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Abstract 
 

This paper is concerned with the use of Radial Basis 
Function (RBF) neural networks for software cost 
estimation. The study is devoted to the design of these 
networks, especially their middle layer composed of 
receptive fields, using two clustering techniques: the C-
means and the APC-III algorithms. A comparison 
between an RBFN using C-means and an RBFN using 
APC-III, in terms of estimates accuracy, is hence 
presented. This study is based on the COCOMO’81 
dataset. 
   
1. Introduction 
 

 Estimating software development effort remains a 
complex problem, and one which continues to attract 
considerable research attention.  Improving the 
accuracy of the estimation models available to project 
managers would facilitate more effective control of time 
and budgets during software development. In order to 
make accurate estimates and avoid gross 
misestimations, several cost estimation techniques have 
been developed. These techniques may be grouped into 
two major categories: (1) parametric models, which are 
derived from the statistical or numerical analysis of 
historical projects data  [2,3], and (2) non-parametric 
models, which are based on a set of artificial 
intelligence techniques such as artificial neural 
networks, analogy-based reasoning, regression trees, 
genetic algorithms and rule-based induction 
[4,9,18,19,21,22]. In this paper, we are concerned with 
cost estimation models based on artificial neural 
networks, especially Radial Basis Function Neural 
Networks. 

Based on biological receptive fields, Moody and 
Darken proposed a network architecture called the 
Radial Basis Function Network (RBFN) which employs 
local receptive fields to perform function mappings 
[15]. It can be used for a wide range of applications, 
primarily because it can approximate any regular 
function [16]. An RBFN is a three-layer feedforward 
network consisting of one input layer, one middle-layer 
and an output layer. Figure 1 illustrates a possible 

RBFN architecture configured for software development 
effort. The RBFN generates output (effort) by 
propagating the initial inputs (cost drivers) through the 
middle-layer to the final output layer. Each input neuron 
corresponds to a component of an input vector. The 
middle layer contains M neurons, plus, eventually, one 
bias neuron. Each input neuron is fully connected to the 
middle-layer neurons. The activation function of each 
middle neuron is usually the Gaussian function: 
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where ci and σi are the center and the width of the ith 
middle neuron respectively. .  denotes the Euclidean 
distance. Hence, each ith hidden neuron has its own 
receptive field in the input space, a region centered on ci 

with size proportional to σi.. The Gaussian function 
decreases rapidly if the width σi is small, and slowly if it 
is large. The output layer consists of one output neuron 
that computes the software development effort as a linear 
weighted sum of the outputs of the middle layer: 
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The use of an RBFN to estimate software development 

effort requires the determination of the middle-layer 
parameters (receptive fields) and the weights βj. The 
choice of the receptive fields, especially their distribution 
in the input space is often critical to the successful 
performance of an RBF network [17]. In general, there 
are two primary sources of this knowledge: 

 The use of some clustering techniques to analyze 
and find clusters in the training data. The results of 
this grouping are used to establish prototypes of the 
receptive fields. 
 The use of existing empirical domain knowledge to 
form the set of receptive fields. Along this line emerge 
some fuzzy models; in particular, some interesting 
equivalence between RBF networks and Fuzzy Rule-
Based systems [12].  
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Figure 1: An example of Radial Basis Function 
Network architecture for software development 
effort 
 

The aim of this study is to discuss the preprocessing 
phase of the design of RBF neural network in software 
cost estimation as it becomes accomplished through 
data clustering techniques. Especially, we use two 
clustering techniques: 1) the APC-III algorithm 
developed by Hwang and Bang [7], and 2) the best-
known clustering method that is the C-means algorithm. 

This paper is composed of six sections. In Section 2, 
we briefly describe how we can use the two clustering 
algorithms: APC-III and C-means in the design of an 
RBF neural network. Section 3 presents the experiment 
design of an RBFN construction based on APC-III or 
C-means in software cost estimation. In Section 4, we 
discuss the results obtained, in terms of estimates 
accuracy, when the RBFN is used to estimate the 
software development effort. A conclusion and an 
overview of future work conclude this paper.    
 
2. Clustering techniques for RBF networks 
 

 Generally speaking, clustering is one method to find 
most similar groups from given data, which means that 
data belonging to one cluster are the most similar; and 
data belonging to different clusters are the most 
dissimilar. In the literature, researchers have proposed 
many solutions for this issue based on different theories, 
and many surveys focused on special types of clustering 
algorithm have been presented [1,5,6,13,14].  

Clustering techniques have been successfully used in 
many application domains, including biology, medicine, 
economics, and patterns recognition. These techniques 
can be grouped into major categorises: Hierarchical or 
Partitional [6]. In this paper, we focus only on the 
partitional clustering algorithm since it is used more 
frequently than other clustering algorithms in pattern 
recognition fields. Generally, partitional clustering 
algorithms suppose that the data set can be well 
represented by finite prototypes. Partitional clustering is 
also called objective function-based clustering 
algorithm.  

Clustering has been often exercised as a preprocessing 
phase used in the design of the RBF neural networks. The 
primary aim of this algorithm is to set up an initial 
distribution of the receptive fields (hidden neurons) 
across the space of the input variables. In particular, this 
implies a location of the modal values of these fields 
(e.g., the modes of the Gaussian functions).  

In an earlier work, we have used the APC-III clustering 
algorithm to determine the receptive fields of an RBF 
network for software cost estimation [11]. APC-III is a 
one-pass clustering algorithm, and has a constant radius 
R0 defined as follows: 
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where N is the number of historical software projects and 
α is a predetermined constant. R0 expresses the radius of 
each cluster and consequently it controls the number of 
the clusters provided. APC-III generates many clusters if 
R0 is small and few clusters if it is large. The outline of 
APC-III algorithm can be stated as follows: 
 
1- Initially, the number of clusters is set at 1; the center 
of this cluster C1 is the first software project in the 
dataset, say P1 
 
2- Iterate from i=2 to N (N is the number of historical 
software projects) 

a. For j=1 to c (c is the number of clusters) 
• Compute dij (dij is the Euclidean distance of Pi and 
cj, cj is the center of cluster Cj) 
• If dij<R0 then  

o Include Pi into Cj and adjust the center of Cj  
o Exit from the loop 

b. If Pi is not included in any clusters then 
• Create a new cluster that has Pi as a center 

 
According to Hwang and Bang, the APC-III is quite 

efficient at constructing the middle layer of an RBFN, 
since it can finish clustering by going through all the 
training patterns only once. However, the APC-III proves 
to be dependent upon order of data presentation. 

 
This paper suggests the use of the best-known 

clustering method that is the C-means algorithm to 
determine the receptive fields of an RBF network for 
software cost estimation. C-means clustering algorithm 
has many successfully applications in fields such as patter 
recognition and data compression. It is a multi-pass and 
time-consuming clustering algorithm.  

The C-means algorithm partitions a collection of N 
vectors into c clusters Ci, i=1,..,c. The aim is to find 
cluster centers (centroids) by minimizing a dissimilarity 
(or distance) function which is given in Equation 4.  
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ci is the center of cluster Ci; 
d(xk,ci) is the distance between ith center (ci) and kth data 
point; 
 
For simplicity, the Euclidian distance is used as 
dissimilarity measure and overall dissimilarity function 
is expressed as in Equation 5. 
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The outline of C-means algorithm can be stated as 

follows: 
 

1- Define the number of the desired clusters, c.   
2- Initialize the centers ci,i=1,..c. This is typically 
achieved by randomly selecting c points from among 
all of the data points. 
3- Compute the Euclidean distance between xj and ci, 
j=1..N and i=1..c 
4- Assign each xj to the most closer cluster Ci  
5- Recalculate the centers ci 
6- Compute the objective function J given in equation 
5. Stop if its improvement over previous iteration is 
below a threshold. 
7- Iterate from step 3 

 
The performance of the algorithm depends on the 

initial positions of centers. So the algorithm gives no 
guarantee for an optimum solution. 
 
3. Experiment Design and Data Description 
 

This section describes the experiment design of an 
RBFN on an artificial COCOMO’81 dataset. The 
original COCOMO’81 dataset contains 63 software 
projects [2]. Each project is described by 13 attributes: 
the software size measured in KDSI (Kilo Delivered 
Source Instructions) and the remaining 12 attributes are 
measured on a scale composed of six linguistic values: 
‘very low’, ‘low’, ‘nominal’, ‘high’, ‘very high’ and 
‘extra high’. These 12 attributes are related to the 
software development environment such as the 
experience of the personnel involved in the software 
project, the method used in the development and the 
time and storage constraints imposed on the software. 
Because the original COCOMO’81 dataset contains 
only 63 historical software projects and in order to have 
a robust empirical study, we have artificially generated, 
from the original COCOMO’81 dataset, three other 
datasets each one contains 63 software projects (see [9] 
for more details). The union of the four datasets 
constitutes the artificial COCOMO’81 dataset that is 
used in this study.   
 

As mentioned earlier, the use of an RBFN to estimate 
software development effort requires the determination of 
its architecture parameters according to the characteristics 
of the COCOMO’81 dataset, especially the number of 
input neurons, number of hidden neurons, centers ci, 
widths σi and weights βj.  
 

The number of input neurons is the same as the number 
of attributes (cost drivers) describing the historical 
software projects in the COCOMO’81 dataset. Hence, the 
number of input neurons is equal to 13. The number of 
hidden neurons is determined by the number of clusters 
(c) provided by the APC-III or the C-means algorithms 
described in Section 2. Concerning the widths σi, they 
were usually determined in the literature to cover the 
input space as uniformly as possible [7]. Covering the 
historical software project space uniformly implies that 
the RBFN will be able to generate an estimate for a new 
project even though it is not similar to any historical 
project. In such a situation, we prefer that the RBFN does 
not provide any estimate than one it may easily lead to 
wrong managerial decisions and project failure.  In our 
earlier work [11], we have adopted a simple strategy 
based primarily on assigning one value to all σi; this 
value depends on the radius R0 used in the APC-III 
algorithm. Because here we investigate two clustering 
techniques, we adopt one of the following formulas to 
determine σi: 
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  Where card(Ci) is the cardinality of cluster Ci 
 
Concerning the weights βj, we may set each βj to the 

associated effort of the center of the jth neuron. However, 
this technique is not optimal and does not take into 
account the overlapping that may exist between receptive 
fields of the hidden layer. Thus, we use the Delta rule to 
derive the values of βj.   
 
4. Overview of the empirical results 
 

The following section presents and discusses the results 
obtained when applying the RBFN to the artificial 
COCOMO’81 dataset. The calculations were made using 
two software prototypes developed with C language 
under a Microsoft Windows PC environment. The first 
software prototype implements the APC-III and the C-
means clustering algorithms, providing both the clusters 
and their centers from the COCOMO’81. The second 
software prototype implements a cost estimation model 



based on an RBFN architecture in which the middle-
layer parameters are determined by means of the first 
software prototype 

We have conducted several experiments with both 
the C-means and the APC-III algorithms to decide on 
the number of hidden units. These experiments use the 
full artificial COCOMO’81 dataset for training. 
Choosing the ‘best’ classification to determine the 
number of hidden neurons and their centers is a 
complex task. For software cost estimation, we suggest 
that the ‘best’ classification is the one that satisfies the 
following two criteria: 
  it provides coherent clusters, i.e. the software 

projects of a given cluster have satisfactory degrees of 
similarity; 
 it improves the accuracy of  the RBFN. 

 
The accuracy of the estimates generated by the RBFN 

is evaluated by means of the Mean Magnitude of 
Relative Error ‘MMRE’ and the Prediction level ‘Pred’, 
defined as follows: 
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where N is the total number of observations, k is the 
number of observations with an MRE less than or equal 
to p. A common value for p is 25. 
 
4. 1 RBFN with C-means algorithm 
 

To measure the coherence of clusters in the case of C-
means algorithm, we use one of the two criteria: the 
objective function J given in Equation 5 or the Dunn’s 
validity index defined by the following formula: 
 
 

                                                               (Eq. 8) 
 
 
 
where d(Ci,Cj) is the distance between clusters Ci, and 
Cj   (intercluster distance); 
 
 
 
 
and  d(Ck) is the  intracluster distance of cluster Ck 
 
 
 
 

The Dunn’s index (D1) expresses the idea of 
identifying clusters that are compact and well separated. 
The main goal of the measure (D1) is to maximise the 
intercluster distances and minimise the intracluster 
distances. Therefore, the number of cluster that 

maximise D1 is taken as the optimal number of the 
clusters.   
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Figure 2: Relationship between the accuracy of 
RBFN (MMRE and Pred) and the used 
classification of the C-means (J and D1). 
 

We have conducted several experiments with an RBFN, 
each time using one of the classifications generated by the 
C-means algorithm. These experiments use the full 
COCOMO’81 dataset for training and testing. For each 
number of clusters (c), the RBFN uses the two C-means 
classifications that respectively minimise J or maximise 
D1. For instance, when fixing c to 120, the two choosing 
classifications are respectivelly those for which J is equal 
to 1064,22 and D1 is equal to 8,11. Figure 2 shows the 
relationship between the accuracy of the RBFN, 
measured in terms of Pred and MMRE, and the used 
classifications (number of clusters) minimizing the 
objective function J or maximizing the D1 index. We can 
notice that the accuracy of the RBFN when using the C-
means classification that minimizes J (Pred_J and 
MMRE_J) is better than that when using the classification 
maximizing D1 (Pred_D1 and MMRE_D1). In figure 2, we 
only show the results of experiments when the number of 
clusters is higher than 120 because the evaluated accuracy 
of the RBFN is acceptable (the common values used in 
the literature are Pred(25)>= 70 and MMRE<=30). Also, 
the obtained classifications for c lower than 120 are, in 
general, less coherent, i.e. some clusters are composed of 
software projects that are not sufficiently similar; for 
those projects, the RBFN may generate inaccurate 
estimates.    
 
4.2 RBFN with the APC-III algorithm 
 

The classifications generated by the APC-III algorithm 
depend on the number α that defines the radius R0. Table 
1 shows the classifications obtained according to different 
values of α (Eq. 3).   

In analyzing the results of Table 1, we noticed that the 
number of clusters is monotonous decreasing according to 
α. This is due to the fact that the radius R0 is monotonous 
increasing according to α. For each value of α, we varied 
the presentation sequence of the 252 software projects. 
Indeed, the classification provided by the APC-III 






























=

≤≤
−≤≤+≤≤ ))((max

),(
minmin

1
1111

k
ck

ji

cjici Cd
CCd

D

),(min),(
, jiCxCxji xxdCCd

jjii ∈∈
=

),(max)(
,

kj
Cxx

k xxdCd
kji ∈

=



depends on this presentation sequence because it 
influences the determination of the centers; we retained 
for each the classification maximizing D1 index.  
 

α Number of clusters 
0.4|0.5|0.6|0.7|0.8 251|244|234|216/200 
0.9|1.0|1.02|1.04 189|170|162|161 

1.06|1.08|1.1 155|151|150 
Table 1: Number of clusters according to α for 
the COCOMO’81 dataset 

 
Thus, we have conducted several experiments with an 

RBFN, each time using one of the classifications of the 
table 1. These experiments use the full COCOMO’81 
dataset for training and testing. The weights βj are 
calculated using the Delta learning rule. The RBFN 
converges quickly, with fewer than 12000 iterations of 
learning. The accuracy of the estimates generated by the 
RBFN is evaluated by means of the MMRE and the 
Pred indicators. Figure 3 shows the MMRE and Pred as 
functions of the classification (α). We can notice that 
the accuracy of the RBFN is better when α is lower than 
1,04 (MMRE=29,81 and Pred(25)=73,81). When α is 
higher than 1,04, the MMRE and pred(25) become not 
acceptable.  

 
To conclude the Section 4, we compare the accuracy 

of the RBFN using the C-means algorithm with that of 
the RBFN when using the APC-III algorithm (Figure 4). 
We notice that the RBFN with C-means performs better 
than the RBFN with APC-III. Indeed, an acceptable 
accuracy of the RBFN-C-Means is still achieved until 
the number of clusters is equal to 120; by contrast, it 
was acceptable only until the number of clusters is 
equal to 150 in the case of the RBFN-APC-III..      
 

0

50

100

150

200

250

0,3 0,5 0,7 0,9 1,1

Pred

MMRE

 
Figure 3: Relationship between the accuracy of 
RBFN (MMRE and Pred) and the used 
classification of the APC-III (α and D1). 
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Figure 4: Comparing the accuracy of RBFN 
using C-means (Pred_J) and RBFN using APC-III 
(Pred). 
 
5. Conclusion and Future Work 
 

In this paper, we have empirically studied the use of 
two clustering techniques when designing RBF neural 
networks for software cost estimation. The two used 
clustering algorithms are the well-known C-means and 
the APC-III. This study is based on an artificial 
COCOMO’81 dataset that contains 252 software projects. 
We used the entire COCOMO’81 dataset to train and test 
the designed RBFN. We have found that the RBFN 
designed with the C-means algorithm performs better, in 
terms of cost estimates accuracy, than the RBFN designed 
with the APC-III algorithm. To confirm this affirmation, 
we are looking currently in applying an RBFN 
construction based C-means on other historical software 
projects datasets.      
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