

An Experiment on the Design of Radial Basis Function Neural Networks for Software Cost
Estimation

Ali Idri
Department of Software Engineering
ENSIAS, Mohamed V University
Rabat, Morocco
E-mail : idri@ensias.ma

Alain Abran
École de Technologie Supérieure
1180 Notre-Dame Ouest,
Montreal, Canada H3C 1K3
E-mail : aabran@ele.etsmtl.ca

Samir Mbarki
Department of Mathematics
Ibn Tofail University
Kenitra, Morocco
E-mail: Mbarki@univ-ibntofail.ac.ma

Abstract

This paper is concerned with the use of Radial Basis
Function (RBF) neural networks for software cost
estimation. The study is devoted to the design of these
networks, especially their middle layer composed of
receptive fields, using two clustering techniques: the C-
means and the APC-III algorithms. A comparison
between an RBFN using C-means and an RBFN using
APC-III, in terms of estimates accuracy, is hence
presented. This study is based on the COCOMO’81
dataset.

1. Introduction

 Estimating software development effort remains a
complex problem, and one which continues to attract
considerable research attention. Improving the
accuracy of the estimation models available to project
managers would facilitate more effective control of time
and budgets during software development. In order to
make accurate estimates and avoid gross
misestimations, several cost estimation techniques have
been developed. These techniques may be grouped into
two major categories: (1) parametric models, which are
derived from the statistical or numerical analysis of
historical projects data [2,3], and (2) non-parametric
models, which are based on a set of artificial
intelligence techniques such as artificial neural
networks, analogy-based reasoning, regression trees,
genetic algorithms and rule-based induction
[4,9,18,19,21,22]. In this paper, we are concerned with
cost estimation models based on artificial neural
networks, especially Radial Basis Function Neural
Networks.

Based on biological receptive fields, Moody and
Darken proposed a network architecture called the
Radial Basis Function Network (RBFN) which employs
local receptive fields to perform function mappings
[15]. It can be used for a wide range of applications,
primarily because it can approximate any regular
function [16]. An RBFN is a three-layer feedforward
network consisting of one input layer, one middle-layer
and an output layer. Figure 1 illustrates a possible

RBFN architecture configured for software development
effort. The RBFN generates output (effort) by
propagating the initial inputs (cost drivers) through the
middle-layer to the final output layer. Each input neuron
corresponds to a component of an input vector. The
middle layer contains M neurons, plus, eventually, one
bias neuron. Each input neuron is fully connected to the
middle-layer neurons. The activation function of each
middle neuron is usually the Gaussian function:

)(2

2

)(i

icx

exf σ

−
−

= (Eq. 1)

where ci and σi are the center and the width of the ith
middle neuron respectively. . denotes the Euclidean
distance. Hence, each ith hidden neuron has its own
receptive field in the input space, a region centered on ci

with size proportional to σi.. The Gaussian function
decreases rapidly if the width σi is small, and slowly if it
is large. The output layer consists of one output neuron
that computes the software development effort as a linear
weighted sum of the outputs of the middle layer:

∑
=

−
−

==
M

j

cx

jjj
j

j

eywithyEffort
1

)(2

2

σβ (Eq. 2)

The use of an RBFN to estimate software development

effort requires the determination of the middle-layer
parameters (receptive fields) and the weights βj. The
choice of the receptive fields, especially their distribution
in the input space is often critical to the successful
performance of an RBF network [17]. In general, there
are two primary sources of this knowledge:

 The use of some clustering techniques to analyze
and find clusters in the training data. The results of
this grouping are used to establish prototypes of the
receptive fields.
 The use of existing empirical domain knowledge to
form the set of receptive fields. Along this line emerge
some fuzzy models; in particular, some interesting
equivalence between RBF networks and Fuzzy Rule-
Based systems [12].

y1

y2

y3

y
M

Figure 1: An example of Radial Basis Function
Network architecture for software development
effort

The aim of this study is to discuss the preprocessing
phase of the design of RBF neural network in software
cost estimation as it becomes accomplished through
data clustering techniques. Especially, we use two
clustering techniques: 1) the APC-III algorithm
developed by Hwang and Bang [7], and 2) the best-
known clustering method that is the C-means algorithm.

This paper is composed of six sections. In Section 2,
we briefly describe how we can use the two clustering
algorithms: APC-III and C-means in the design of an
RBF neural network. Section 3 presents the experiment
design of an RBFN construction based on APC-III or
C-means in software cost estimation. In Section 4, we
discuss the results obtained, in terms of estimates
accuracy, when the RBFN is used to estimate the
software development effort. A conclusion and an
overview of future work conclude this paper.

2. Clustering techniques for RBF networks

 Generally speaking, clustering is one method to find
most similar groups from given data, which means that
data belonging to one cluster are the most similar; and
data belonging to different clusters are the most
dissimilar. In the literature, researchers have proposed
many solutions for this issue based on different theories,
and many surveys focused on special types of clustering
algorithm have been presented [1,5,6,13,14].

Clustering techniques have been successfully used in
many application domains, including biology, medicine,
economics, and patterns recognition. These techniques
can be grouped into major categorises: Hierarchical or
Partitional [6]. In this paper, we focus only on the
partitional clustering algorithm since it is used more
frequently than other clustering algorithms in pattern
recognition fields. Generally, partitional clustering
algorithms suppose that the data set can be well
represented by finite prototypes. Partitional clustering is
also called objective function-based clustering
algorithm.

Clustering has been often exercised as a preprocessing
phase used in the design of the RBF neural networks. The
primary aim of this algorithm is to set up an initial
distribution of the receptive fields (hidden neurons)
across the space of the input variables. In particular, this
implies a location of the modal values of these fields
(e.g., the modes of the Gaussian functions).

In an earlier work, we have used the APC-III clustering
algorithm to determine the receptive fields of an RBF
network for software cost estimation [11]. APC-III is a
one-pass clustering algorithm, and has a constant radius
R0 defined as follows:

)(min1

1
0 ∑

= ≠
−=

N

i
jiji

PP
N

R α (Eq. 3)

where N is the number of historical software projects and
α is a predetermined constant. R0 expresses the radius of
each cluster and consequently it controls the number of
the clusters provided. APC-III generates many clusters if
R0 is small and few clusters if it is large. The outline of
APC-III algorithm can be stated as follows:

1- Initially, the number of clusters is set at 1; the center
of this cluster C1 is the first software project in the
dataset, say P1

2- Iterate from i=2 to N (N is the number of historical
software projects)

a. For j=1 to c (c is the number of clusters)
• Compute dij (dij is the Euclidean distance of Pi and
cj, cj is the center of cluster Cj)
• If dij<R0 then

o Include Pi into Cj and adjust the center of Cj
o Exit from the loop

b. If Pi is not included in any clusters then
• Create a new cluster that has Pi as a center

According to Hwang and Bang, the APC-III is quite

efficient at constructing the middle layer of an RBFN,
since it can finish clustering by going through all the
training patterns only once. However, the APC-III proves
to be dependent upon order of data presentation.

This paper suggests the use of the best-known

clustering method that is the C-means algorithm to
determine the receptive fields of an RBF network for
software cost estimation. C-means clustering algorithm
has many successfully applications in fields such as patter
recognition and data compression. It is a multi-pass and
time-consuming clustering algorithm.

The C-means algorithm partitions a collection of N
vectors into c clusters Ci, i=1,..,c. The aim is to find
cluster centers (centroids) by minimizing a dissimilarity
(or distance) function which is given in Equation 4.

Input layer Hidden layer Output
lKDSI

RELY

ACAP

PCAP

CPLX

Effort
βi

ci, σi

∑ ∑
= ∈

=
c

i Cx
ik

ik

cxdJ
1

),((Eq. 4)

ci is the center of cluster Ci;
d(xk,ci) is the distance between ith center (ci) and kth data
point;

For simplicity, the Euclidian distance is used as
dissimilarity measure and overall dissimilarity function
is expressed as in Equation 5.

∑ ∑
= ∈

−=
c

i Cx
ik

ik

cxJ
1

2 (Eq. 5)

The outline of C-means algorithm can be stated as

follows:

1- Define the number of the desired clusters, c.
2- Initialize the centers ci,i=1,..c. This is typically
achieved by randomly selecting c points from among
all of the data points.
3- Compute the Euclidean distance between xj and ci,
j=1..N and i=1..c
4- Assign each xj to the most closer cluster Ci
5- Recalculate the centers ci
6- Compute the objective function J given in equation
5. Stop if its improvement over previous iteration is
below a threshold.
7- Iterate from step 3

The performance of the algorithm depends on the

initial positions of centers. So the algorithm gives no
guarantee for an optimum solution.

3. Experiment Design and Data Description

This section describes the experiment design of an
RBFN on an artificial COCOMO’81 dataset. The
original COCOMO’81 dataset contains 63 software
projects [2]. Each project is described by 13 attributes:
the software size measured in KDSI (Kilo Delivered
Source Instructions) and the remaining 12 attributes are
measured on a scale composed of six linguistic values:
‘very low’, ‘low’, ‘nominal’, ‘high’, ‘very high’ and
‘extra high’. These 12 attributes are related to the
software development environment such as the
experience of the personnel involved in the software
project, the method used in the development and the
time and storage constraints imposed on the software.
Because the original COCOMO’81 dataset contains
only 63 historical software projects and in order to have
a robust empirical study, we have artificially generated,
from the original COCOMO’81 dataset, three other
datasets each one contains 63 software projects (see [9]
for more details). The union of the four datasets
constitutes the artificial COCOMO’81 dataset that is
used in this study.

As mentioned earlier, the use of an RBFN to estimate
software development effort requires the determination of
its architecture parameters according to the characteristics
of the COCOMO’81 dataset, especially the number of
input neurons, number of hidden neurons, centers ci,
widths σi and weights βj.

The number of input neurons is the same as the number
of attributes (cost drivers) describing the historical
software projects in the COCOMO’81 dataset. Hence, the
number of input neurons is equal to 13. The number of
hidden neurons is determined by the number of clusters
(c) provided by the APC-III or the C-means algorithms
described in Section 2. Concerning the widths σi, they
were usually determined in the literature to cover the
input space as uniformly as possible [7]. Covering the
historical software project space uniformly implies that
the RBFN will be able to generate an estimate for a new
project even though it is not similar to any historical
project. In such a situation, we prefer that the RBFN does
not provide any estimate than one it may easily lead to
wrong managerial decisions and project failure. In our
earlier work [11], we have adopted a simple strategy
based primarily on assigning one value to all σi; this
value depends on the radius R0 used in the APC-III
algorithm. Because here we investigate two clustering
techniques, we adopt one of the following formulas to
determine σi:









=

>
=

>

∈

1)(max

1)(),(max

1)(/
ik

Ccardk

iij
Cx

i Ccardif

Ccardifcxd

k

ij

σ
σ (Eq. 6)








=

>
=

>

∈

1)(min

1)(),(max

1)(/ ikCcardk

iij
Cx

i Ccardif

Ccardifcxd

k

ij

σ
σ (Eq. 7)

 Where card(Ci) is the cardinality of cluster Ci

Concerning the weights βj, we may set each βj to the

associated effort of the center of the jth neuron. However,
this technique is not optimal and does not take into
account the overlapping that may exist between receptive
fields of the hidden layer. Thus, we use the Delta rule to
derive the values of βj.

4. Overview of the empirical results

The following section presents and discusses the results
obtained when applying the RBFN to the artificial
COCOMO’81 dataset. The calculations were made using
two software prototypes developed with C language
under a Microsoft Windows PC environment. The first
software prototype implements the APC-III and the C-
means clustering algorithms, providing both the clusters
and their centers from the COCOMO’81. The second
software prototype implements a cost estimation model

based on an RBFN architecture in which the middle-
layer parameters are determined by means of the first
software prototype

We have conducted several experiments with both
the C-means and the APC-III algorithms to decide on
the number of hidden units. These experiments use the
full artificial COCOMO’81 dataset for training.
Choosing the ‘best’ classification to determine the
number of hidden neurons and their centers is a
complex task. For software cost estimation, we suggest
that the ‘best’ classification is the one that satisfies the
following two criteria:
 it provides coherent clusters, i.e. the software

projects of a given cluster have satisfactory degrees of
similarity;
 it improves the accuracy of the RBFN.

The accuracy of the estimates generated by the RBFN

is evaluated by means of the Mean Magnitude of
Relative Error ‘MMRE’ and the Prediction level ‘Pred’,
defined as follows:

1001

1 ,

,, ×
−

= ∑
=

N

i iactual

iestimatediactual

Effort
EffortEffort

N
MMRE

N
kPred(p)=

where N is the total number of observations, k is the
number of observations with an MRE less than or equal
to p. A common value for p is 25.

4. 1 RBFN with C-means algorithm

To measure the coherence of clusters in the case of C-
means algorithm, we use one of the two criteria: the
objective function J given in Equation 5 or the Dunn’s
validity index defined by the following formula:

 (Eq. 8)

where d(Ci,Cj) is the distance between clusters Ci, and
Cj (intercluster distance);

and d(Ck) is the intracluster distance of cluster Ck

The Dunn’s index (D1) expresses the idea of
identifying clusters that are compact and well separated.
The main goal of the measure (D1) is to maximise the
intercluster distances and minimise the intracluster
distances. Therefore, the number of cluster that

maximise D1 is taken as the optimal number of the
clusters.

0

20

40

60

80

100

120

100 150 200 250

number of clusters

Pred J

Pred D1

MMRE J

MMRE D1

Figure 2: Relationship between the accuracy of
RBFN (MMRE and Pred) and the used
classification of the C-means (J and D1).

We have conducted several experiments with an RBFN,
each time using one of the classifications generated by the
C-means algorithm. These experiments use the full
COCOMO’81 dataset for training and testing. For each
number of clusters (c), the RBFN uses the two C-means
classifications that respectively minimise J or maximise
D1. For instance, when fixing c to 120, the two choosing
classifications are respectivelly those for which J is equal
to 1064,22 and D1 is equal to 8,11. Figure 2 shows the
relationship between the accuracy of the RBFN,
measured in terms of Pred and MMRE, and the used
classifications (number of clusters) minimizing the
objective function J or maximizing the D1 index. We can
notice that the accuracy of the RBFN when using the C-
means classification that minimizes J (Pred_J and
MMRE_J) is better than that when using the classification
maximizing D1 (Pred_D1 and MMRE_D1). In figure 2, we
only show the results of experiments when the number of
clusters is higher than 120 because the evaluated accuracy
of the RBFN is acceptable (the common values used in
the literature are Pred(25)>= 70 and MMRE<=30). Also,
the obtained classifications for c lower than 120 are, in
general, less coherent, i.e. some clusters are composed of
software projects that are not sufficiently similar; for
those projects, the RBFN may generate inaccurate
estimates.

4.2 RBFN with the APC-III algorithm

The classifications generated by the APC-III algorithm
depend on the number α that defines the radius R0. Table
1 shows the classifications obtained according to different
values of α (Eq. 3).

In analyzing the results of Table 1, we noticed that the
number of clusters is monotonous decreasing according to
α. This is due to the fact that the radius R0 is monotonous
increasing according to α. For each value of α, we varied
the presentation sequence of the 252 software projects.
Indeed, the classification provided by the APC-III






























=

≤≤
−≤≤+≤≤))((max

),(
minmin

1
1111

k
ck

ji

cjici Cd
CCd

D

),(min),(
, jiCxCxji xxdCCd

jjii ∈∈
=

),(max)(
,

kj
Cxx

k xxdCd
kji ∈

=

depends on this presentation sequence because it
influences the determination of the centers; we retained
for each the classification maximizing D1 index.

α Number of clusters
0.4|0.5|0.6|0.7|0.8 251|244|234|216/200
0.9|1.0|1.02|1.04 189|170|162|161

1.06|1.08|1.1 155|151|150
Table 1: Number of clusters according to α for
the COCOMO’81 dataset

Thus, we have conducted several experiments with an

RBFN, each time using one of the classifications of the
table 1. These experiments use the full COCOMO’81
dataset for training and testing. The weights βj are
calculated using the Delta learning rule. The RBFN
converges quickly, with fewer than 12000 iterations of
learning. The accuracy of the estimates generated by the
RBFN is evaluated by means of the MMRE and the
Pred indicators. Figure 3 shows the MMRE and Pred as
functions of the classification (α). We can notice that
the accuracy of the RBFN is better when α is lower than
1,04 (MMRE=29,81 and Pred(25)=73,81). When α is
higher than 1,04, the MMRE and pred(25) become not
acceptable.

To conclude the Section 4, we compare the accuracy

of the RBFN using the C-means algorithm with that of
the RBFN when using the APC-III algorithm (Figure 4).
We notice that the RBFN with C-means performs better
than the RBFN with APC-III. Indeed, an acceptable
accuracy of the RBFN-C-Means is still achieved until
the number of clusters is equal to 120; by contrast, it
was acceptable only until the number of clusters is
equal to 150 in the case of the RBFN-APC-III..

0

50

100

150

200

250

0,3 0,5 0,7 0,9 1,1

Pred

MMRE

Figure 3: Relationship between the accuracy of
RBFN (MMRE and Pred) and the used
classification of the APC-III (α and D1).

0

20

40

60

80

100

120

100 150 200 250 300

Pred_J (C-means)

Pred (APC_III)

Figure 4: Comparing the accuracy of RBFN
using C-means (Pred_J) and RBFN using APC-III
(Pred).

5. Conclusion and Future Work

In this paper, we have empirically studied the use of
two clustering techniques when designing RBF neural
networks for software cost estimation. The two used
clustering algorithms are the well-known C-means and
the APC-III. This study is based on an artificial
COCOMO’81 dataset that contains 252 software projects.
We used the entire COCOMO’81 dataset to train and test
the designed RBFN. We have found that the RBFN
designed with the C-means algorithm performs better, in
terms of cost estimates accuracy, than the RBFN designed
with the APC-III algorithm. To confirm this affirmation,
we are looking currently in applying an RBFN
construction based C-means on other historical software
projects datasets.

 6. Bibliography

[1] P. Berkhin, Survey Of Clustering Data Mining
Techniques, 2002,
http://citeseer.nj.nec.com/berkhin02survey.html
 [2] B.W. Boehm. Software Engineering Economics.
Prentice-Hall, 1981.
[3] B.W. Boehm et al. “Cost Models for Future Software
Life Cycle Processes: COCOMO 2.0.” Annals of
Software Engineering on Software Process and Product
Measurement, Amsterdam, 1995.
[4] C. J. Burgess and M. Lefley. “Can Genetic
Programming Improve Software Effort Estimation?”
Information and Software Technology, vol. 43, 2001, pp.
863-873.
[5] R. O. Duda and P. E. Hart, “Pattern Classification and
Scheme Analysis”, New York: Wiley, 1973.
[6] Margaret H. Dunham,”Datamining: Introduction and
Advanced Topics”, Prentice-Hall, 2003
[7] Y-S Hwang and S-Y Bang. “An Efficient Method to
Construct a Radial Basis Function Network Classifier.”
Neural Networks, vol. 10, no. 8, 1997, pp. 1495-1503.

[8] A. Idri, T. M. Khoshgoftaar and A. Abran. “Can
Neural Networks be easily Interpreted in Software Cost
Estimation.” FUZZ-IEEE, Hawaii, 2002, pp. 1162-
1166.
[9] A. Idri., A. Abran and T. M. Khoshgoftaar.
“Estimating Software Project Effort by Analogy based
on Linguistic values.” 8th IEEE International Software
Metrics Symposium,” 4-7 April, Ottawa, Canada, 2002,
pp. 21-30.
[10] A. Idri, T. M. Khoshgoftaar and A. Abran.
“Investigating Soft Computing in Case-based
Reasoning for Software Cost Estimation.” International
Journal of Engineering Intelligent Systems, vol. 10, no.
3, 2002, pp. 147-157.
[11] A. Idri, A Abran, S. Mbarki, ‘Validating and
Understanding Software Cost Estimation Models based
on Neural Networks’, International Conference on
Information and Communication Technologies: from
Theory to Applications (ICTTA), 19-23 April,
Damascus, Syria, 2004, pp. 433-438
[12] J. S. Jang and C. T. Sun. “Functional equivalence
between radial basis function networks and fuzzy
inference systems.” IEEE Trans. on Neural Networks,
vol. 4, 1992, pp. 156-158.
[13] Jian Yu, “ General C-Means Clustering Model”,
IEEE Transactions on Patter Analysis and Machine
Intelligence, Vol. 27, No. 8, August, 2005.
out such research.
[14] L. Kaufman and P.J. Rousseeuw, “Finding Groups
in Data: An Introduction to Cluster Analysis”. New
York: John Wiley & Sons, Inc.,

1990.
[15] J. Moody and C. Darken. “Fast Learning in
Networks of Locally-Tuned Processing Units”. Neural
Computation, vol. 1, 1989, pp. 281-294.
[16] J. Park and I. W. Sandberg. “Approximation and Radial
Basis Function Networks.” Neural Computation, vol. 5, 1993,
pp. 305-316.
[17] W. Pedrycs, “Conditionnal Fuzzy Clustering in the
Design of Radial Basis Function Neural Networks”, IEEE
Transaction on Neural Networks, Vol. 9, No. 4, July,
1998.
[18] M. Shepperd and C. Schofield. “Estimating Software
Project Effort Using Analogies.” Transactions on
Software Engineering, vol. 23, no. 12, 1997, pp. 736-747.
[19] K. Srinivasan, and D. Fisher “Machine Learning
Approaches to Estimating Software Development Effort.”
IEEE Transactions on Software Engineering, vol. 21, no.
2. February, 1995, pp. 126-136.
[20] A. R. Verkatachalam. “Software Cost Estimation
using Artificial Neural Networks.” International Joint
Conference on Neural Networks, Nogoya, IEEE 1993.
[21] S. Vicinanza, and M.J. Prietolla, “Case-Based
Reasoning in Software Effort Estimation.” Proceedings of
the 11th Int. Conf. on Information Systems, 1990.
[22] G. Wittig and G. Finnie. “Estimating Software
Development Effort with Connectionist Models.”
Information and Software Technology, vol. 39, 1997, pp.
469-476.

