
 1

 
 

Estimating Software Project Effort by Analogy Based on Linguistic Values 
 
 

Ali Idri 
ENSIAS, BP. 713, Agdal 
Université Mohamed V Souissi  
Rabat, Morocco 
E-mail : idri@ensias.ma 

Alain Abran 
École de Technologie Supérieure  
1180 Notre-Dame Ouest, 
Montréal, Canada H3C 1K3 
E-mail : abran.alain@uqam.ca 

Taghi M. Khoshgoftaar 
Empirical Software Engineering 
Laboratory  
Florida Atlantic University 
E-mail : taghi@cse.fau.edu 

 
 

Abstract 
 

Estimation models in software engineering are used to 
predict some important attributes of future entities such as 
software development effort, software reliability and 
programmers productivity. Among these models, those 
estimating software effort have motivated considerable 
research in recent years. The prediction procedure used 
by these software-effort models can be based on a 
mathematical function or other techniques such as 
analogy based reasoning, neural networks, regression 
trees, and rule induction models. Estimation by analogy is 
one of the most attractive techniques in the software effort 
estimation field. However, the procedure used in 
estimation by analogy is not yet able to handle correctly 
linguistic values (categorical data) such as 'very low', 
'low' and 'high'. In this paper, we propose a new approach 
based on reasoning by analogy, fuzzy logic and linguistic 
quantifiers to estimate software project effort when it is 
described either by numerical or linguistic values; this 
approach is referred to as Fuzzy Analogy. This paper also 
presents an empirical validation of our approach based on 
the COCOMO'81 dataset.  
 
1. Introduction 
 

Accurate estimation of the effort and the schedule 
required to develop and/or maintain a software system is 
one of the most critical activities in managing software 
projects. This task is known as Software Cost Estimation. 
In order to make accurate estimates and avoid gross 
misestimations, several cost estimation techniques have 
been developed. These techniques may be grouped into 
two major categories [25]: 
§ algorithmic models, and 
§ non-algorithmic models. 

 
The first category holds the most popular technique (at 

least in the literature), and is illustrated by estimation 
models such as COCOMO [5, 6, 8], PUTNAM-SLIM[23], 
and function points analysis [2, 20]. Algorithmic models 

are derived from the statistical or numerical analysis of 
historical projects data (simple/multiple/stepwise 
regression, Bayesian approach, polynomial interpolation, 
etc). There are two main disadvantages to these models. 
First, they make an assumption on the form of the 
prediction function, represented by: βα sizeEffort ×=  

where α represents a productivity coefficient and β an 
economies (or diseconomies) of scale coefficient. Second, 
they need to be adjusted or calibrated to local 
circumstances (an example of calibrating and 
reformulating COCOMO'81 model is in [10]). 

The non-algorithmic models have been developed to 
avoid the above mentioned shortcomings. Recently, many 
researchers have begun to turn their attention to this 
alternative, and in particular to a set of approaches based 
on neural networks, regression trees, rule induction, and 
case-based reasoning. This alternative has two significant 
advantages: First, the capability to model the complex set 
of relationship between the dependent variable to predict 
(cost, effort) and the independent variables (cost drivers) 
collected earlier in the lifecycle. Second, the capability to 
learn from historical projects data (especially for neural 
networks). 

Experience has shown that there does not exist a ‘best’ 
prediction technique outperforming all the others in every 
situation. Indeed, Shepperd et al., Niessink and Van Vliet 
found that estimation by analogy generated better results 
than stepwise regression [22, 24, 25]. However, Briand et 
al., Stensrud and Myrtveit reported opposite results [7, 
21]. Recent research has been initiated to explain the 
relationship between different properties of historical 
projects dataset (size, number of attributes, presence of 
outliers…) and the accuracy of a prediction system [26]. 
Our work deals with an important limitation of all 
estimation techniques, which arises when software 
projects are described using categorical data (nominal or 
ordinal scale) such as ‘very low’, ‘low’ and ‘high’. These 
qualifications are called linguistic values in fuzzy logic 
terminology. Building cost estimation models based on 
linguistic values is a serious challenge for the software 



 2

cost estimation community. Recently, Angelis et al. [4] 
were the first to propose the use of categorical regression 
procedure (CATREG) to build cost estimation models 
when software projects are described by categorical data. 
This procedure quantifies categorical attributes by 
assigning numerical values to their categories in order to 
produce an optimal linear regression equation for the 
transformed variables. This approach has the following 
limitations: 
§ It replaces each linguistic value by one numerical value. 
This is based on the assumption that a linguistic value can 
always be defined without vagueness, imprecision and 
uncertainty. Unfortunately, this is not often the case. 
Indeed, linguistic values come from human judgements 
that are always vague, imprecise and uncertain. For 
example, let us assume that the experience of 
programmers is measured by three linguistic values: ‘low’, 
‘nominal’ and ‘high’. Most often the meaning of these 
values are not defined precisely and consequently we 
cannot represent them by individual numerical values. 
§ There is no natural interpretation of the numerical 
values assigned by this approach 
§ It assigns numerical quantities to linguistic values in 
order to produce an optimal linear regression equation 
whereas the initial relation between effort and cost drivers 
may be non-linear. 

A more comprehensive approach to deal with linguistic 
values is by using fuzzy set theory. Consequently, the 
purpose of this paper is to provide a new approach based 
on analogy and fuzzy logic to estimate effort when 
software projects are described either by numerical or 
linguistic values.  

This paper is organized as follows: A discussion why 
categorical data should be considered as a particular case 
of linguistic values is presented in Section 2. In Section 3, 
we present the classical procedure of estimation by 
analogy; which procedure cannot handle linguistic values. 
To overcome this limitation, we propose, in Section 4, a 
new approach that can be seen as a fuzzification of the 
classical approach of estimation by analogy. Section 5, 
presents an empirical validation of our technique by means 
of the COCOMO’81 dataset. The obtained results are 
compared to those of three other techniques. Finally, 
Section 6 discusses our findings and suggests future work 
in this area.  

 
2. Categorical data and linguistic values 
 

Here we discuss why categorical data, as software 
measurement researchers define them, are only a particular 
case of linguistic values. The two terminologies come 
from two different fields. The first is used in measurement 
theory whereas the second is used in fuzzy sets theory.  

 In 2001, measurement theory became over a hundred 
years old. According to Zuse, it began with Helmholtz 

pioneering paper: ‘Counting and measuring from 
epistemological point of view’ and lead to modern 
axiomatic representational theory of measurement as 
presented by Krantz et al. [19, 33].  

As in other sciences (physics, medicine, civil, etc.), 
measurement has been discussed in software engineering 
for over thirty years. The objective of software 
measurement is to improve the software process and 
consequently the quality of its various deliverables. This 
can be achieved by evaluating, controlling and predicting 
some important attributes of software entities such as 
development effort, software reliability, and programmers 
productivity. However, measurement in software 
engineering is quite different from other (classical) fields 
and is due to two main reasons. First, software engineering 
is a ‘young’ science and still needs further maturing. 
Second, most of the software attributes are qualitative 
rather than quantitative such as portability, 
maintainability, and reliability. They currently depend on 
human views. The qualitative issue is related to the scale 
type on which the attributes are measured. Often, 
researchers in software measurement identify the scale 
type of a measure as being one of the five types defined by 
Stevens in 1946 [27]: Nominal, Ordinal, Interval, Ratio or 
Absolute.  

Categorical attributes are those with nominal or ordinal 
scale. The Nominal scale is the lowest scale level and it 
only allows the classification of software entities in 
different classes or categories. Examples of this scale can 
be found in literature, such as the language used in the 
implementation phase (C, C++, Java, Cobol, etc) and the 
application type (Business, Control, Finance, etc). The 
Ordinal scale provides us, in addition to the classification 
of software entities, information about an ordering of the 
categories. Examples of ordinal attributes are  complexity 
of software (simple, nominal, complex) and  software 
comprehensibility (very low, low, nominal, high). 

In software engineering, it seems that the most 
interesting software attributes are measured either on a 
Nominal or Ordinal scale. The problem of categorical 
attributes is caused by the fact that humans are directly 
involved in the measurement process. Consequently, the 
results of the measurements may be highly influenced by 
their own judgement. Thus, humans often use linguistic 
values such as ‘very low’, ‘complex’, ‘important’ and 
‘essential’ rather than numerical data to evaluate software 
attributes. When using linguistic values, imprecision, 
uncertainty and partial truth are unavoidable.  However, 
until now, software measurements community often use 
numbers or classical interval to represent these linguistic 
values. This representation does not mimic the way in 
which humans interpret linguistic values and consequently 
cannot deal with imprecision and uncertainty. To 
overcome this limitation, we have suggested the use of 
fuzzy sets rather than classical interval (or numbers) to 



 3

represent categorical data [11,12,13,14,15]. The main 
motivation of fuzzy sets theory, founded by Zadeh in 
1965, is apparently the desire to build a formal 
quantitative framework that captures the vagueness of 
humans knowledge since it is expressed via natural 
language. Consequently, in this work we use fuzzy sets 
theory to deal with linguistic values in the estimation by 
analogy procedure. 
 
3. Estimation by analogy 
 

Estimation by analogy is essentially a form of Case-
Based Reasoning which has four steps [1]: 
1- Retrieve the most similar case or cases 
2- Reuse the information and knowledge in that case to 
solve the problem 
3- Revise the proposed solution 
4- Retain the parts of this experience likely to be useful for 
future problem solving 

For effort estimation, CBR is based on the following 
affirmation: similar software projects have similar costs. It 
has been deployed as follows. First, each project must be 
described by a set of attributes that must be relevant and 
independent. Second, we must determine the similarity 
between the candidate project and each project in the 
historical database. Third, we use the known effort values 
from the historical projects to derive an estimate for the 
new project. This later step is known as case adaptation. 

Vacninanza et al. have suggested that CBR might be 
usefully adapted to make accurate software effort 
predictions [28]. Ever since, estimation by analogy has 
been the subject of studies aimed at evaluating, enhancing, 
reformulating and adapting the CBR life cycle according 
to the features of the software effort prediction problem. 
Shepperd et al. have been involved in the development of 
CBR techniques and tools to build software effort 
prediction systems for the past five years [24, 25]. In their 
recent work, they tried to explain why different research 
teams have reported widely different results when using 
CBR technology. In addition to the characteristics of the 
projects data being used, Shepperd et al. examined the 
impact of the choice of the number of analogies and 
adaptation strategies. They used a dataset of software 
projects collected by a Canadian software house to 
validate their findings. They found that choosing the 
number of analogies is important. Specifically, three 
analogies seemed to be optimal. However, a fixed value 
for k (number of analogies) was more effective for the 
large datasets while distance based analogies selection 
appeared more effective for the smaller datasets. They also 
found that case adaptation strategies seemed to have little 
impact on the accuracy of the estimation by analogy [17].  

Angelis and Stamelos [3], while studying the estimation 
by analogy method for Albrecht’s software projects, 
explored the problem of determining the parameters for 

configuration of the analogy procedure before its 
application to a new software project. They studied three 
parameters, which are the choice of distance measure that 
will be used to evaluate the similarity between software 
projects, the number of analogies to take into account in 
the effort estimation, and the statistic that will be used in 
calculating the unknown effort from the efforts of the 
similar projects. They suggested that the bootstrap method 
should be used to configure these three parameters. 
Bootstrapping consists of drawing news samples of 
software projects from the original dataset and testing 
parameter performances on the generated data. This allows 
the user to identify which parameter values give accurate 
estimates often. These values can be used to generate 
prediction for a new software project. This kind of search 
for optimal parameters is called calibration of the 
estimation procedure. 

However, even though it is well recognized that 
estimation by analogy is a promising technique for 
software cost and effort estimation, there are certain 
limitations that prevent it from being more popular. The 
most important is that until now it cannot handle linguistic 
values such as ‘very low’, ‘low’, and ‘high’ whereas many 
other factors, such as experience of programmers, 
complexity of modules and software reliability are 
measured on an ordinal or nominal scale composed of 
linguistic values. For example, the well-known 
COCOMO’81 model has 15 attributes out of 17 (22 out of 
24 in the COCOMOII) which are measured with six 
linguistics values: ‘very low’, ‘low’, ‘nominal’, ‘high’, 
‘very high’, and ‘extra-high’ [5, 6, 8]. To overcome this 
limitation, in the next section we present a new method 
that can be seen as a fuzzification of the classical analogy 
to deal with linguistic values.  

 
4. Estimation by Fuzzy Analogy 
 

Fuzzy Analogy is a fuzzification of the classical analogy 
procedure [15]. It is also composed of three steps: 
identification of cases, retrieval of similar cases and cases 
adaptation. Each step is a fuzzification of its equivalent in 
the classical analogy procedure. In the following sub-
sections, each step will be further detailed.  
 
4.1 Identification of cases 
 

The goal of this step is the characterization of all 
software projects by a set of attributes. Selecting attributes 
describing accurately software projects is a complex task 
in the analogy procedure. Indeed, the selection of 
attributes depends on the objective of the CBR system. In 
our case, the objective is to estimate the software project 
effort. Consequently, the attributes must be relevant for the 
effort estimation task. The problem is to detect the 
attributes exhibiting a significant relationship with the 



 4

effort in a given environment. The solution adopted by 
cost estimation researchers and practitioners is to test the 
correlation between the effort and all the attributes for 
which data in the studied environment are available. This 
solution does not take into account attributes that can 
affect largely the effort, if they have not yet recorded data. 
Another interesting criterion is that each relevant attribute 
must be independent from the other attributes. In the 
ANGEL tool, Shepperd et al.[24, 25] propose to resolve 
the attributes selection problem by applying a brute force 
search of all possible attributes subsets. They acknowledge 
that this is an NP-hard search problem and consequently is 
not a feasible solution when the number of the candidate 
attributes is large. Briand et al. propose to use a t-test 
procedure to select the set of attributes [7]. Shepperd 
claimed that this is not a good solution because this 
procedure is not efficient to model the potential 
interactions between the software project attributes [17]. 
We strongly agree with this critic and  don’t believe that 
statistical methods can solve the selection problem in the 
software cost estimation field. There are two other criteria 
every relevant and independent attribute must obey. They 
are, the attribute must be comprehensive which implies 
that it must be well defined and the attribute must be 
operational which implies that it must be easy to measure. 
These criteria  have yet not been the subject of an in-depth 
study in the cost estimation literature. We believe that the 
best way to solve the attributes selection problem is by 
integrating a learning procedure in the analogy approach. 
We discuss in Section 6 how Fuzzy Analogy can satisfy 
the learning criterion. Before learning, during the training 
phase of our approach, we adopt a variation of Shepperd’s 
solution by allowing the estimators to use the attributes 
that they believe best characterize their projects and are 
more appropriate in their environment.  

The objective of our Fuzzy Analogy approach is to deal 
with linguistic values. In the identification step, each 
software project is described by a set of selected attributes 
that can be measured by numerical or linguistic values. 
These values will be represented by fuzzy sets. In the case 
of a numerical value x0 (no uncertainty), its fuzzification 
will be done by the membership function that takes the 
value of 1 when x is equal to x0 and 0 otherwise. Let us 
suppose for linguistic values that we have M attributes and 
for each attribute Vj, a measure with linguistic values is 
defined ( j

kA ). Each linguistic value, j
kA , is represented by 

a fuzzy set with a membership function ( j
kAµ ). It is 

preferable that these fuzzy sets satisfy the normal 
condition, i.e., they form a fuzzy partition and each of 
them is convex and normal [13]. The use of fuzzy sets to 
represent categorical data, such as ‘very low’ and ‘low’ 
mimics the way in which humans interpret these values 
and consequently it allows us to deal with vagueness, 
imprecision and uncertainty in the cases identification 

step. Another advantage of our Fuzzy Analogy approach is 
that it takes into account the importance of each selected 
attribute in the cases identification step. It is obvious that 
all selected attributes do not necessarily have the same 
influence on the software project effort. Hence, we are 
required to indicate the weights, uk, associated with all 
selected attributes in the cases identification step.  
 
4.2 Retrieval of similar cases 
 

This step is based on the choice of a software project 
similarity measure. This choice is very important since it 
will influence which analogies are found. In literature, 
most researchers have used the Euclidean distance when   
projects are described by numerical data and the equality 
distance when they are described by linguistic values 
(categorical data) [24]. These two measures are not 
suitable when linguistic values are represented by fuzzy 
sets. Consequently, we have proposed a set of candidate 
measures for software project similarity to avoid this 
limitation [12]. These measures evaluate the overall 
similarity of two projects P1 and P2, d(P1,P2), by 
combining the individual similarities of P1 and P2 

associated with the various linguistic variables (attributes) 
(Vj) describing P1 and P2, ),( 21 PPd

jv . After an axiomatic 

validation of some proposed candidate measures for the 
individual distances ),( 21 PPd

jv , we have retained two 

measures [13]: 
 























−

×







−
= ∑

(1.2)

naggregatioproductsum

)(Pì)(Pì

(1.1)
naggregatiominmax

))(Pì),(Pmin(ìmax

)P,(Pd

k

2A1A

2A1Ak

21v
j

k
j

k

j
k

j
k

j

 

 
where Vj are the linguistic variables describing projects P1 

and P2, 
j

kA  are the fuzzy sets associated with Vj, and 

j
kA

µ are the membership functions representing fuzzy sets 

j
kA . 
To evaluate the overall distance of P1 and P2, the 

individual distances ),( 21 PPd
jv  are aggregated using 

Regular Increasing Monotone (RIM) linguistic quantifiers 
such as ‘all’, ‘most’, ‘many’, ‘at most α’ or ‘there exists’. 
The choice of the appropriate RIM linguistic quantifier, Q, 
depends on the characteristics and the needs of each 
environment. Q indicates the proportion of individual 
distances that we feel is necessary for a good evaluation of 
the overall distance. The overall similarity of P1 and P2 , 
d(P1 , P2) is given by one of the following formulas [14]:  

 



 5
















=

                  )),((

 ....

 )),((

                            )),((

                            )),((

),(                    

21

21

21

21

21

PPdofexiststhere

PPdofmany

PPdofmost

PPdofall

PPd

j

j

j

j

v

v

v

v

   When choosing the appropriate RIM linguistic 
quantifier to guide the aggregation of the individual 
distances, its implementation is realized by an Ordered 
Weight Averaging operator [14, 29, 30]. The overall 
distance, d(P1 , P2), is calculated by means of the 
following formula:  
 

        (2)        )P,P(d))
T

u
(Q)

T

u
(Q()P,P(d 21v

M

1j

1j

1k
k

j

1k
k

21 j
×−= ∑

∑∑

=

−

==  

 
where ),( 21 PPd

jv  is the jth largest individual distance, uk 

is the importance weight associated with the kth variable 
describing the software project, and T is the total sum of 
all importance weights uk which are provided in the cases 
identification step.  
 
4.3 Case adaptation 
 

The objective of this step is to derive an estimate for the 
new project by using the known effort values of similar 
projects. There are two problems here. First, the choice of 
how many similar projects should be used in the 
adaptation. Second, how to adapt the chosen analogies in 
order to generate an estimate for the new project. In the 
literature, one can notice that there is no clear rule to guide 
the choice of the number of analogies, k. Shepperd et al. 
have tested two strategies to calculate the number k, by 
setting it to a constant value (they explore values between 
1 and 5), or by determining it dynamically as the number 
of projects that fall within distance (d) of the new project 
[17]. Briand et al. have used a single analogy [7]. Angelis 
and Stamelos have tested a number of analogies in the 
range of 1 to 10 when studying the calibration of the 
analogy procedure for the Albrecht’s dataset [3]. The 
results obtained from these experimentations seemed to 
favour the case where k is lower than 3. We are not 
convinced by the approach of fixing the number of 
analogies to be considered in the case adaptation step. The 
principle of this approach is to take only the first k projects 
that are similar to the new project. Let us suppose that the 
distances between the first three projects of one dataset 
(P1, P2, P3) and the new project (P) are respectively: 3.30, 
4.00 and 4.01. When we consider k equal to 2, we use only 
the two projects P1 and P2 in the calculation of an estimate 
of P. Project P3 is not considered in this case although 
there is no clear difference between d(P2, P)=4.00, and 

d(P3, P)=4.01! We believe that the use of the number k 
relies on the use of the classical logic principle: the 
transition from one situation (contribution in the estimated 
cost) to the following (no contribution in the estimated 
cost) is abrupt rather than gradual. In Fuzzy Analogy, we 
propose a new strategy to select projects that will be used 
in the adaptation step. This strategy is based on the 
distances d(P, Pi) and the definition adopted in the studied 
environment for the proposition ‘Pi is closely similar 
project to P’. Intuitively, Pi is closely similar to P if 
d(P,Pi) is in the vicinity of 1 (0 in the case of Euclidean 
distance). The only way to represent correctly the value 
‘vicinity of 1’ is by using a fuzzy set defined in the unit 
interval [0, 1]. Indeed, this fuzzy set defines the ‘closely 
similar’ qualification adopted in the environment. Figure 1 
shows a possible representation for the value ‘vicinity of 
1’. In this example all projects that have d(P,Pi) higher 
than 0.5 contribute to the estimated cost of P; the 
contribution of each Pi is weighted by µvicinityof 1(d(P,Pi)). 

 
 
 
 
 
 
 
 
 
 

Figure 1: A possible definition of the value 
‘vicinity of 1’ 

 
The second problem in this step is to adapt the chosen 

analogies in order to generate an estimate for the new 
project. The most common solutions use the (weighted) 
mean or the median of the k chosen analogies. In the case 
of weighted mean, the weights can be the similarity 
distances or the ranks of the projects. For our Fuzzy 
Analogy approach, we use the weighted mean of all 
known effort projects in the dataset. The weights are the 
values of the membership function defining the fuzzy set 
‘vicinity of 1’. The formula is then: 

 

)3(
))P,P(d(

)P(Effort))P,P(d(
)P(Effort N

1i
i1ofvicinity

N

1i
ii1ofvicinity

∑

∑

=

=
×

=
µ

µ   

 
The main advantage of our adaptation approach is that it 

can be easily configured by defining the value ‘vicinity of 
1’ according to the needs of each environment. An 
interesting case arises when µvicinityof1(x) = x in Formula 3 
since it gives exactly the ordinary weighted average. This 
property will be used in the validation of our approach on 
the COCOMO’81 dataset. 

µvicinity of 1(x) 

0,5 1 

1 



 6

5. Empirical results 
 

The following section presents and discusses the results 
obtained when applying the Fuzzy Analogy approach on 
the COCOMO’81 dataset. The calculations are made by 
using the F_ANGEL tool. F_ANGEL is a software 
prototype that we have developed to automate the Fuzzy 
Analogy approach. It can be seen as a fuzzification of the 
software ANGEL developed by Shepperd et al. for the 
classical analogy procedure. The results were compared 
with those of three other models: classical analogy, the 
original intermediate COCOMO’81, and ‘fuzzy’ 
intermediate COCOMO’81 [5, 11]. The accuracy of the 
estimates is evaluated by using the magnitude of relative 
error MRE defined as: 

 

actual

estimatedactual

Effort

EffortEffort
MRE

−
=  

  
The MRE is calculated for each project in the dataset. In 

addition, we use the measure prediction level Pred. This 
measure is often used in the literature. It is defined by: 

N
k

ped =)(Pr  

where N is the total number of observations, k is the 
number of observations with an MRE less than or equal to 
p. A common value for p is 0.25; in our evaluation, we use 
p equal to 0.20 as it was used for evaluation of the original 
version of the intermediate COCOMO’81 model. The 
Pred(0.20) gives the percentage of projects that were 
predicted with an MRE equal or less than 0.20. Other four 
quantities are used in this evaluation: min of MRE, max of 
MRE, standard deviation of MRE (SDMRE), and mean 
MRE (MMRE).  

The original intermediate COCOMO’81 database was 
chosen as the basis for this validation [5]. It contains 63 
software projects. Each project is described by 17 
attributes: the software size measured in KDSI (Kilo 
Delivered Source Instructions), the project mode is defined 
as either ‘organic’, ‘semi-detached’ or ‘embedded’, and 
the remaining 15 cost drivers are generally related to the 
software environment. Each cost driver is measured on a 
scale composed of six qualifications: ‘very low’, ‘low’, 
‘nominal’, ‘high’, ‘very high’ and ‘extra high’. It seems 
that this scale is ordinal, but an analysis indicates that one 
of the 15 cost drivers (SCED attribute) is only assessed to 
be nominal. This does not cause any problem for the 
Fuzzy Analogy technique. Indeed, we are dealing with 
these six qualifications as linguistic values rather than 
categorical data. In the original intermediate 
COCOMO’81, the assignment of linguistic values to the 
15 cost drivers uses conventional quantization where the 
values are classical intervals (see [5], pp. 119). Because of 
the advantages of representation by fuzzy sets over 

classical intervals, the 15 cost drivers should be 
represented by fuzzy sets. Among these, we have retained 
12 attributes that we had already fuzzified. The other 
attributes are not studied because these relative 
descriptions proved insufficient [11]. In this evaluation, 
we assume that all the COCOMO’81 software projects are 
described only by these 12 cost drivers (Figure 2). 

Because the original COCOMO’81 database contains 
only the effort multipliers, our evaluation of the Fuzzy 
Analogy will be made on four 'fuzzy' datasets deduced 
from the original COCOMO’81 database. Each one of 
these four 'fuzzy' datasets contains 63 projects with the 
real values necessary to determine the 12 linguistic values 
associated to each project. These 12 linguistic values are 
used to evaluate the similarity between software projects. 
One of these four fuzzy datasets is considered as an 
historical dataset, the other three are the current datasets 
containing the new projects. 

Table 1 shows the results obtained using only the max-
min aggregation to evaluate the individual distances 
(Formula (1.1)). We have not used sum-product 
aggregation (Formula (1.2)) for two reasons [13]: 
§ We have proved, under what we have called normal 
condition, that max-min and sum-product aggregations 
give approximately the same results. This is the case for 
the COCOMO’81 database. 
§ The sum-product aggregation does not respect all 
established axioms. 

Normally for the overall distances, each environment 
must define its appropriate quantifier by studying its 
features and its requirements. Because a lack of 
knowledge concerning the appropriate quantifier for the 
environment from which the COCOMO’81 data was 
collected, we used various quantifiers: ‘all’, ‘there exists’, 
and α-RIM linguistic quantifiers to combine the individual 
similarities. An α-RIM linguistic quantifier is defined by a 
fuzzy set in the unit interval with membership function Q 
given by: 

 
0)( >= ααrrQ  

To calculate the weights wj’s (Formula 2), we must 
determine the importance weights uk’s associated with the 
12 variables describing COCOMO’81 software projects. 
We use here the productivity ratio, which is the project’s 
productivity ratio (expressed in Delivered Source 
Instructions by Man-Months) for the best possible variable 
rating to its worst possible variable rating, assuming that 
the ratings for all other variables remain constant (Figure 
2). 

By analyzing the results of the validation of the Fuzzy 
Analogy technique (Table 1), we noticed that the accuracy 
of the estimates depends on the linguistic quantifier (α) 
used in the evaluation of the overall similarity between 
software projects. So, if we consider the accuracy 
measured by Pred(0.20) as a function of α, we can notice 



 7

that, in general, it is monotonous increasing according to 
α. This is due to the fact that our similarity measures are 
monotonous decreasing according to α. Indeed, when α 
tends towards zero, this implies that the overall similarity 
will take into account fewer attributes among all those 

describing software projects. The minimum number of 
attributes to consider is one. This is the case when using 
the ‘max’ operator where the selected attribute is the one 
for which the associated individual distance is the 
maximum of all individual distances.  

Table 1. Results of the evaluation of Fuzzy Analogy
  Datasets 
  Dataset #1 Dataset #2 Dataset #3 
  

 
Pred(0.20) 

(%0) 
MMRE 

(%) 
SDMRE 
(%) 

Pred(0.20) 
(%) 

MMRE 
(%) 

SDMRE 
(%) 

Pred(0.20) 
(%) 

MMRE 
(%) 

SDMRE 
(%) 

Max 4,76 1801,48 2902,94 4,76 2902,49 1807,17 4,76 1789,64 2865,42 
1/100 4,76 1798,85 2897,77 4,76 2894,28 1803,41 4,76 1786,20 2858,34 
1/30 4,76 1792,70 2885,74 4,76 2875,26 1794,69 4,76 1778,21 2841,96 
1/15 4,76 1783,91 2868,69 4,76 2848,44 1782,32 4,76 1766,86 2818,84 
1/10 4,76 1757,13 2851,77 4,76 2822,64 1770,06 4,76 1755,64 2796,06 
1/7 4,76 1763,86 2830,24 4,76 2788,70 1754,48 4,76 1741,29 2767,29 
1/3 6,34 1714,20 2737,66 6,34 2648,90 1687,68 6,34 1679,67 2646,43 
1 6,34 1550,89 2455,21 3,17 2258,36 1485,66 7,93 1491,93 2306,39 
3 6,34 1168,24 1889,23 9,52 1571,48 1063,19 9,52 1102,40 1694,91 
7 9,52 633,99 1215,81 14,28 830,79 526,57 9,52 603,76 968,01 
10 15,87 371.84 802,30 20,63 525,45 305,98 23,80 385,90 662,02 
15 38,09 143,92 337,76 36,50 284,20 140,68 44,44 206,19 393.30 
30 74,60 20,40 42,06 77,77 160,38 51,67 66,66 62,83 118,44 
100 92,06 4,06 9,05 84,12 30,37 10,49 87,63 23,24 76,68 

 
 
 
 
 
 
 
αα-RIM 
 

Min 92,06 4,03 9,17 87,30 29,12 8,53 88,88 21,99 77,13 
 

Table 2. Results of the evaluation of classical analogy, ‘fuzzy’ and classical intermediate 
COCOMO’81[11]

 

 ‘fuzzy’/classical 
intermediate COCOMO’81 

Classical Analogy 
(three datasets) 

 Dataset #1 Dataset #2 Dataset #3 K Pred(0.20) % 
Pred(20) (%) 62.14 / 68 46.86 / 68 41.27 / 68 2 31,75 
Min MRE (%) 0.11 / 0.02 0.40 / 0.02 0.06 / 0.02 3 25,40 
Max MRE (%) 88.60 / 83.58 3233.03 / 83.58 88.03 / 83.58 4 19,05 
Mean MREi(%) 22.50 / 18.52 78.45 / 18.52 30.80 / 18.52 5 12,70 
Standard deviation MRE  19.69 / 16.97 404.40 / 16.97 22.95 / 16.97 6 12,70 

Figure 2: Comparison of the productivity ratios for the 12 variables describing the COCOMO’81 
software projects 

 

0
0,5

1
1,5

2
2,5

A
C

A
P

P
C

A
P

T
IM

E

A
E

X
P

S
T

O
R

V
IR

T
-M

IN

V
IR

T
-M

A
J

V
E

X
P

T
U

R
N

D
A

T
A

LE
X

P

S
C

E
D



 8

0

5

10

15

20

25

30

35

40

45

50

55

60

0 20 40 60 80 100 120 140

 
Figure 3: Relationship between αα and the number of dataset #2 projects which have an MRE lower or 

equal than 0.20 (NPU20) 
 

As a consequence, the overall similarity will be higher 
because we are more likely to find in the COCOMO’81 
dataset at least one attribute for which the associated 
linguistic values are the same for the two projects. By 
contrast, when α tends towards infinity it implies that the 
overall similarity will take into account many attributes 
among all the available ones describing the software 
projects. As a maximum we may consider all attributes. 
This is the case when combining by the ‘min’ operator. As 
consequence the overall similarity will be minor because 
we are more likely to find in the COCOMO’81 dataset one 
attribute for which the associated linguistic values are 
different for the two projects. Here, it is very important to 
stress the soft aspect of our Fuzzy Analogy approach. 
First, we can choose the appropriate weights associated 
with linguistic variables describing a software project (uk). 
These weights represent the importance of the variables in 
the environment. Second, we can choose the appropriate 
linguistic quantifier to combine the individual distances; 
this linguistic quantifier is used to generate the weights wj. 
These weights represent the importance associated with 
the individual distances when evaluating the overall 
distance. They depend upon the weights uk and the chosen 
linguistic quantifier. An interesting case arises if uk is 
equal to wk. This is when α is equal to 1. As a 
consequence, Formula 2 gives the ordinary weighted 
average. 

Figure 3 shows the relation between α and the number 
of projects that have an MRE smaller than 0.20 (NPU20) 
for dataset #2. The two bold lines represent respectively 
the minimum and the maximum accuracy of Fuzzy 
Analogy when it uses the min and the max aggregation to 
combine individual similarities. The ‘max’ (‘min’) 
aggregation gives lower (higher) accuracy because it 

considers only one (all) attribute(s) in the evaluation of the 
similarity. For the other α-RIM linguistic quantifiers 
(0<α<∞), the accuracy increases with α because additional 
attributes will be considered in the evaluation of the 
overall similarity. For example, a software project Pi 
which has an overall similarity with P different from zero 
when α is equal to 10 , may have a null overall similarity 
when α is equal to 30. Because of that, it is not used in the 
estimation of the cost for α=30. When α tends towards 
infinity (this implies that most attributes are considered in 
the evaluation of the similarity), only projects Pi which are 
closely similar to P will contribute in the estimate of the 
cost of P. This is in conformity with common knowledge 
in the cost estimation field: evaluation of the similarity 
between projects is meaningful if they are described by a 
sufficient number of attributes. As we can see in Figure 3, 
the accuracy is a monotonous increasing function of α. 
However, because Formula 3 used in the adaptation step is 
not monotonous increasing, we may observe certain 
anomalies that can lead to misinterpretations of the results. 
This is the case when α is equal to 1 in dataset #2. It seems 
that the accuracy when α =1/3 (NPU20=4) is better than 
that when α=1 (NPU20=2). Indeed, the two additional 
projects, which have an MRE lower than 0,20 (18,74 and 
17,68) for α=1/3, have respectively an MRE equal to 21,68 
and 20,24 when α=1. So, when we have fixed Pred(p) at 
Pred(0,20), these two project are not counted. This should 
not give the impression that the case for α=1/3 generates 
accurate estimates than the case for α=1. By analysing the 
results for all projects, we have found the opposite (see the 
mean and the standard deviation of the MRE for α=1/3 and 
α=1). 

Max aggregation 

Min aggregation 

αα 

NPU20 



 9

We compared the results of the Fuzzy Analogy with the 
other three techniques in regard to two criteria: the type of 
the technique and whether or not the technique uses fuzzy 
logic in its estimation process. Our findings were the 
following: 
§ Fuzzy analogy performs better than the classical analogy 
in all three datasets when α is higher than a given value. In 
the classical analogy, we have used the classical equality 
distance (equal or not) in the evaluation of similarity 
between projects. All attributes are considered in this 
evaluation. The best accuracy was obtained when we 
consider only the two first projects in the adaptation step 
(Pred(0,20)=31,75). The Fuzzy Analogy when using the 
‘min’ aggregation also took into account all attributes in 
the evaluation of projects similarity. Its accuracy was 
much higher than that for classical analogy. Two 
advantages were found when using fuzzy logic with the 
estimation by analogy. First, it tolerates imprecision and 
uncertainty in its inputs (cost drivers) and consequently it 
generates gradual outputs (cost). This is why Fuzzy 
Analogy gives closer results for the three datasets while 
classical analogy generates the same or significantly 
different outputs when the inputs are different (this is the 
same case between ‘fuzzy’ and classical intermediate 
COCOMO’81, see [11] for more details, Table 2 ). 
Second, it improves the accuracy of the estimates because 
our similarity measures are more appropriates than those 
used in the literature. 
§ Intermediate COCOMO’81 generates more accurate 
results than classical analogy but when integrating fuzzy 
logic in the estimation by analogy procedure, the Fuzzy 
Analogy performs better than intermediate COCOMO’81. 
This proves that fuzzy logic is the appropriate tool to deal 
with linguistic values rather than the classical logic 
(Aristote logic) used in the original version of the 
COCOMO’81. 

Taking into account these results, we suggest the 
following ranking of the four techniques in terms of 
accuracy and adequacy to deal with linguistic values: 

1- Fuzzy Analogy 
2- Fuzzy intermediate COCOMO’81 
3- Classical intermediate COCOMO’81 
4- Classical analogy. 

 
6. Discussion and future improvements 
 

In this paper, we have proposed a new approach to 
estimate the software project effort. This approach is based 
on reasoning by analogy, fuzzy logic and linguistic 
quantifiers. Such an approach can be used when the 
software projects are described by linguistic and/or 
numerical values. Thus, our approach improves the 
classical analogy procedure that does not take into account 
linguistic values. In the Fuzzy Analogy approach, both 
linguistic and numerical data are represented by fuzzy sets. 

The advantage of this is to handle correctly the 
imprecision and the uncertainty when describing a 
software project. Also, by using RIM linguistic quantifier 
to guide the aggregation of the individual similarities 
between two projects, the Fuzzy Analogy approach can be 
easily adapted and configured according to the 
specifications of each environment. Also, we have 
validated the Fuzzy Analogy by using the COCOMO’81 
dataset. The results of this validation were compared to 
those of the classical analogy approach, ‘fuzzy’ 
intermediate COCOMO’81 and original intermediate 
COCOMO’81. We can conclude that fuzzy logic improves 
the estimation process and consequently generates more 
accurate estimates.  

By using fuzzy logic in its estimation process, our 
approach satisfies the first criterion of the concept Soft 
Computing, which is the tolerance of imprecision. As 
defined by Zadeh [32], Soft Computing is composed of 
three criteria part of human nature: tolerance of 
imprecision, learning, and uncertainty. 

In this work, we have introduced some learning 
functionalities in our approach. In the identification step, 
we can update all information concerning the linguistic 
variables describing software projects, specifically, theirs 
linguistic values which depend on humans judgement. For 
example, the linguistic value ‘high’ for software reliability 
may mean that the number of software failures is lower 
than 6 per month, but in the future, we may require less 
than 3 software failures per month to evaluate it as ‘high’. 
In the case retrieval step, we can update the definition of 
the linguistic quantifier used in the environment. Here 
also, the meaning of a linguistic quantifier depends on 
human judgement. However, other learning characteristics 
that are not included in our approach remain. For example, 
the Fuzzy Analogy must be able to provide its user with a 
subset of linguistic variables that have always led to 
accurate estimates in the past. We may then use this sub-
set in the identification step. Thus, the selection attributes 
problem can be solved. Also, Fuzzy Analogy must be able 
to propose the appropriate linguistic quantifier to be used 
in retrieval step by using those that have often led to 
accurate estimates.   

In order to satisfy the third criteria of Soft Computing, 
Fuzzy Analogy must be able to handle the uncertainty 
when estimating the cost of the new project. Estimate 
uncertainty occurs because an estimate is a probabilistic 
assessment of a future condition. Kitchenham and 
Linkman have examined four sources of estimate 
uncertainty: model error, measurement error, assumption 
error and scope error [16]. In our case, we are concerned 
by the first source of uncertainty. Fuzzy Analogy is based 
on the affirmation: ‘similar projects have similar costs’. 
There are two sources of uncertainty in this affirmation. 
First, the consequence of this affirmation is imprecise. 
Second, the affirmation ‘similar projects have similar 



 10

costs’ is not always deterministic. We can find in some 
applications of CBR cases that are similar but the 
outcomes are completely different. It seems that it can be 
the case in the cost estimation field. Indeed, no cost 
estimation model can include all the factors that affect the 
cost required to develop the software. So, the factors that 
affect cost and are not included explicitly in the evaluation 
of the similarity between projects contribute to the 
uncertainty in the predicted cost. In order to take into 
account the uncertainty of the classical affirmation of 
CBR, we may replace it by the following ‘similar projects 
have possibly similar costs’. Further research work has 
been initiated to look at the use of this affirmation as the 
basics of an improvement of our approach. 
 
7. References 
 
[1] A. Aamodt, E. Plaza, “Case-Based Reasoning: Foundational 
Issues, Methodological Variations, and System Approaches”, AI 
Communications, IOS Press, Vol. 7:1. 1994, pp. 39-59 
[2] A. Abran, P.N. Robbillard, “Functions points analysis: an 
empirical study of its measurement processes”, IEEE Trans. On 
Software Enginnering, 22(12): 1996, pp. 895-909 
[3] L. Angelis, I. Stamelos, “A Simulation Tool For Efficient 
Analogy Based Cost Estimation”, Empirical Software 
Engineering, Vol. 5, no. 1, 2000, pp. 35-68 
[4] L. Angelis, I. Stamelos, M. Morisio, “Building a Software 
Cost Estimation Model Based on Categorical Data”, 7th Int, Soft. 
Metrics Symp., IEEE computer Society, London, April, 2001, 
pp. 4-15.  
[5] B.W. Boehm, Software Engineering Economics, Prentice-
Hall, 1981. 
[6] B.W. Boehm, and al., “Cost Models for Future Software Life 
Cycle Processes: COCOMO 2.0”, Annals of Software 
Engineering on Software Process and Product Measurement, 
Amsterdam, 1995. 
[7] L. Briand, T. Langley, I. Wieczorek., “Using the European 
Space Agency data set: A replicated assessment and comparison 
of common software cost modeling”, In Proc 22th IEEE 
International Conference on Software engineering, Limerik, 
Ireland, 2000, pp. 377-386 
[8] D.S. Chulani, “Incorporating Bayesian Analysis to Improve 
the Accuracy of COCOMO II and Its Quality Model Extension”, 
Ph.D. Qualifying Exam Report, USC, February, 1998. 
[9] N. Fenton, and S.L. Pfleeger, Software metrics: A Rigorous 
and Practical Approach, International Computer, Thomson 
Press, 1997. 
[10] Gulezian R., ‘Reformulating and Calibrating COCOMO’ 
Journal Systems Software, Vol 16, 1991, pp.235-242 
[11] A. Idri, L. Kjiri, and A. Abran, “COCOMO Cost Model 
Using Fuzzy Logic”, 7th Intenational Conference on Fuzzy 
Theory & Technology, Atlantic City, NJ, February, 2000. pp. 
219-223 
[12] A. Idri, and A. Abran, “Towards A Fuzzy Logic Based 
Measures For Software Project Similarity”, Sixth Maghrebian 
Conference on Computer Sciences, Fes, Morroco, November, 
2000. pp. 9-18 
[13] A. Idri, and A. Abran, “A Fuzzy Logic Based Measures For 
Software Project Similarity: Validation and Possible 

Improvements”, 7th International Symposium on Software 
Metrics, IEEE computer society,4-6 April, England, 2001. pp. 
85-96 
[14] A. Idri, and A. Abran, “Evaluating Software Project 
Similarity by using Linguistic Quantifier Guided Aggregations”, 
9th IFSA World Congress/20th NAFIPS International Conference, 
25-28 July, Vancouver, 2001. pp. 416-421  
[15] A. Idri, A. Abran, T. M. Khoshgoftaar, “Fuzzy Analogy: A 
new Approach for Software Cost Estimation”, 11th International 
Workshop in Software Measurements, 28-29 August, Montreal, 
2001, pp. 93-101  
[16] B. Kitchenham, S. Linkman, “Estimates, uncertainty and 
risks”, IEEE Software, 14(3), 1997, pp. 69-74 
[17] G. Kadoda. M. Cartwright, L. Chen, M. Shepperd, 
“Experiences Using Case-Based Reasoning to Predict Software 
Project Effort”, EASE, Keele, UK, 2000, p.23 
[18] J.L. Kolodner, Case-Based Reasoning, Morgan Kaufmann, 
1993 
[19] D. H. Krantz, R. D. Luce, P. Suppes, A. Tversky, 
“Foundations of Measurement: Additive and Polynomial 
Representations ”, Academic Press, Volume 1, 1971  
[20] Matson J., E, Barrett B., E, Mellichamp J., M, ‘Software 
Development Cost Estimation Using Function Points’, IEEE, 
Vol. 20, No. 4, Apr., 1994, pp. 275-287  
[21] I. Myrtveit, E. Stensrud, “A Controlled Experiemnt to 
Assess the Benefits of Estimating with Analogy and Regression 
Models”, IEEE Transaction on Software Engineering, 25, 4, 
July/August, 1999, pp. 510-525 
[22] F. Niessink, H. Van Vliet “Predicting Maintenance Effort 
with Function Points”, in Proc Inter. Conf. On Soft. 
Maintenance, Bari, Italy, IEEE Computer Society, 1997. 
[23] Putnam L. H, ‘ A General Empirical Solution to the Macro 
Software Sizing and Estmation Problem’, IEEE Tronsactions on 
Soft. Eng., Vol. SE-4, No. 4, July, 1978. 
[24] M. Shepperd, C. Schofield, and B. Kitchenham, “Effort 
Estimation using Analogy”, ICSE-18, Berlin, 1996, pp. 170-178 
[25] M. Shepperd, and C. Schofield, “Estimating Software 
Project Effort Using Analogies”, IEEE Trans. on Software 
Engineering, Vol. 23, no. 12, November, 1997, pp. 736-743 
[26] S. Shepperd, G. Kadoda, “Using simulation to evaluate 
predictions systems”, 7th International Symposium on Software 
Metrics, IEEE computer society, 4-6 April, England, 2001. pp. 
349-358 
[27] S. S. Stevens, “On the Theory of scales and Measurement”, 
Science 103, 1946, pp. 677-680 
[28] S. Vicinanza, and M.J. Prietolla, “Case Based Reasoning in 
Software Effort Estimation”, Proceedings 11th Int. Conf. on 
Information Systems, 1990 
[29] R.R. Yager, and J. Kacprzyk, The Ordered Weighted 
Averaging Operators: Theory and Applications” Kluwer: 
Norwell, MA, 1997. 
[30] R.R. Yager, “Quantifier Guided Aggregation using OWA 
Operators”, International Journal of Intelligent Systems, 11, 
1996, pp.49-73 
[31] L.A. Zadeh, “Fuzzy Set”, Information and Control, Vol. 8, 
1965, pp. 338-353 
[32] L.A. Zadeh, “Fuzzy Logic, Neural Networks, and Soft 
Computing”, Comm. ACM, Vol. 37, no. 3, March, 1994, pp.77-
84 
 [33] H. Zuse, “A Framework of Software Measurement”, de 
Gruyter, 1998. 


