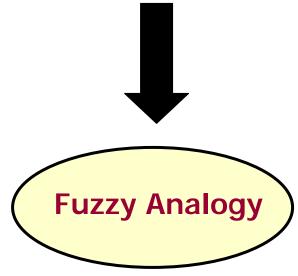
Fuzzy Analogy: A New Approach for Software Cost Estimation

Ali Idri, ENSIAS, Rabat, Morocco Alain Abran, ETS, Montreal, Canada Taghi M. Khoshgoftaar, FAU, Boca Raton, Florida

11th International Workshop on Software Measurement, Montréal, 28-29 August, 2001



- Introduction
- Software Cost Estimation Models
- Estimation by Analogy
- Fuzzy Logic
- Linguistic Quantifiers
- Fuzzy Analogy
- Output Conclusions and Future Work

- Software cost estimation is one of the most critical activities in managing software projects
- Estimation by Analogy is a promising technique to solve the software estimation problem
- Critic : Estimation by Analogy cannot handle categorical data such as 'very low', 'low', 'high'....
- However, software projects are always described by categorical rather than numerical data:
 - Solution Cocomo'81: 16 out of 17 attributes are categorical
 - Section Cocomolii: 22 out of 24
 - Function Points : Evaluation of the complexity for Inputs, Outputs, Files, Inquiries. Evaluation of the TCF

• Objective

A new approach for software cost estimation based on reasoning by **Analogy**, **Fuzzy Logic and Linguistic Quantifier**

Software Cost Estimation Models

• History

🏷 1975, Halstead

$$Effort = \frac{\mathbf{m}_1 N_2 Log(\mathbf{m}_1 + \mathbf{m}_2)}{2S \mathbf{m}_2}$$

🏷 1978, Putnam

🌭 1981, Boehm, COCOMO

Software Cost Estimation Models

Olassification

Algorithmic Models

Regression simple/multiple, Interpolation, Bayesian, PCA, etc.

Advantages

- Easy to use
- Easy to develop

Scritics

- They make assumption about the form of the prediction function $Effort = \mathbf{a} \times size^{\mathbf{b}}$
- They need to be adjusted or calibrated to local circumstances

Software Cost Estimation Models

Olassification

<u>Non-algorithmic Models</u>

- **NN, CBR, Rule Induction, Regression Trees**
- Advantages
 - Capabilities to adequately model the complex set of relationship between factors
 - Learning
 - Their behavior is easy to understand

Critics

- They are not easy to develop
- They need software tools to automate their process

Estimation by Analogy

• Estimation by Analogy is based on the affirmation :

Similar software projects have similar costs

- Estimation by analogy is composed by :
 - Characterization of the projects by a set of attributes such as Reliability, Complexity, Analysts competence ...
 - Evaluation of the similarity between the candidate project and each project in the database
 - Scheme Adaptation
- Related Works : Vacninanza, Sheppered, Briand, Angelis,...

• Shepperd et al. (1997)

-

$$d(P_1, P_2, V) = \frac{1}{\sum_{v_j} d_{v_j}(P_1, P_2)}$$

$$d_{v_{j}}(P_{1}, P_{2}) = \begin{cases} (V_{j}(P_{1}) - V_{j}(P_{2}))^{2} \\ 0 & \text{si } V_{j}(P_{1}) \neq V_{j}(P_{2}) \\ 1 & \text{si } V_{j}(P_{1}) = V_{j}(P_{2}) \end{cases}$$

Imprecise and Uncertain Data Low, High, Excellent ???

UQÀM

© 2001 Software Engineering Management Research Laboratory

Classical Logic

Fuzzy Logic

♦ Idri and Abran, 7th FT&T, Atlantic City, 2000

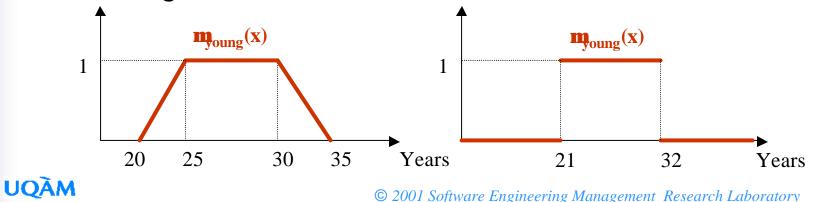
The equality distance is not precise and can give great difference when estimating effort for two similar software projects described by **Vagueness information**

We have proposed a set of similarity measures based on fuzzy logic

♦ Idri and Abran, 7th IEEE Metrics, London, 2001

We have validated by means of an axiomatic approach the proposed similarity measures

Idri and Abran, 9th IFSA/20th NAFIPS, Vancouver, 2001


We have improved the retained measures by using linguistic quantifier guided aggregations

• Values between '<u>TRUE</u>' and '<u>FALSE</u>' ?

'The main motivation of fuzzy logic is the desire to build up a formal, quantitative framework that captures the vagueness of human knowledge via natural languages' Dubois and Prade 1991

- 1965, Zadeh : Fuzzy Set
- 1994, Zadeh : Fuzzy Logic = Fuzzy Set Theory
- Fuzzy Set: set with a membership function which takes values in the unit interval [0, 1] rather than in the {0, 1} as in the classical logic

Linguistic quantifiers

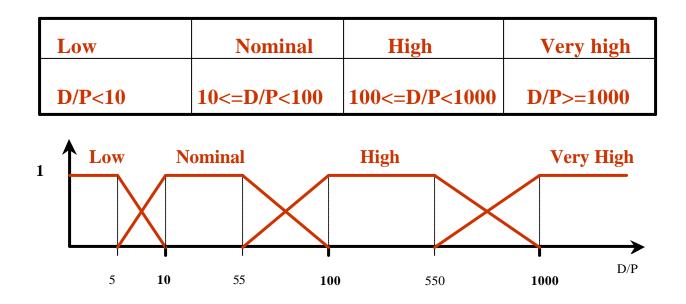
- Human discourse uses a large number of linguistic quantifiers
- Zadeh distinguishes between two classes:
 - Solute linguistic quantifiers 'approximately 10'
 - Proportional linguistic quantifiers (most, few, at least, at most,...)
- Yager has distinguished three categories of proportional quantifiers:
 - SRIM quantifiers (most, at least a,...)
 - ♦ RDM quantifiers (few, at most a,...)
 - RUN quantifiers (about a)

UQÀM

Fuzzy Analogy for Cost Estimation

 Fuzzy Analogy is a fuzzification of the classical analogy procedure

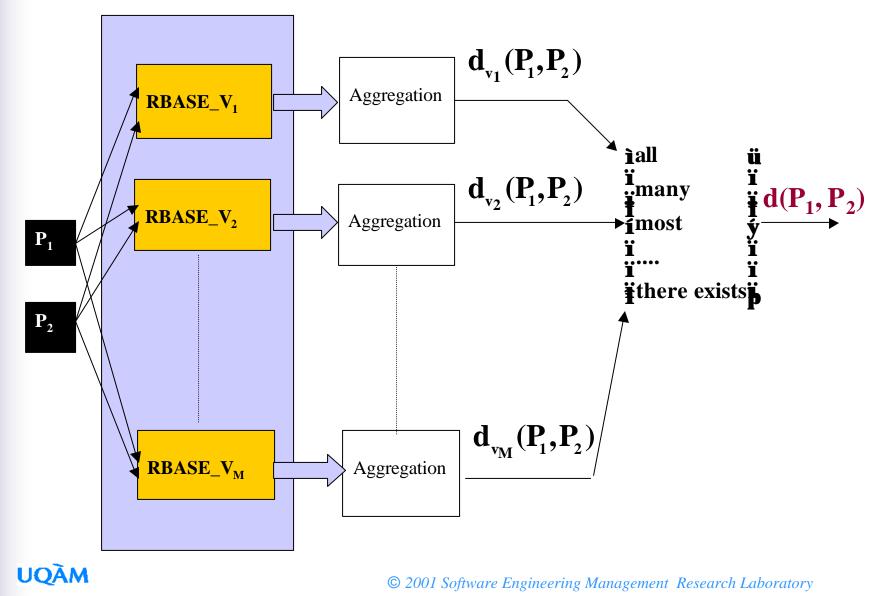
• Fuzzy Analogy is composed of three steps:


- ♦ Identification of software projects
- Evaluation of similarity between projects
- ♦ Adaptation

• Identification Step:

- The aim is to describe the software projects by a set of attributes that are:
 - Selevant
 - Independent
 - Comprehensive
 - Operational

- Each selected attribute is measured either by numerical or categorical data
- Categorical data are represented by fuzzy sets rather than classical set
 - **Example**: The factor **DATA** of the COCOMO model



Each selected attribute has a weight expressing its importance, U_k

UQÀM

• Evaluation of software projects similarity

RBASE

15

• Individual similarities

$$\mathbf{d}_{v_{j}}(\mathbf{P}_{1}, \mathbf{P}_{2}) = \mathbf{i}_{i}^{\mathbf{k}} \mathbf{m}_{A_{k}}^{\mathbf{v}_{1}}(\mathbf{P}_{1}), \mathbf{m}_{A_{k}}^{\mathbf{v}_{j}}(\mathbf{P}_{2}))$$

$$\mathbf{i}_{i}^{\mathbf{v}_{k}} \mathbf{m}_{A_{k}}^{\mathbf{v}_{k}} - \mathbf{m}_{i}^{\mathbf{v}_{k}} \mathbf{m}_{A_{k}}^{\mathbf{v}_{k}}(\mathbf{P}_{2})$$

$$\mathbf{i}_{i}^{\mathbf{v}_{k}} \mathbf{m}_{A_{k}}^{\mathbf{v}_{k}}(\mathbf{P}_{1}) \mathbf{m}_{A_{k}}^{\mathbf{v}_{k}}(\mathbf{P}_{2})$$

$$\mathbf{i}_{i}^{\mathbf{v}_{k}} \mathbf{m}_{i}^{\mathbf{v}_{k}} - \mathbf{product aggregation}$$

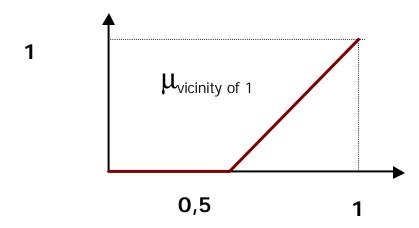
©Verall similarity

UQÀM

$$d(P_{1}, P_{2}) = \begin{cases} \text{all of } d_{v_{j}}(P_{1}, P_{2}) \\ \text{most of } d_{v_{j}}(P_{1}, P_{2}) \\ \text{many of } d_{v_{j}}(P_{1}, P_{2}) \\ \text{at least four of } d_{v_{j}}(P_{1}, P_{2}) \\ \dots \\ \text{there exists of } d_{v_{j}}(P_{1}, P_{2}) \end{cases}$$

© 2001 Software Engineering Management Research Laboratory

• Adaptation


• Two questions

• 1- How many similar projects will be used in the adaptation?

- 2- How to adapt the chosen analogies in order to generate an estimate for the new project?
- In the literature, there is no clear rule to guide the choice of the number of similar projects, K
 - ⊙ In general K=2
 - Suppose that the first three similar projects to the new project P have the following distances: 3.00, 4.00 and 4.01
 - When K=2, we consider only the two first projects
 - Why we have not take into account the third projects?

Solution

- What is 'P_i is closely similar to P'?
- The d(P_i, P) is in the vicinity of 1

• Adaptation formula:

$$Effort(P) = \frac{\sum_{i=1}^{N} \mu_{vicinity of 1}(d(P, P_i)) \times Effort(P_i)}{\sum_{i=1}^{N} \mu_{vicinity of 1}(d(P, P_i))}$$
(3)

If $m_{icinity of 1}(x) = x$ then (3) is exactly the ordinary weighted average

Conclusions and Future work

- We have propose a new approach for software cost estimation: Fuzzy Analogy when software projects are described by categorical data
- Fuzzy Analogy is also applicable when the variables are numeric (no uncertainty)
- Advantages of Fuzzy Analogy
 - It can handle correctly the imprecision and the uncertainty when describing software project
 - It can be easily adapted to the needs of each organization (RIM linguistic quantifiers, Vicinity of 1,...)

• Empirical validation of Fuzzy Analogy is based on

- SCOCOMO'81 dataset
- **F_ANGEL**: A Software prototype based on Fuzzy Analogy

(To be submitted at 8th IEEE Metrics, June, Ottawa, Canada)

Building prediction systems by analogy that satisfy <u>Soft Computing:</u>

- Tolerance of imprecision (Fuzzy Logic)
- Learning (Neural Networks)
- Uncertainty (Belief networks, genetic algorithms,...)