

Validating and Understanding Software Cost Estimation Models
based on Neural Networks

Ali Idri

Department of Software Engineering
ENSIAS, Mohamed V University
Rabat, Morocco
E-mail : idri@ensias.ma

Alain Abran
École de Technologie Supérieure
1180 Notre-Dame Ouest,
Montreal, Canada H3C 1K3
E-mail : aabran@ele.etsmtl.ca

Samir Mbarki
Department of Mathematics
Ibn Tofail University
Kenitra, Morocco
E-mail: Mbarki@univ-ibntofail.ac.ma

Abstract

 Software development effort estimation with the aid of
artificial neural networks (ANN) attracted considerable
research interest at the beginning of the nineties.
However, the lack of a natural interpretation of their
estimation process has prevented them from being
accepted as common practice in cost estimation. Indeed,
they have generally been viewed with skepticism by a
majority of the software cost estimation community. In
this paper, we investigate the use and the interpretation
of the Radial Basis Function Networks (RBFN) in the
software cost estimation field. We first apply the RBFN to
estimating the costs of software projects, and then study
the interpretation of cost estimation models based on an
RBFN using a method which maps this neural network to
a fuzzy rule-based system, taking the view that, if the fuzzy
rules obtained are easily interpreted, then the RBFN will
also be easy to interpret. Our case study is based on the
COCOMO’81 dataset.

1. Introduction

 Estimating software development effort remains a
complex problem, and one which continues to attract
considerable research attention. Improving the accuracy
of the estimation models available to project managers
would facilitate more effective control of time and
budgets during software development. In order to make
accurate estimates and avoid gross misestimations,
several cost estimation techniques have been developed.
These techniques may be grouped into two major
categories: (1) parametric models, which are derived
from the statistical or numerical analysis of historical
projects data [2,3], and (2) non-parametric models,
which are based on a set of artificial intelligence
techniques such as artificial neural networks, analogy-
based reasoning, regression trees, genetic algorithms and
rule-based induction [6,12,20,22,24,25].

 Although experience has shown that there does not
exist a ‘best’ prediction technique outperforming all the
others in every situation [4,12,16,21], non-parametric
models still have two significant advantages over
parametric ones: first, the ability to model the complex
set of relationships between the dependent variable
required to predict (cost, effort) and the independent

variables (cost drivers) collected earlier in the lifecycle;
second, the ability to learn from historical projects data,
especially for artificial neural networks. In this paper,
we are concerned with cost estimation models based on
artificial neural networks.

An artificial neural network is characterized by its
architecture, its learning algorithm and its activation
functions [7,8,17]. In general, for software cost
estimation modeling, the most commonly adopted
architecture, the learning algorithm and the activation
function are the feedforward multi-layer Perceptron, the
Backpropagation algorithm and the Sigmoid function
respectively [22,23,25]. Most of these referenced studies
have focused more on the accuracy of the approach
relative to that of other cost estimation techniques.

In this work, we are concerned with Radial Basis
Function Network (RBFN) models, which differ from
the Backpropagation feedforwad Perceptron in the
following ways: 1) usually, an RBFN architecture is
composed of three layers, as opposed to a Perceptron
which may have more; 2) RBFN models use a hybrid
learning scheme that combines supervised and
unsupervised learning algorithms, whereas the
Backpropagation is a supervised learning algorithm; and
3) the activation function of the middle-layer neurons of
an RBFN is usually the Gaussian function, whereas that
of the hidden Perceptron neurons can be Sigmoid,
Gaussian or other types of functions. However, even
though there is variety among neural network
architectures, and most of them have shown their
strengths in solving complex problems, many
researchers in various fields are hesitant to use them
because of their common shortcoming of being ‘black
boxes’ models.

To overcome this limitation, we have studied the use
of FRBSs to provide a natural interpretation of cost
estimation models based on a Backpropagation three-
layer feedforward Perceptron [11]. What we have
proposed comprised essentially the use of the Benitez’s
method to extract the if-then fuzzy rules from this
network [1]. These fuzzy rules express the information
encoded in the architecture of the network, and the
interpretation of each fuzzy rule has been determined by
analyzing its premise and its output. While our case
study has shown that we can explain the meaning of the
output and the propositions composing the premise of

0-7803-8482-2/04/$20.00 ©2004 IEEE. 1

y1

y2

y3

yM

each fuzzy rule, the entire fuzzy rule cannot be easily
interpreted because it uses the ‘i-or’ operator. In this
paper, we explore another mapping method, that is, the
Jang and Sun method, to extract if-then fuzzy rules from
artificial neural networks. The use of this method
requires that the architecture of the network be an RBFN
[14]. The main advantage of Jang and Sun method is
that it uses a more understandable operator, that is, the
‘and’ logical conjunction, to combine the propositions
composing the premise of each rule. This case study is
based on the COCOMO’81 historical dataset.

This paper is organized as follows: In Section 2, we
briefly describe the RBFN architecture most often used.
Section 3 shows how an RBFN can be used to estimate
software development effort. We also present the
architecture of the RBFN that will be used in our case
study. In Section 4, we discuss the results obtained when
the RBFN is used to estimate software development
effort. In Section 5, we briefly outline the principle of
the Jang and Sun method that will be used to extract the
if-then fuzzy rules from our network. In Section 6, we
apply the Jang and Sun method to our RBFN and we
discuss the interpretation of the obtained fuzzy rules in
software cost estimation. A conclusion and an overview
of future work conclude this paper.

2. Radial basis function networks for
software cost estimation

Based on biological receptive fields, Moody and
Darken proposed a network architecture called the
Radial Basis Function Network (RBFN) which employs
local receptive fields to perform function mappings [15].
It can be used for a wide range of applications, primarily
because it can approximate any regular function [19]. An
RBFN is a three-layer feedforward network consisting of
one input layer, one middle-layer and an output layer.
Figure 1 illustrates a possible RBFN architecture
configured for software development effort. The RBFN
generates output (effort) by propagating the initial inputs
(cost drivers) through the middle-layer to the final
output layer. Each input neuron corresponds to a
component of an input vector. The middle layer contains
M neurons, plus, eventually, one bias neuron. Each input
neuron is fully connected to the middle-layer neurons.
The activation function of each middle neuron is usually
the Gaussian function:

)(2

2

)(i

icx

exf σ

−
−

= (Eq. 1)

where ci and σi are the center and the width of the ith
middle neuron respectively. . denotes the Euclidean
distance. Hence, each ith hidden neuron has its own
receptive field in the input space, a region centered on ci

with size proportional to σi.. The Gaussian function
decreases rapidly if the width σi is small, and slowly if it
is large. The output layer consists of one output neuron

that computes the software development effort as a
linear weighted sum of the outputs of the middle layer:

∑
=

−
−

==
M

j

cx

jjj
j

j

eywithyEffort
1

)(
2

2

σβ (Eq. 1)

Figure 1: A Radial Basis Function Network
architecture for software development effort

3. Experiment design

This section describes the experiment design of an
RBFN on the COCOMO’81 historical projects. We
present and discuss how we set the different parameters
of the RBFN architecture according to the characteristics
of the COCOMO’81 dataset, especially the number of
input neurons, number of hidden neurons, centers ci,
widths σi and weights βj.

Before an RBFN is ready to make estimates for new
software projects, it is trained by a set of combinations
of inputs (cost drivers) and outputs (development
efforts) of historical software projects. Our case study
consists of estimating the software development effort
by using an RBFN on the COCOMO’81 dataset. This
dataset contains 63 software projects [2]. Each project is
described by 13 attributes: the software size measured in
KDSI (Kilo Delivered Source Instructions) and the
remaining 12 attributes are measured on a scale
composed of six linguistic values: ‘very low’, ‘low’,
‘nominal’, ‘high’, ‘very high’ and ‘extra high’.

As mentioned earlier, the use of an RBFN to estimate
software development effort requires the determination
of the middle-layer parameters and the weights βj. The
simplest and most general method for deciding on the
middle-layer neurons is to create a neuron for each
training software project. Consequently, the middle layer
of our RBFN will have 63 neurons. This approach does
not take into account the existing similarities among the
63 historical software projects. As we have shown in
various studies with the COCOMO’81 dataset, there are
some similarities among certain software projects of the
COCOMO’81 dataset [10,12,13]. As a consequence, we
prefer to first cluster the 63 projects into a reasonable
number of groups containing similar software projects.
We most often use the APC-III clustering algorithm
developed by Hwang and Bang [9] to do this. APC-III is

Input layer Hidden layer Output layer
KDSI

RELY

ACAP

PCAP

CPLX

Effort
βi

ci, σi

0-7803-8482-2/04/$20.00 ©2004 IEEE. 2

a one-pass clustering algorithm, and has a constant
radius R0 defined as follows:

)(min1

1
0 ∑

=
≠

−=
N

i
jiji

PP
N

R α (Eq. 3)

where N is the number of historical software projects
and α is a predetermined constant. R0 expresses the
radius of each cluster and consequently it controls the
number of the clusters provided. APC-III generates
many clusters if R0 is small and few clusters if it is large.
According to Hwang and Bang, the APC-III is quite
efficient at constructing the middle layer of an RBFN,
since it can finish clustering by going through all the
training patterns only once; this is not true with K-means
and SOFM, which are multi-pass and time-consuming
clustering algorithms.

Concerning the weights βj, we may set each βj to the
associated effort of the center of the jth neuron.
However, this technique is not optimal and does not take
into account the overlapping that may exist between
receptive fields of the hidden layer. Thus, we use the
Delta rule to derive the values of βj.

Finally, our RBFN has 13 inputs (COCOMO cost
drivers) and one output (development effort). All the
inputs as well as the output of the network are numeric.
The RBFN is trained by iterating through the training
data many times. The Delta rule uses a learning rate, and
maximum error equals 0.03 and 10-5 respectively.

4. Overview of the empirical results

The following section presents and discusses the
results obtained when applying the RBFN to the
COCOMO’81 dataset. We have conducted several
experiments with the APC-III algorithm to decide on the
number of hidden units. These experiments use the full
COCOMO’81 dataset for training. Table 1 shows the
classifications obtained according to different values of
α (Eq. 3).

Table 1: Number of clusters according to α for

the COCOMO’81 dataset
α Number of clusters

0.4|0.45|0.46|0.47|0.49 62|59|60|58|55
0.5|0.52|0.6|0.62 54|52|50|48
0.66|0.70|0.75 47|45|43

0.78|0.80 41|37

In analyzing the results of Table 1, we noticed that the

number of clusters is monotonous decreasing according
to α. This is due to the fact that the radius R0 is
monotonous increasing according to α. Choosing the
‘best’ classification of those in Table 1 to determine the
number of hidden neurons and their centers is a complex
task. For software cost estimation, we suggest that the
‘best’ classification is the one that satisfies the following
two criteria:
� it improves the accuracy of the RBFN;

� it provides coherent clusters, i.e. the software
projects of a given cluster have satisfactory degrees of
similarity.

 Thus, we have conducted several experiments with an
RBFN, each time using one of the classifications of the
table 1. These experiments use the full COCOMO’81
dataset for training and testing. The weights βj are
calculated using the Delta learning rule. The RBFN
converges quickly, with fewer than 12000 iterations of
learning. The accuracy of the estimates generated by the
RBFN is evaluated by means of the Mean Magnitude of
Relative Error ‘MMRE’ and the Prediction level ‘Pred’,
defined as follows:

1001

1 ,

,, ×
−

= ∑
=

N

i iactual

iestimatediactual

Effort
EffortEffort

N
MMRE ;

N
kPred(p)=

where N is the total number of observations, k is the
number of observations with an MRE less than or equal
to p. A common value for p is 0.25. The MMRE and
Pred are calculated for each classification of the table 1.
Figure 2 shows the MMRE and Pred as functions of the
classification (α). We can notice that the accuracy of the
RBFN is better when α is lower than 0.49 (MMRE≤30
and Pred(25) ≥70). When α is higher than 0.49, the
MMRE is high, although the values of Pred(25) are
acceptable. Indeed, the MMRE is very sensitive to
variations in the estimated values, particularly when α
increases, in which case the classification obtained may
be less coherent, i.e. some clusters are composed of
software projects that are not sufficiently similar. For
those projects, the RBFN may generate inaccurate
estimates.

Figure 2 : Relationship between the accuracy of
the RBFN (MMRE and Pred) and the used
classification (α).

In addition to the number of hidden neurons (number
of clusters generated by the APC-III algorithm), the
accuracy of the RBFN depends on the widths σi used by
the hidden neurons (receptive fields). In the previous
experiments (Figure 2), we had set the values of σi to
30. However, in the literature, the widths σi were usually
determined to cover the input space as uniformly as

0
10
20
30
40
50
60
70
80
90

100

0,4 0,5 0,6 0,7 0,8 0,9

MMRE
Pred(25)

0-7803-8482-2/04/$20.00 ©2004 IEEE. 3

possible [8,9]. Covering the historical software project
space uniformly implies that the RBFN will be able to
generate an estimate for a new project even though it is
not similar to any historical project. In such a situation,
we prefer that the RBFN does not provide any estimate
than one it may easily lead to wrong managerial
decisions and project failure.

As a consequence, we have adopted a simple strategy
based primarily on two guidelines. First, we assign one
value to all widths σi. Second, this value depends on the
radius R0. Indeed, R0 is used in the APC-III algorithm to
delimit the area of each cluster. This looks like a
reasonable way to set the widths σi to a value closer to
R0.

As we noticed earlier, in addition to the accuracy of
the RBFN, the aim is to explain its process by mapping
the RBFN to a fuzzy rule-based system. The above
empirical experiments allow us to choose which RBFN
architecture that will be used in the mapping process.
The method developed by Jang and Sun will be used to
extract the if-then fuzzy rules from the chosen RBFN
architecture[14]. This method is presented below.

5. Equivalence between Radial Basis
Function networks and fuzzy rule-based
systems: Background

Since its foundation by Zadeh in 1965 [26], fuzzy
logic has been the subject of many investigations. One
of its main contributions to solving complex problems is
undoubtedly the Fuzzy Rule-Based Systems [27].
Essentially, an FRBS is based on a set of if-then fuzzy
rules. A fuzzy rule is an if-then statement where the
premise and the consequence consist of fuzzy
propositions, whereas in a classical production rule the
premise and the consequence are crisp. An example of a
fuzzy rule in cost estimation may be ‘if the competence
of the analysts is high then the effort is low’. The main
advantage of fuzzy rules over classical rules is that they
are easier for humans to understand and may be easily
interpreted. This is because fuzzy rules, unlike classical
rules, use linguistic values instead of numerical data in
their premises and consequences. As a result, some
researchers have investigated the equivalence between
neural networks and FRBSs [1,5,14,18], their objective
being to translate the knowledge embedded in the neural
network into a more understandable language, that is,
the if-then fuzzy rules. Furthermore, establishing
equivalence between neural networks and FBRSs can be
used to apply advances and new developments of one
model to the other and vice versa.

Jang and Sun have developed a method which proves
the functional equivalence between an RBFN, such as
the one used in the previous sections, and a fuzzy rule-
based system which uses Takagi-Sugeno rules [14].
Hence, we use their method to provide a natural
interpretation of cost estimation models based on the
RBFN. Jang and Sun fixed five conditions to the

establishment of a functional equivalence between an
RBFN and a FBRS using Takagi-Sugeno rules.

Under these conditions, the RBFN is equivalent to an
FBRS which uses a set of fuzzy rules Rj associated with
all hidden neurons:

jj

n
jnjjj ythenAisxandandAisxandAisxifR β=..: 2

2
1

1

where xi are the inputs of the RBFN, βj are the weights
of the hidden units to the output unit, and i

jA is a fuzzy

set with a Gaussian membership function defined by:

22

))((

)(σµ
i
j

i
j

Acx

A ex
−

−
= (Eq. 4)

where)(i
jAc is the ith component of the jth center of the

classification used by the RBFN.

6. Validation and interpretation of the fuzzy
rules

In this section, we apply the method developed by Jang
and Sun on the RBFN presented and discussed in
Sections 2, 3 and 4. The RBFN that we consider adopts
the classification associated to α=0.45 because of the
accuracy of its estimates (Figure 2). Hence, the RBFN
has 59 hidden units and therefore the equivalent FBRS
has 59 fuzzy if-then rules. Each fuzzy rule contains 13
fuzzy propositions in its premise and one numerical
output. These 59 fuzzy rules express the knowledge
encoded into the synaptic weights of our RBFN. The
objective is to give a more comprehensible interpretation
of these fuzzy rules in software cost estimation. Each
fuzzy rule will interpreted by interpreting its premise, its
output and its implication. For simplicity, we discuss
only three fuzzy rules (Table 2).

The premise of each jth fuzzy rule is composed of 13
fuzzy propositions combined by the ‘and’ operator. Each
is associated with one cost driver (inputs of the RBFN).
For instance, the first proposition of the rule R1 ‘DATA
is approximately equal to 7.74’ concerns the cost driver
DATA, which represents, with the other three cost
drivers, the effect of the size and complexity of the
database on the software development effort. Each ith
proposition is expressed as ‘xi is i

jA ’ where i
jA is a

fuzzy set with the membership function of Equation 4. It
can be understood as ‘xi is approximately equal to

)(i
jAc ’, where)(i

jAc is the ith element of the jth center.

The linguistic qualification ‘approximately equal to’ is
represented here by a fuzzy set with a Gaussian
membership function of Equation 4.

The output of each fuzzy rule is a numerical value. By
analyzing the rules of Table 2, we notice that the output
of rule R1 is positive (72.44), whereas that of rule R15 is
negative (-30.11). These two values are the synapse
weights of the hidden units representing the clusters C1
and C15 to the output unit. Consequently, the natural

0-7803-8482-2/04/$20.00 ©2004 IEEE. 4

interpretation that we can give to the outputs of the 59
fuzzy rules is that they can be considered as partial
contributions to the total effort. They have the same role
as the effort multipliers in the COCOMO’81 model.
They can increase (positive value) or decrease (negative
value) the total development effort. The only difference
between them is that the outputs of the fuzzy rules are
positive or negative. This is because the cost function of
the FRBS uses the summation operator, whereas in the
COCOMO’81 model, due to its cost function that uses
the multiplication operator, the effort multipliers are
greater than 1 (increase the effort) or less than 1
(decrease the effort).

Up to now, we have been suggesting a natural
interpretation of the premises and outputs of the
obtained fuzzy rules. It still remains to consider the
meaning of each fuzzy rule taken as a whole, in other
words, the interpretation of the implication contained in
each fuzzy rule. According to our understanding of the
premises and the outputs, each fuzzy rule Rj can be
written as follows:

Rj : if x1(P) is approximately equal to)(1

jAc and

 x2(P)is approximately equal to)(2
jAc and

 …
 xM(P)is approximately equal to)(M

jAc

 then effort (P)= βj

where xi(P) are the values of the cost drivers of the new
project P and)(i

jAc are those of project Cj, that is, the

center of the jth cluster. If we reduce the width σ of the
hidden neurons, the values βj, derived from the Delta
learning rule, converge to the real efforts of Cjs, where
Cjs are the centers of clusters. Indeed, in this case,
receptive fields (hidden neurons) do not overlap and
consequently each new project is classified into only one

cluster. Thus, each fuzzy rule can be interpreted as
follows:

P is similar to Cj implies that effort(P) is similar to

effort(Cj)

This affirmation is the basis of cost estimation models
based on reasoning by analogy [12,20]. The main
advantage of using reasoning by analogy to estimate
software development effort is that we can understand
its process and easily explain it to users. This is because
humans are familiar with this kind of reasoning, as they
use it every day of their lives

7. Conclusion and Future work

In this paper, we have studied one of the most important
limitations of neural networks, which is the difficulty of
understanding why a neural network makes a particular
decision. Our study is intended for application to the
cost estimation field, and the neural network that we
have used to predict the software development effort is
the Radial Basis Function network. We used the entire
COCOMO’81 dataset to train and test the RBFN. We
have found that the accuracy of the RBFN depends
essentially on the parameters of the middle layer,
especially the number of hidden neurons and the values
of the widths σi. The number of hidden neurons is
determined by one of the existing clustering algorithms;
in particular, we have adopted the APC-III algorithm
because it is a one-pass clustering technique and
therefore it makes the estimation process faster than if
we had used an elaborate but time-consuming clustering
algorithm. In addition to the number of hidden units, the
accuracy of the RBFN depends on the widths σi. We
have shown that choosing one value closer to the radius
R0 for all the σi improves the accuracy of the RBFN.

 .
 Table 2 : Three examples of the obtained fuzzy rules

If : R1 R14 R15

DATA is approximately equal to 7.74 and is approximately equal to 7.786 and is approximately equal to 8.472 and
VIRTmi is approximately equal to 6.471 and is approximately equal to 11.481 and is approximately equal to 0.410 and
TIME is approximately equal to 79.999 and is approximately equal to 64.407 and is approximately equal to 56.506 and
STORE is approximately equal to 94.14 and is approximately equal to 71.238 and is approximately equal to 82.974 and
VIRTma is approximately equal to 36.053 and is approximately equal to 106.918 and is approximately equal to 4.299 and
TURN is approximately equal to 3.50and is approximately equal to 1.049 and is approximately equal to 2.536 and
ACAP is approximately equal to 70.50 and is approximately equal to 55.564 and is approximately equal to 78.149 and
AEXP is approximately equal to 30.632 and is approximately equal to 16.414 and is approximately equal to 33.263 and
PCAP is approximately equal to 82.105 and is approximately equal to 59.636 and is approximately equal to 82.304 and
VEXP is approximately equal to 3.213 and is approximately equal to 4.846 and is approximately equal to 3.952 and
LEXP is approximately equal to 1.93 and is approximately equal to 6.844 and is approximately equal to 3.547 and
SCED is approximately equal to 12.338 and is approximately equal to 90.231 and is approximately equal to 84.720 and
KDSI is approximately equal to 3.0 and is approximately equal to 15.275 and is approximately equal to 5.3 and

Then Y=72.44 Y=203.37 Y=-30.11

After evaluating the accuracy of the RBFN, we
applied the Jang and Sun method to extract the if-then
fuzzy rules from the most accurate RBFN architecture.
These fuzzy rules express the information encoded in the
architecture of the network. The interpretation of each

fuzzy rule is determined by analyzing its premise, its
output and its implication. Our case study shows that we
can explain the meaning of the output and the
propositions composing the premise of each fuzzy rule.
Indeed, each proposition of a premise can be expressed

0-7803-8482-2/04/$20.00 ©2004 IEEE. 5

as a statement like ‘x is approximately equal to v’ where
the linguistic value ‘approximately equal to’ is
represented by a fuzzy set with a Gaussian membership
function. After providing a natural interpretation of the
premise and output of each fuzzy rule, we have
suggested an explanation of the entire fuzzy rule. Each
fuzzy rule can be interpreted as an analogy affirmation
‘similar software projects have similar costs’, which is
easy for users to understand.

8. Bibliography

[1] J. M. Benitez, J.L. Castro and I. Requena. “Are Artificial
Neural Networks Black Boxes?” IEEE Transactions on Neural
Networks, vol. 8. no. 5, September 1997, pp. 1156-1164.
[2] B.W. Boehm. Software Engineering Economics. Prentice-
Hall, 1981.
[3] B.W. Boehm et al. “Cost Models for Future Software Life
Cycle Processes: COCOMO 2.0.” Annals of Software
Engineering on Software Process and Product Measurement,
Amsterdam, 1995.
[4] L. Briand, T. Langley and I. Wieczorek. “Using the
European Space Agency data set: A replicated assessment and
comparison of common software cost modeling.” In Proc 22th
IEEE International Conference on Software Engineering,
Limerick, Ireland, 2000, pp. 377-386.
[5] J. J. Buckley, Y. Hayashi and E. Czogala. “On the
Equivalence of Neural Nets and Fuzzy Expert Systems.” Fuzzy
Sets and Systems, no. 53, 1993, pp. 129-134.
[6] C. J. Burgess and M. Lefley. “Can Genetic Programming
Improve Software Effort Estimation?” Information and
Software Technology, vol. 43, 2001, pp. 863-873.
[7] S. Hayken. Neural Networks: A Guide to Intelligent
Systems.” Addison-Wesley, 1994.
[8] J. Hertz, A. Krogh and R. G. Palmer. Introduction to the
Theory of Neural Computation. Addisson-Wesley, 1991.
 [9] Y-S Hwang and S-Y Bang. “An Efficient Method to
Construct a Radial Basis Function Network Classifier.” Neural
Networks, vol. 10, no. 8, 1997, pp. 1495-1503.
[10] A. Idri, and A. Abran, “A Fuzzy Logic Based Measure for
Software Project Similarity: Validation and Possible
Improvements.” 7th International Symposium on Software
Metrics, IEEE Computer Society, 4-6 April, England, 2001, pp.
85-96
[11] A. Idri, T. M. Khoshgoftaar and A. Abran. “Can Neural
Networks be easily Interpreted in Software Cost Estimation.”
FUZZ-IEEE, Hawaii, 2002, pp. 1162-1166.
[12] A. Idri., A. Abran and T. M. Khoshgoftaar. “Estimating
Software Project Effort by Analogy based on Linguistic

values.” 8th IEEE International Software Metrics Symposium,”
4-7 April, Ottawa, Canada, 2002, pp. 21-30.
[13] A. Idri, T. M. Khoshgoftaar and A. Abran. “Investigating
Soft Computing in Case-based Reasoning for Software Cost
Estimation.” International Journal of Engineering Intelligent
Systems, vol. 10, no. 3, 2002, pp. 147-157.
[14] J. S. Jang and C. T. Sun. “Functional equivalence between
radial basis function networks and fuzzy inference systems.”
IEEE Trans. on Neural Networks, vol. 4, 1992, pp. 156-158
[15] J. Moody and C. Darken. Fast Learning in Networks of
Locally-Tuned Processing Units. Neural Computation, vol. 1,
1989, pp. 281-294.
[16] I. Myrtveit and E. Stensrud, “A Controlled Experiment to
Assess the Benefits of Estimating with Analogy and
Regression Models.” IEEE Transactions on Software
Engineering, 25, 4, July/August, 1999, pp. 510-525
[17] M. Negnevitsky. Artificial Intelligence: A Guide to
Intelligent Systems. Addison-Wesley, 2001.
[18] H-X. Li and C. L. P. Chen. “The Equivalence between
Fuzzy Logic Systems and Feedforward Neural Networks.”
IEEE Tran. on Neural Networks, vol. 11, no. 2, 2000, pp. 356-
365.
[19] J. Park and I. W. Sandberg. “Approximation and Radial
Basis Function Networks.” Neural Computation, vol. 5, 1993,
pp. 305-316.
[20] M. Shepperd and C. Schofield. “Estimating Software
Project Effort Using Analogies.” Transactions on Software
Engineering, vol. 23, no. 12, 1997, pp. 736-747.
[21] S. Shepperd and G. Kadoda, “Using simulation to evaluate
prediction systems.” 7th International Symposium on Software
Metrics, IEEE Computer Society, 4-6 April, UK, 2001, pp.
349-358
[22] K. Srinivasan, and D. Fisher “Machine Learning
Approaches to Estimating Software Development Effort.”
IEEE Transactions on Software Engineering, vol. 21, no. 2.
February, 1995, pp. 126-136.
[23] A. R. Verkatachalam. “Software Cost Estimation using
Artificial Neural Networks.” International Joint Conference on
Neural Networks, Nogoya, IEEE 1993.
[24] S. Vicinanza, and M.J. Prietolla, “Case-Based Reasoning
in Software Effort Estimation.” Proceedings of the 11th Int.
Conf. on Information Systems, 1990.
[25] G. Wittig and G. Finnie. “Estimating Software
Development Effort with Connectionist Models.” Information
and Software Technology, vol. 39, 1997, pp. 469-476.
[26] L.A. Zadeh. “Fuzzy Set.” Information and Control, vol. 8,
1965, pp. 338-353.
[27] H. J. Zimmermann. Fuzzy Set Theory and its
Applications. 2nd ed, Boston, MA, Kluwe, 1991.

0-7803-8482-2/04/$20.00 ©2004 IEEE. 6

