Conference on Software engineering, Limerik,
Ireland, 2000.

[8] D.S. Chulani, “Incorporating Bayesian Analysis
to Improve the Accuracy of COCOMO II and Its
Quality Model Extension”, Ph.D. Qualifying
Exam Report, USC, February, 1998.

[9] N. Fenton, and S.L. Pfleeger, Software metrics:
A Rigorous and Practical Approach,
International Computer, Thomson Press, 1997.

[10] Gulezian R., ‘Reformulating and Calibrating
COCOMO’ Journal Systems Software, Vol. 16,
1991, pp. 235-242.

[11] A. Idri, L. Kjiri, and A. Abran, “COCOMO Cost
Model Using Fuzzy Logic”, 7th International

Conference on Fuzzy Theory & Technology,
Atlantic City, NJ, February, 2000. pp. 219-223.

[12] A. Idri, and A. Abran, “Towards A Fuzzy Logic
Based Measures For Software Project
Similarity”, Sixth Maghrebian Conference on
Computer Sciences, Fes, Morroco, November,
2000. pp. 9-18.

[13] A. Idri, and A. Abran, “A Fuzzy Logic Based
Measures For Software Project Similarity:
Validation and Possible Improvements”, 7th
International Symposium on Software Metrics
,IEEE computer society, 4-6 April, England,
2001. pp. 85-96.

[14] A. Idri, and A. Abran, “Evaluating Software
Project Similarity by using Linguistic Quantifier
Guided Aggregations”, 9th IFSA World
Congress/20th NAFIPS International
Conference, 25-28 July, Vancouver, 2001.

[15] IFPUG, “Function Point Counting Practices
Manual”, Release 4.0, International Function
Point Users Group – IFPUG, Westerville, Ohio,
1994.

[16] R. Jager, “Fuzzy Logic in Control”, Ph.D.
Thesis, Technic University Delft, Holland, 1995.

[17] R. Jeffery, M. Ruhe, I. Wieczorek, “Using
Public Domain Metrics to Estimate Software
Development Effort”, 7th International
Symposium on Software Metrics ,IEEE
computer society, 4-6 April, London, 2001, pp.
16-27.

[18] B. Kitchenham, S. Linkman, “Estimates,
uncertainty and risks”, IEEE Software, Vol. 14,
no 3, 1997, pp. 69-74.

[19] G. Kadoda. M. Cartwright, L. Chen, M.
Shepperd, “Experiences Using Case-Based
Reasoning to Predict Software Project Effort”,
EASE, Keele, UK, 2000, p. 23.

[20] J.L. Kolodner, Case-Based Reasoning, Morgan
Kaufmann, 1993.

[21] Matson J., E, Barrett B., E, Mellichamp J., M,
‘Software Development Cost Estimation Using
Function Points’, IEEE, Vol. 20, no 4, Apr.,
1994, pp. 275-287.

[22] I. Myrtveit, E. Stensrud, “A Controlled
Experiment to Assess the Benefits of Estimating
with Analogy and Regression Models”, IEEE
Transaction on Software Engineering, Vol. 25,
no 4, July/August, 1999, pp. 510-525.

 101

[23] F. Niessink, H. Van Vliet “Predicting
Maintenance Effort with Function Points”, in
Proc Inter. Conf. on Soft. Maintenance, Bari,
Italy, IEEE Computer Society, 1997.

[24] Putnam L. H, ‘ A General Empirical Solution to
the Macro Software Sizing and Estimation
Problem’, IEEE Transactions on Soft. Eng., Vol.
SE-4, no 4, July, 1978.

[25] M. Shepperd, C. Schofield, and B. Kitchenham,
“Effort Estimation using Analogy”, ICSE-18,
Berlin, 1996, pp. 170-178.

[26] M. Shepperd, and C. Schofield, “Estimating
Software Project Effort Using Analogies”, IEEE
Trans. on Software Engineering , Vol. 23, no. 12,
November, 1997, pp. 736-743.

[27] S. Shepperd, G. Kadoda, “Using simulation to
evaluate predictions systems”, 7th International
Symposium on Software Metrics ,IEEE
computer society,4-6 April, England, 2001. pp.
349-358.

[28] S. Vicinanza, and M.J. Prietolla, “Case Based
Reasoning in Software Effort Estimation”,
Proceedings 11th Int. Conf. on Information
Systems, 1990.

[29] R.R. Yager, and J. Kacprzyk, The Ordered
Weighted Averaging Operators: Theory and
Applications” Kluwer: Norwell, MA, 1997.

[30] R.R. Yager, “Quantifier Guided Aggregation
using OWA Operators”, International Journal
of Intelligent Systems, 11, 1996, pp.49-73.

[31] R.R. Yager, “Fuzzy Constraint Satisfaction for
E-commerce Agents”, 7th International
Conference on Fuzzy Theory & Technology,
Atlantic City, NJ, February, 2000. pp. 111-114.

[32] L.A. Zadeh, “Fuzzy Set”, Information and
Control, Vol. 8, 1965, pp. 338-353.

[33] L.A. Zadeh, “A computational approach to
fuzzy quantifiers in natural languages”,
Computing and Mathematics with Applications,
9, 1983, pp. 149-184.

[34] L.A. Zadeh, “Fuzzy Logic, Neural Networks,
and Soft Computing”, Comm. ACM, Vol. 37, no
3, March, 1994, pp.77-84.

