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Abstract 
 

     Software development effort estimation with the aid of 
artificial neural networks (ANN) attracted considerable 
research interest at the beginning of the nineties. 
However, the lack of a natural interpretation of their 
estimation process has prevented them from being 
accepted as common practice in cost estimation. Indeed, 
they have generally been viewed with skepticism by a 
majority of the software cost estimation community. In 
this paper, we investigate the use and the interpretation 
of the Radial Basis Function Networks (RBFN) in the 
software cost estimation field. We first apply the RBFN to 
estimating the costs of software projects, and then study 
the interpretation of cost estimation models based on an 
RBFN using a method which maps this neural network to 
a fuzzy rule-based system, taking the view that, if the fuzzy 
rules obtained are easily interpreted, then the RBFN will 
also be easy to interpret. Our case study is based on the 
COCOMO’81 dataset.  
 
1. Introduction 
 

 Estimating software development effort remains a 
complex problem, and one which continues to attract 
considerable research attention.  Improving the accuracy 
of the estimation models available to project managers 
would facilitate more effective control of time and 
budgets during software development. In order to make 
accurate estimates and avoid gross misestimations, 
several cost estimation techniques have been developed. 
These techniques may be grouped into two major 
categories: (1) parametric models, which are derived 
from the statistical or numerical analysis of historical 
projects data [2,3], and (2) non-parametric models, 
which are based on a set of artificial intelligence 
techniques such as artificial neural networks, analogy-
based reasoning, regression trees, genetic algorithms and 
rule-based induction [6,12,20,22,24,25]. 

 Although experience has shown that there does not 
exist a ‘best’ prediction technique outperforming all the 
others in every situation [4,12,16,21], non-parametric 
models still have two significant advantages over 
parametric ones: first, the ability to model the complex 
set of relationships between the dependent variable 
required to predict (cost, effort) and the independent 

variables (cost drivers) collected earlier in the lifecycle; 
second, the ability to learn from historical projects data, 
especially for artificial neural networks. In this paper, 
we are concerned with cost estimation models based on 
artificial neural networks. 

An artificial neural network is characterized by its 
architecture, its learning algorithm and its activation 
functions [7,8,17]. In general, for software cost 
estimation modeling, the most commonly adopted 
architecture, the learning algorithm and the activation 
function are the feedforward multi-layer Perceptron, the 
Backpropagation algorithm and the Sigmoid function 
respectively [22,23,25]. Most of these referenced studies 
have focused more on the accuracy of the approach  
relative to that of other cost estimation techniques.  

In this work, we are concerned with Radial Basis 
Function Network (RBFN) models, which differ from 
the Backpropagation feedforwad Perceptron in the 
following ways: 1) usually, an RBFN architecture is 
composed of three layers, as opposed to a Perceptron 
which may have more; 2) RBFN models use a hybrid 
learning scheme that combines supervised and 
unsupervised learning algorithms, whereas the 
Backpropagation is a supervised learning algorithm; and 
3) the activation function of the middle-layer neurons of 
an RBFN is usually the Gaussian function, whereas that 
of the hidden Perceptron neurons can be Sigmoid, 
Gaussian or other types of functions. However, even 
though there is variety among neural network 
architectures, and most of them have shown their 
strengths in solving complex problems, many 
researchers in various fields are hesitant to use them 
because of their common shortcoming of being ‘black 
boxes’ models.  

To overcome this limitation, we have studied the use 
of FRBSs to provide a natural interpretation of cost 
estimation models based on a Backpropagation three-
layer feedforward Perceptron [11]. What we have 
proposed comprised essentially the use of the Benitez’s 
method to extract the if-then fuzzy rules from this 
network [1]. These fuzzy rules express the information 
encoded in the architecture of the network, and the 
interpretation of each fuzzy rule has been determined by 
analyzing its premise and its output. While our case 
study has shown that we can explain the meaning of the 
output and the propositions composing the premise of 
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each fuzzy rule,  the entire fuzzy rule cannot be easily 
interpreted because it uses the ‘i-or’ operator. In this 
paper, we explore another mapping method, that is, the 
Jang and Sun method, to extract if-then fuzzy rules from 
artificial neural networks. The use of this method 
requires that the architecture of the network be an RBFN 
[14].  The main advantage of Jang and Sun method is 
that it uses a more understandable operator, that is, the 
‘and’ logical conjunction, to combine the propositions 
composing the premise of each rule. This case study is 
based on the COCOMO’81 historical dataset.  

This paper is organized as follows: In Section 2, we 
briefly describe the RBFN architecture most often used.  
Section 3 shows how an RBFN can be used to estimate 
software development effort. We also present the 
architecture of the RBFN that will be used in our case 
study. In Section 4, we discuss the results obtained when 
the RBFN is used to estimate software development 
effort. In Section 5, we briefly outline the principle of 
the Jang and Sun method that will be used to extract the 
if-then fuzzy rules from our network. In Section 6, we 
apply the Jang and Sun method to our RBFN and we 
discuss the interpretation of the obtained fuzzy rules in 
software cost estimation. A conclusion and an overview 
of future work conclude this paper. 

 
2. Radial basis function networks for 
software cost estimation 
  

Based on biological receptive fields, Moody and 
Darken proposed a network architecture called the 
Radial Basis Function Network (RBFN) which employs 
local receptive fields to perform function mappings [15]. 
It can be used for a wide range of applications, primarily 
because it can approximate any regular function [19]. An 
RBFN is a three-layer feedforward network consisting of 
one input layer, one middle-layer and an output layer. 
Figure 1 illustrates a possible RBFN architecture 
configured for software development effort. The RBFN 
generates output (effort) by propagating the initial inputs 
(cost drivers) through the middle-layer to the final 
output layer. Each input neuron corresponds to a 
component of an input vector. The middle layer contains 
M neurons, plus, eventually, one bias neuron. Each input 
neuron is fully connected to the middle-layer neurons. 
The activation function of each middle neuron is usually 
the Gaussian function: 
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where ci and σi are the center and the width of the ith 
middle neuron respectively. .  denotes the Euclidean 
distance. Hence, each ith hidden neuron has its own 
receptive field in the input space, a region centered on ci 

with size proportional to σi.. The Gaussian function 
decreases rapidly if the width σi is small, and slowly if it 
is large. The output layer consists of one output neuron 

that computes the software development effort as a 
linear weighted sum of the outputs of the middle layer: 
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Figure 1: A Radial Basis Function Network 
architecture for software development effort 
 
3. Experiment design 
 

This section describes the experiment design of an 
RBFN on the COCOMO’81 historical projects. We 
present and discuss how we set the different parameters 
of the RBFN architecture according to the characteristics 
of the COCOMO’81 dataset, especially the number of 
input neurons, number of hidden neurons, centers ci, 
widths σi and weights βj.  

Before an RBFN is ready to make estimates for new 
software projects, it is trained by a set of combinations 
of inputs (cost drivers) and outputs (development 
efforts) of historical software projects. Our case study 
consists of estimating the software development effort 
by using an RBFN on the COCOMO’81 dataset. This 
dataset contains 63 software projects [2]. Each project is 
described by 13 attributes: the software size measured in 
KDSI (Kilo Delivered Source Instructions) and the 
remaining 12 attributes are measured on a scale 
composed of six linguistic values: ‘very low’, ‘low’, 
‘nominal’, ‘high’, ‘very high’ and ‘extra high’.  

As mentioned earlier, the use of an RBFN to estimate 
software development effort requires the determination 
of the middle-layer parameters and the weights βj. The 
simplest and most general method for deciding on the 
middle-layer neurons is to create a neuron for each 
training software project. Consequently, the middle layer 
of our RBFN will have 63 neurons. This approach does 
not take into account the existing similarities among the 
63 historical software projects. As we have shown in 
various studies with the COCOMO’81 dataset, there are 
some similarities among certain software projects of the 
COCOMO’81 dataset [10,12,13]. As a consequence, we 
prefer to first cluster the 63 projects into a reasonable 
number of groups containing similar software projects. 
We most often use the APC-III clustering algorithm 
developed by Hwang and Bang [9] to do this. APC-III is 
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a one-pass clustering algorithm, and has a constant 
radius R0 defined as follows: 

)(min1
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where N is the number of historical software projects 
and α is a predetermined constant. R0 expresses the 
radius of each cluster and consequently it controls the 
number of the clusters provided. APC-III generates 
many clusters if R0 is small and few clusters if it is large. 
According to Hwang and Bang, the APC-III is quite 
efficient at constructing the middle layer of an RBFN, 
since it can finish clustering by going through all the 
training patterns only once; this is not true with K-means 
and SOFM, which are multi-pass and time-consuming 
clustering algorithms.  

Concerning the weights βj, we may set each βj to the 
associated effort of the center of the jth neuron. 
However, this technique is not optimal and does not take 
into account the overlapping that may exist between 
receptive fields of the hidden layer. Thus, we use the 
Delta rule to derive the values of βj.   

Finally, our RBFN has 13 inputs (COCOMO cost 
drivers) and one output (development effort). All the 
inputs as well as the output of the network are numeric. 
The RBFN is trained by iterating through the training 
data many times. The Delta rule uses a learning rate, and 
maximum error equals 0.03 and 10-5 respectively.  
 
4. Overview of the empirical results 
 

The following section presents and discusses the 
results obtained when applying the RBFN to the 
COCOMO’81 dataset. We have conducted several 
experiments with the APC-III algorithm to decide on the 
number of hidden units. These experiments use the full 
COCOMO’81 dataset for training. Table 1 shows the 
classifications obtained according to different values of 
α (Eq. 3).   

 
Table 1: Number of clusters according to α for 

the COCOMO’81 dataset 
α Number of clusters 

0.4|0.45|0.46|0.47|0.49 62|59|60|58|55 
0.5|0.52|0.6|0.62 54|52|50|48 
0.66|0.70|0.75 47|45|43 

0.78|0.80 41|37 
 
In analyzing the results of Table 1, we noticed that the 

number of clusters is monotonous decreasing according 
to α. This is due to the fact that the radius R0 is 
monotonous increasing according to α. Choosing the 
‘best’ classification of those in Table 1 to determine the 
number of hidden neurons and their centers is a complex 
task. For software cost estimation, we suggest that the 
‘best’ classification is the one that satisfies the following 
two criteria: 
�  it improves the accuracy of  the RBFN; 

�  it provides coherent clusters, i.e. the software 
projects of a given cluster have satisfactory degrees of 
similarity. 

 Thus, we have conducted several experiments with an 
RBFN, each time using one of the classifications of the 
table 1. These experiments use the full COCOMO’81 
dataset for training and testing. The weights βj are 
calculated using the Delta learning rule. The RBFN 
converges quickly, with fewer than 12000 iterations of 
learning. The accuracy of the estimates generated by the 
RBFN is evaluated by means of the Mean Magnitude of 
Relative Error ‘MMRE’ and the Prediction level ‘Pred’, 
defined as follows: 
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where N is the total number of observations, k is the 
number of observations with an MRE less than or equal 
to p. A common value for p is 0.25. The MMRE and 
Pred are calculated for each classification of the table 1. 
Figure 2 shows the MMRE and Pred as functions of the 
classification (α). We can notice that the accuracy of the 
RBFN is better when α is lower than 0.49 (MMRE≤30 
and Pred(25) ≥70). When α is higher than 0.49, the 
MMRE is high, although the values of Pred(25) are 
acceptable. Indeed, the MMRE is very sensitive to 
variations in the estimated values, particularly when α 
increases, in which case the classification obtained may 
be less coherent, i.e. some clusters are composed of 
software projects that are not sufficiently similar. For 
those projects, the RBFN may generate inaccurate 
estimates. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2 : Relationship between the accuracy of 
the RBFN  (MMRE and Pred) and the used 
classification (α). 
 

In addition to the number of hidden neurons (number 
of clusters generated by the APC-III algorithm), the 
accuracy of the RBFN depends on the widths σi used by 
the hidden neurons (receptive fields). In the previous 
experiments (Figure 2), we had set the values of  σi to 
30. However, in the literature, the widths σi were usually 
determined to cover the input space as uniformly as 

0
10
20
30
40
50
60
70
80
90

100

0,4 0,5 0,6 0,7 0,8 0,9

MMRE 
Pred(25) 

0-7803-8482-2/04/$20.00 ©2004 IEEE. 3



possible [8,9]. Covering the historical software project 
space uniformly implies that the RBFN will be able to 
generate an estimate for a new project even though it is 
not  similar to any historical project. In such a situation, 
we prefer that the RBFN does not provide any estimate 
than one it may easily lead to wrong managerial 
decisions and project failure. 

As a consequence, we have adopted a simple strategy 
based primarily on two guidelines. First, we assign one 
value to all widths σi. Second, this value depends on the 
radius R0. Indeed, R0 is used in the APC-III algorithm to 
delimit the area of each cluster. This looks like a 
reasonable way to set the widths σi to a value closer to 
R0.  

As we noticed earlier, in addition to the accuracy of 
the RBFN, the aim is to explain its process by mapping 
the RBFN to a fuzzy rule-based system. The above 
empirical experiments allow us to choose which RBFN 
architecture that will be used in the mapping process. 
The method developed by Jang and Sun will be used to 
extract the if-then fuzzy rules from the chosen RBFN 
architecture[14]. This method is presented below. 
 
5. Equivalence between Radial Basis 
Function networks and fuzzy rule-based 
systems: Background 
 

Since its foundation by Zadeh in 1965 [26], fuzzy 
logic has been the subject of many investigations. One 
of its main contributions to solving complex problems is 
undoubtedly the Fuzzy Rule-Based Systems [27]. 
Essentially, an FRBS is based on a set of if-then fuzzy 
rules. A fuzzy rule is an if-then statement where the 
premise and the consequence consist of fuzzy 
propositions, whereas in a classical production rule the 
premise and the consequence are crisp. An example of a 
fuzzy rule in cost estimation may be ‘if the competence 
of the analysts is high then the effort is low’. The main 
advantage of fuzzy rules over classical rules is that they 
are easier for humans to understand and may be easily 
interpreted. This is because fuzzy rules, unlike classical 
rules, use linguistic values instead of numerical data in 
their premises and consequences. As a result, some 
researchers have investigated the equivalence between 
neural networks and FRBSs [1,5,14,18], their objective 
being to translate the knowledge embedded in the neural 
network into a more understandable language, that is, 
the if-then fuzzy rules. Furthermore, establishing 
equivalence between neural networks and FBRSs can be 
used to apply advances and new developments of one 
model to the other and vice versa.   

Jang and Sun have developed a method which proves 
the functional equivalence between an RBFN, such as 
the one used in the previous sections, and a fuzzy rule-
based system which uses Takagi-Sugeno rules [14]. 
Hence, we use their method to provide a natural 
interpretation of cost estimation models based on the 
RBFN. Jang and Sun fixed five conditions to the 

establishment of a functional equivalence between an 
RBFN and a FBRS using Takagi-Sugeno rules.  

Under these conditions, the RBFN is equivalent to an 
FBRS which uses a set of fuzzy rules Rj associated with 
all hidden neurons:  
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where xi are the inputs of the RBFN, βj are  the weights 
of the hidden units to the output unit, and i

jA  is a fuzzy 

set with a Gaussian membership function defined by: 
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where )( i
jAc is the ith component of the jth center of the 

classification used by the RBFN. 
 
6. Validation and interpretation of the fuzzy 
rules 
 
In this section, we apply the method developed by Jang 
and Sun on the RBFN presented and discussed in 
Sections 2, 3 and 4. The RBFN that we consider adopts 
the classification associated to α=0.45 because of the 
accuracy of its estimates (Figure 2). Hence, the RBFN 
has 59 hidden units and therefore the equivalent FBRS 
has 59 fuzzy if-then rules. Each fuzzy rule contains 13 
fuzzy propositions in its premise and one numerical 
output. These 59 fuzzy rules express the knowledge 
encoded into the synaptic weights of our RBFN. The 
objective is to give a more comprehensible interpretation 
of these fuzzy rules in software cost estimation. Each 
fuzzy rule will interpreted by interpreting its premise, its 
output and its implication. For simplicity, we discuss 
only three fuzzy rules (Table 2). 

The premise of each jth fuzzy rule is composed of 13 
fuzzy propositions combined by the ‘and’ operator. Each 
is associated with one cost driver (inputs of the RBFN). 
For instance, the first proposition of the rule R1 ‘DATA 
is approximately equal to 7.74’ concerns the cost driver 
DATA, which represents, with the other three cost 
drivers, the effect of the size and complexity of the 
database on the software development effort. Each ith 
proposition is expressed as ‘xi is i

jA ’ where i
jA  is a 

fuzzy set with the membership function of Equation 4. It 
can be understood as ‘xi is approximately equal to 

)( i
jAc ’, where )( i

jAc is the ith element of the jth center. 

The linguistic qualification ‘approximately equal to’ is 
represented here by a fuzzy set with a Gaussian 
membership function of Equation 4.  

The output of each fuzzy rule is a numerical value. By 
analyzing the rules of Table 2, we notice that the output 
of rule R1 is positive (72.44), whereas that of rule R15 is 
negative (-30.11). These two values are the synapse 
weights of the hidden units representing the clusters C1 
and C15 to the output unit. Consequently, the natural 
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interpretation that we can give to the outputs of the 59 
fuzzy rules is that they can be considered as partial 
contributions to the total effort. They have the same role 
as the effort multipliers in the COCOMO’81 model. 
They can increase (positive value) or decrease (negative 
value) the total development effort. The only difference 
between them is that the outputs of the fuzzy rules are 
positive or negative. This is because the cost function of 
the FRBS uses the summation operator, whereas in the 
COCOMO’81 model, due to its cost function that uses 
the multiplication operator, the effort multipliers are 
greater than 1 (increase the effort) or less than 1 
(decrease the effort).  

Up to now, we have been suggesting a natural 
interpretation of the premises and outputs of the 
obtained fuzzy rules. It still remains to consider the 
meaning of each fuzzy rule taken as a whole, in other 
words, the interpretation of the implication contained in 
each fuzzy rule. According to our understanding of the 
premises and the outputs, each fuzzy rule Rj can be 
written as follows: 

 
Rj : if x1(P) is approximately equal to )( 1

jAc  and 

      x2(P)is approximately equal to )( 2
jAc  and 

                                    … 
      xM(P)is approximately equal to )( M

jAc   

      then effort (P)= βj 
 

where xi(P) are the values of the cost drivers of the new 
project P and )( i

jAc are those of project Cj, that is, the 

center of  the jth cluster. If we reduce the width σ of the 
hidden neurons, the values βj, derived from the Delta 
learning rule, converge to the real efforts of Cjs, where 
Cjs are the centers of clusters. Indeed, in this case, 
receptive fields (hidden neurons) do not overlap and 
consequently each new project is classified into only one 

cluster. Thus, each fuzzy rule can be interpreted as 
follows:  

 
P is similar to Cj implies that  effort(P) is similar to 

effort(Cj ) 
 

This affirmation is the basis of cost estimation models 
based on reasoning by analogy [12,20]. The main 
advantage of using reasoning by analogy to estimate 
software development effort is that we can understand 
its process and easily explain it to users. This is because 
humans are familiar with this kind of reasoning, as they 
use it every day of their lives 
 
7. Conclusion and Future work 
 
In this paper, we have studied one of the most important 
limitations of neural networks, which is the difficulty of 
understanding why a neural network makes a particular 
decision. Our study is intended for application to the 
cost estimation field, and the neural network that we 
have used to predict the software development effort is 
the Radial Basis Function network. We used the entire 
COCOMO’81 dataset to train and test the RBFN. We 
have found that the accuracy of the RBFN depends 
essentially on the parameters of the middle layer, 
especially the number of hidden neurons and the values 
of the widths σi. The  number of hidden neurons is 
determined by one of the existing clustering algorithms; 
in particular, we have adopted the APC-III algorithm 
because it is a one-pass clustering technique and 
therefore it makes the estimation process faster than if 
we had used an elaborate but time-consuming clustering 
algorithm. In addition to the number of hidden units, the 
accuracy of the RBFN depends on the widths σi. We 
have shown that choosing one value closer to the  radius 
R0 for all the σi improves the accuracy of the RBFN.  

 . 
 Table 2 : Three examples of the obtained fuzzy rules 

If : R1 R14 R15 

DATA is approximately equal to 7.74 and is approximately equal to 7.786 and is approximately equal to 8.472 and 
VIRTmi is approximately equal to 6.471 and is approximately equal to 11.481 and is approximately equal to 0.410 and 
TIME is approximately equal to 79.999 and is approximately equal to 64.407 and is approximately equal to 56.506 and 
STORE is approximately equal to 94.14 and is approximately equal to 71.238 and is approximately equal to 82.974 and 
VIRTma is approximately equal to 36.053 and is approximately equal to 106.918 and is approximately equal to 4.299 and 
TURN is approximately equal to 3.50and is approximately equal to 1.049 and is approximately equal to 2.536 and 
ACAP is approximately equal to 70.50 and is approximately equal to 55.564 and is approximately equal to 78.149 and 
AEXP is approximately equal to 30.632 and is approximately equal to 16.414 and is approximately equal to 33.263 and 
PCAP is approximately equal to 82.105 and is approximately equal to 59.636 and is approximately equal to 82.304 and 
VEXP is approximately equal to 3.213 and is approximately equal to 4.846 and is approximately equal to 3.952 and 
LEXP is approximately equal to 1.93 and is approximately equal to 6.844 and is approximately equal to 3.547 and 
SCED is approximately equal to 12.338 and is approximately equal to 90.231 and is approximately equal to 84.720 and 
KDSI is approximately equal to 3.0 and is approximately equal to 15.275 and is approximately equal to 5.3 and 

Then Y=72.44 Y=203.37 Y=-30.11 
 

After evaluating the accuracy of the RBFN, we 
applied the Jang and Sun method to extract the if-then 
fuzzy rules from the most accurate RBFN architecture. 
These fuzzy rules express the information encoded in the 
architecture of the network. The interpretation of each 

fuzzy rule is determined by analyzing its premise, its 
output and its implication. Our case study shows that we 
can explain the meaning of the output and the 
propositions composing the premise of each fuzzy rule. 
Indeed, each proposition of a premise can be expressed 
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as a statement like ‘x is approximately equal to v’ where 
the linguistic value ‘approximately equal to’ is 
represented by a fuzzy set with a Gaussian membership 
function. After  providing a natural interpretation of the 
premise and output of each fuzzy rule, we have 
suggested an explanation of the entire fuzzy rule. Each 
fuzzy rule can be interpreted as an analogy affirmation 
‘similar software projects have similar costs’, which is 
easy for users to understand. 
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