
2002 World Congress on Computational Intelligence, Honolulu, Hawaii, May 12-17, 2002 1

Can Neural Networks be easily Interpreted in Software Cost Estimation?

Ali Idri, Taghi M. Khoshgoftaar, Alain Abran

Abstract

 The use of the neural networks to estimate software
development effort has been viewed with skepticism by the
majority of the cost estimation community. Although, neural
networks have shown their strengths in solving complex
problems, their shortcoming of being ‘black boxes’ has
prevented them to be accepted as a common practice for cost
estimation. In this paper, we study the interpretation of cost
estimation models based on a Back-propagation three multi-
layer Perceptron network. Our idea consists in the use of a
method that maps this neural network to a fuzzy rule-based
system. Consequently, if the obtained fuzzy rules are easily
interpreted, the neural network will also be easy to interpret.
Our experiment is made using the COCOMO’81 dataset.

1. Introduction

 Estimation models in software engineering are used to
predict some important attributes of future entities such as
software development effort, software reliability, and
productivity of programmers. Among these models, those
estimating software effort have motivated considerable
research in recent years. The prediction procedure used by
these software-effort models can be based on a mathematical
function, such as βα sizeEffort ×= or other techniques
such as artificial neural networks, analogy based reasoning,
regression trees, and rule induction models. In this paper, we
are concerned with cost estimation models that are based on
artificial neural networks. The artificial neural networks
approach is inspired from biological nerve nets. An artificial
neural network is characterized by its architecture, its
learning algorithmic and its activation functions. In general,
for software cost estimation, the most commonly adopted
architecture, learning algorithm and activation function are
respectively the feed-forward multi-layer Perceptron, the
Back-propagation algorithm and the Sigmoid function.
Many researchers have applied the neural networks approach
to estimate software development effort
[5,13,16,17,18,19,20,21].Most of their investigations have

focused more attention on the accuracy of the approach when
compared to other cost estimation techniques. Table 1 shows
a summary of artificial neural networks effort prediction
studies.

There are two main advantages when using estimation by
artificial neural networks. First, it allows the learning from
previous situations and outcomes. The learning criteria is
very important for cost estimation models because software
development technology is supposed to be continuously
evolving. Second, it can model a complex set of relationships
between the dependent variable (such as, cost or effort) and
the independent variables (cost drivers). However, there are
some shortcomings that prevent it from being accepted as a
common practice in cost estimation (Are there some specific
references that have identified these shortcomings, or is this
something new?):
§ Neural networks approach may be considered as ‘black
boxes’. Consequently, it is not easy to understand and to
explain its process to the users.
§ The ability of neural networks to solve problems of high
complexity has been proven in classification and
categorization areas whereas in the cost estimation field we
deal with a generalization rather than a classification
problem.
§ There is no guidelines for the construction of the neural
networks topologies (number of layers, number of units per
layer, initial weights, …)

In this work, we deal with the first limitation. Many
researchers in different fields refuse to use neural nets
because of their shortcoming of being ‘black boxes’, that is
determining why an artificial neural networks makes a
particular decision is a difficult task. This is a significant
weakness, for without the ability to produce comprehensive
(understandable – explainable, comprehensible or
something related??) decisions, it is hard to trust the
reliability of networks addressing real-world problems.
Consequently, we are convinced that the explanation and
the interpretation of the knowledge stored in the
architecture and the synapse weights of the neural nets is
very important to gain practitioners acceptance. Our idea
consists in the use of a method that maps one neural

2002 World Congress on Computational Intelligence, Honolulu, Hawaii, May 12-17, 2002 2

network to an equivalent Fuzzy Rule-Based System
(FRBS). Consequently, if the obtained if-then fuzzy rules
are easily interpreted, then the neural network may also be
easily interpreted. Our experiment will be based on the
COCOMO’81 historical dataset.
This paper is organized as follows: In Section 2, we

present how the neural networks approach has been applied
to software cost estimation. We present also the architecture
of the network that will be used in our experiment. In Section
3, we discuss the results obtained when using the network to
estimate the software development effort. In Section 4, we
briefly outline the principle of the Benitez’s method that will
be used to extract the if-then fuzzy rules from our network.
In Section 5, we apply the Benitez’s method to our network
and we discuss the interpretation of the obtained fuzzy rules
in software cost estimation. A conclusion and an overview of
future work conclude this paper.

2. Artificial neural networks for software cost
estimation

Many different models of neural networks have been
proposed [13]. They may be grouped in two major
categories. First, feed-forward networks where no loops in
the network path occur. Second, feedback networks that have
recursive loops. The feed-forward multi-layer perceptron
with Back-propagation learning algorithm are the most
commonly used in the cost estimation field. In these nets,
neurons are arranged in layers and there are only connections
between neurons in one layer to the following. Figure 1
illustrates possible network architecture configured for
software development effort estimation. The network
generates output (effort) by propagating the initial inputs
(cost drivers or project attributes) through subsequent layers
of processing elements to the final output layer. Each neuron
in the network computes a nonlinear function of its inputs
and passes the resultant value along its output. The favored
function is the Sigmoid function:

)1(
1

1
)(

xe
xf

−+
=

Before the network will be ready to make estimates for
new projects, it is trained by a set of combination of inputs
and outputs that are known as the training data. Our
experiment consists in estimating the software development
effort by using the neural networks approach on the
COCOMO’81 dataset. The COCOMO’81 dataset contains
63 software projects [2,3,4]. Each project is described by 17
attributes: the software size measured in KDSI (Kilo
Delivered Sources Instructions), the project mode is defined
as either ‘organic’, ‘semi-detached’ or ‘embedded’, and the
remaining 15 attributes are measured on a scale composed of
six linguistic values: ‘very low’, ‘low’, ‘nominal’, ‘high’,
‘very high’, and ‘extra-high’. Among these 17 attributes, we
have retained the KDSI and 12 other attributes that we had
already fuzzified [6]. The other attributes are not used in our
experiment because their description proved insufficient for
fuzzification. The fuzzy sets associated to each selected
attribute will be used in the interpretation of the if-then fuzzy
rules deduced from our neural network.

Figure 1: A neural network architecture for software
development effort

Study Learning

algorithm
Dataset Number

 Of projects
Predicting Results

Venkatachalam Back-propagation COCOMO 63 Development effort Promising
Wittig &Finnie Back-propagation Desharnais/

ASMA
81
136

Effort MMRE=17%

Jorgenson Back-propagation Jorgenson 109 Maintenance effort MMRE=100%
Serluca Back-propagation Mermaid-2 28 Development effort MMRE=76%
Samson et al. Back-propagation COCOMO 63 Development effort MMRE=428%
Sarnivasan &
Fisher

Back-propagation Kemerer &
COCOMO

78 Development effort MMRE=70%

Hughes Back-propagation Hughes 33 Development effort MMRE=55%
Table 1: Summary of neural network studies [17]

KDSI

RELY

ACAP

AEXP

SCED

wij

ββj

Effort

 Input layer Hidden layer Output layer

2002 World Congress on Computational Intelligence, Honolulu, Hawaii, May 12-17, 2002 3

The use of the neural network approach to estimate the

software effort requires certain decisions and choices about
the architecture, learning algorithm and the activation
functions. In our case, the method, that we use to generate
the if-then fuzzy rules from the neural network, requires
that the architecture must be three multi-layer perceptron
with the activation functions of the hidden layer and the
output layer are respectively the sigmoid and the identity
functions. Our neural network has 13 inputs (COCOMO
cost drivers) and one output (effort). All the inputs as well
as the output of the network are numeric (but it was said in
a previous section that they were linguistic and then
fuzzified. – there is an apparent contradiction, or a logical
link not clear enough). All inputs are normalized to speed
up the training process of the network [14]. The network is
trained by iterating through the training data many times.
The used algorithm is Back-propagation with teaching rate
and maximum error are equals to 0,03 and 10-5,
respectively. Finally, Back-propagation assumes that
weights in the network are initialized to small, random
values prior to training. According to the architecture of
our network, the effort (output) is given by:

where f is the sigmoid function, wij are the weights of the

connections from the inputs layer to the hidden layer and
βj are those from the hidden layer to the output layer.

3. Overview of the empirical results

The following section presents and discusses the results
obtained when applying our neural network to the
COCOMO’81 dataset. The calculations were made using a
software prototype developed with the C language under a
PC Microsoft Windows. The accuracy of the estimates is
evaluated by using the magnitude of relative error MRE
defined as:

actual

estimatedactual

Effort

EffortEffort
MRE

−
=

The MRE is calculated for each project in the dataset. In

addition, we use the measure prediction level Pred. This
measure is often used in the literature. It is defined by:

N

k
ped =)(Pr

where N is the total number of historical projects, k is the
number of new projects with an MRE less than or equal to
p. A common value for p is 0.25. The Pred(0.25) gives the
percentage of projects that were predicted with an MRE
equal or less than 0.25. Other four quantities are used in

this evaluation: min of MRE, max of MRE, median of
MRE, and mean of MRE (MMRE).

We have conducted several experiments to choose
(randomly ???) the number of hidden units (it is not clear to
the unspecialised reader, what is a 'unit' and the related
concepts, and its importance – this is very important to
understand since this is mentioned often in the subsequent
sections of the text). These experiments use the full
COCOMO’81 dataset for training and testing the network.
An acceptable accuracy is obtained with 13 hidden units
and 300,000 learning iterations (Table 2).

MRE% NN with 13 hidden units and 300,000 learning
iterations

Max 16,67
Mean 1,50
Min 0,00

Table 2: Estimates accuracy of a network with 13
hidden units

However, many studies have proved that the neural

network approach generates less accurate estimates when
the training data is different from the test data [18,19].
Three reasons explain this phenomenon:
§ The new project is widely different from the projects that
are used in the training phase
§ The number of projects used in the training phase is
insufficient
§ There is no relationship between the chosen cost drivers
(inputs of the network) and the effort (output of the
network)

To back this affirmation, we have conducted two
different experiments with our neural network. In the first
experiment, we have randomly removed 23 projects from
the COCOMO’81 dataset. These 23 projects are used to
test the network. The 40 remaining projects are used to
train the network. In the second experiment, we have
removed only one project that is used for testing and we
use all the remaining projects for training. The removed
project is one of the 23 removed projects in the first
experiment. The second experiment is repeated 23 times.
Table 3 shows the obtained results for the two experiments.
The values of MRE and pred(25) prove that, in general, the
accuracy is increasing with the number of projects used in
the training phase.

 NN with 40 projects

for training
NN with 62 projects

for training
Pred(25) 13,04 34,78
MMRE % 203,66 84,35
Med MRE % 92,53 53,67
Min MRE % 2,6 2,84

∑∑
==

==
n

i
iijj

h

j
jj xwfzwithzEffort

11

)(β

2002 World Congress on Computational Intelligence, Honolulu, Hawaii, May 12-17, 2002 4

Max MRE % 1188,89 432,5
Table 3: Estimates accuracy of a network with 40 and

62 projects in the training phase.

As we have noticed, in this work, we are not concerned
with the accuracy of our network. The aim is to explain its
process by mapping the network to a fuzzy rule-based
system. The method developed by Benitez et al. will be
used to extract the if-then fuzzy rules from our network [1].
In the next section, we present this method.

4. Equivalence between neural networks and fuzzy
rules-based systems: Background

Since its foundation by Zadeh in 1965 [22], fuzzy logic
has been the subject of many investigations. One of its
main contributions to solve complex problems is
undoubtedly the Fuzzy Rule-Based Systems. Basically, an
FRBS is based on a set of if-then fuzzy rules1. A fuzzy rule
is an if-then statement where the premise and the
consequence consist of fuzzy propositions whereas in a
classical production rule the premise and the consequence
are crisp. An example of fuzzy rule in cost estimation may
be ‘if the competence of the analysts is high then the effort
is low’. The main advantage of fuzzy rules over classical
rules is that they are more understandable for humans and
may be easily interpreted. Indeed, fuzzy rules use, unlike
classical rules, in their premises and consequences
linguistic values instead of numerical data. As a
consequence, some researches have investigated the
equivalence between neural networks and FBRS’s [1,11
(11 is not the correct reference here)]. These investigations
have the objective to translate the knowledge embedded in
the neural network into a more understandable language
that is the if-then fuzzy rules. Benitez et al. have developed
a method that proves the equality between a neural
network, such as the one used in the previous section, and a
fuzzy rule-based system which uses Sugeno rules [1]. In
the following section, we present this method.

Let us consider a three-layer perceptron neural network
with the sigmoid function for the hidden units and the
identity function for the output unit. This three-layer
perceptron neural network is equal to a fuzzy rule-based
system that uses a set of fuzzy rules Rjk associated to all
pairs of its units (hidden, output).

where xi are the inputs, yk is the output, wij are the
weights of the inputs units to the hidden units, βjk are the
weights of the hidden units to the output unit and A is a

1 Details of the FBRS are beyond the scope of this paper. In addition to the
rule base, an FBRS is composed of other three parts: fuzzifier, inference
engine and defuzzifier.

fuzzy set with the membership function is the sigmoid
function of the hidden units. The number of the fuzzy rules
Rjk is equal to the number of hidden units. In order to make
the fuzzy rules Rjk easily interpreted, Benitez et al. have
shown that each of them can be given by:

where i
jkA are fuzzy sets obtained from A and wij. Their

membership functions are given by:

)()(ijAA
xwxi

jk
µµ =

and * is the i-or operator defined by:

nn

n
n aaaaaa

aaa
aaaori

...)1)...(1)(1(

...
),...,,(

2121

21
21 +−−−

=−

The i-or operator is an hybrid between T-norm and T-
conorm. The fuzzy proposition x is i

jkA may be interpreted

as ‘x is approximately greater than 2,2/wij’ if wij is positive
or ‘x is approximately not greater than 2,2/-wij’ if wij is
negative.

5. Validation and interpretation of the fuzzy rules

In this section, we apply the method developed by
Benitez et al. on the neural network presented and
discussed in Sections 2 and 3. The neural network that we
consider has 13 hidden units and uses the full
COCOMO’81 dataset for training. Consequently, the rule
base obtained is composed of 13 fuzzy rules. Each fuzzy
rule contains 13 fuzzy propositions. Each one is associated
to one cost driver (inputs of the network). The output of
each fuzzy rule is a numerical value (positive or negative).
These 13 fuzzy rules express the knowledge encoded into
the synaptic w eights of our network. The objective is to
give a more comprehensible interpretation of these fuzzy
rules in software cost estimation by using our previous
experiments [6,7,8,9,10,11]. For simplicity, we discuss
only two fuzzy rules (Table 4).

By analyzing these two rules, we notice that the output of
the first rule, R1, is positive (6049,77) whereas the one of
the second rule, R2, is negative (-2979,21). These two
values are among the synapse weights of the hidden layer
to the output units. Consequently, the natural interpretation
that we can give of the output of the 13 fuzzy rules is that
they can be considered as partial contributions to the total
effort. They have the same role as the effort multipliers in
the COCOMO’81 model. They can increase (positive
value) or decrease (negative value) the total effort. The
only difference between them is that the outputs of the
fuzzy rules are positive or negative, because the cost
function of the FBRS uses the summation operator,
whereas in the COCOMO’81 model the effort multipliers

jkk

n

i
ijijk ythenAiswxifR β=∑

=1

:

jkk
n
jknjkjkjk ythenAisxAisxAisxifR β=∗∗∗ ...: 2

2
1

1

2002 World Congress on Computational Intelligence, Honolulu, Hawaii, May 12-17, 2002 5

are higher than 1 (increase the effort) or lower than
1(decrease the effort) because the COCOMO’81 cost
function uses the multiplication operator.

R1: R2:

If : If :
DATA is approximately greater than 117,57 DATA is approximately greater than 118,46
VIRTmi is approximately not greater than 30,14 VIRTmi is approximately not greater than 18,14
TIME is approximately not greater than 156,28 TIME is approximately greater than 3716,39
STORE is approximately not greater than 155,72 STORE is approximately not greater than 573,41
VIRTma is approximately not greater than 448,88 VIRTma is approximately greater than 1232,53
TURN is approximately not greater than 25,76 TURN is approximately not greater than 46,33
ACAP is approximately not greater than 203,72 ACAP is approximately not greater than 393,35
AEXP is approximately not greater than 400,37 AEXP is approximately not greater than 272,94
PCAP is approximately not greater than 331,69 PCAP is approximately not greater than 483,23
VEXP is approximately not greater than 1958,86 VEXP is approximately greater than 1357,35
LEXP is approximately not greater than 921,91 LEXP is approximately greater than 985,36
SCED is approximately not greater than 794,68 SCED is approximately not greater than 171,20
KDSI is approximately not greater than 132,27 KDSI is approximately greater than 176,79

Then Y=6049,77 Then Y=-2979,21
Table 4 : Two examples of the obtained fuzzy rules

Figure 2: (a) Fuzzy set associated to the qualification ‘approximately greater than 117,57’. (b) Fuzzy set
associated to the qualification ‘approximately not greater than 30,14’

The premise of each fuzzy rule is composed of 13 fuzzy

propositions combined by the i-or operator. Each
proposition is expressed by a statement such as ‘x is
approximately greater than v’ or ‘x is approximately not
greater than v’. The linguistic qualification ‘approximately
greater than v’ is represented by a fuzzy set with
membership function of the equation 1. The value v is the
one for which the membership function has a degree equal
to 0,9 in case of ‘approximately greater’ or to 0,1 in case of
‘approximately not greater’. According to Benitez et al.,
the values 0,1 and 0,9 are used in neural literature to
indicate respectively the total absence of activation and full
activation of the neurons. In our case, all the numerical
values of the 13 inputs of the network are positive. Thus,
we use only the positive part of the domain of the fuzzy
sets corresponding to the qualification ‘approximately (not)
greater than’. Figure 2 shows two examples that illustrate

the fuzzy sets used in the two first propositions of the rule
R1.

The interpretation of each fuzzy proposition depends on
the meaning of the cost driver used by this proposition. For
instance, the fuzzy proposition ‘DATA is approximately

greater than 117,57’ uses the DATA cost driver which is
measured in the COCOMO’81 model by the following
ratio (Figure 3):

The DATA attribute represents, with other three cost
drivers, the effect of the size and the complexity of the
database on the software development effort. Thus, the
higher the value of DATA, the more it will increase the

DSIinsizeogram
charactersorbytesinsizeDatabase

P
D

Pr
=

30,14

0,1

0,5

117,57

0,9

0,5

(a) (b)

2002 World Congress on Computational Intelligence, Honolulu, Hawaii, May 12-17, 2002 6

total effort. By using our fuzzification of the DATA
attribute, we notice that the value 117,57 belongs to the
linguistic value ‘high’ [6]. Consequently, the fuzzy
proposition ‘DATA is approximately greater than 117,57’
may be considered as equivalent to the proposition ‘DATA
is high or very high’. The latest proposition is easily
understood by cost estimation community.

However, in many fuzzy rules obtained, the value, v,
used in the proposition ‘x is approximately (not) greater
than v’ is out of the range values allowed for one cost
driver. For example, in the first fuzzy rule R1, the
proposition ‘LEXP is approximately not greater than
921,91’ uses a value (921,91), which is not in the interval
of all possible values of the LEXP attribute. Indeed, LEXP
represents the programming language experience of the
programmers and it is measured by the number of months
of experience. In the COCOMO’81 model, the higher
allowed value is equal to 36 months. By using our
fuzzification of the LEXP attribute, the proposition ‘LEXP
is approximately not greater than 921,91’ of the rule R1
may be considered as equivalent to ‘LEXP is Q(very low)’
where Q is a linguistic modifier such as ‘more’. In this
example, we have ignored the parts of the area of the fuzzy
set representing ‘approximately not greater than 921,91’
which overlap with the linguistic values ‘low’, ‘nominal’
and ‘high’ (Figure 4).

The same situation discussed above can be presented for
the linguistic qualification ‘approximately greater than’.
For example, the proposition ‘LEXP is approximately
greater than 985,36’ of the rule R2 may be considered as
equivalent to the proposition ‘LEXP is Q(high)’ where Q is
a linguistic modifier such as ‘very’ or ‘extra’.

Up to now, we have suggested a natural interpretation of
the premises and the outputs of the obtained fuzzy rules. It

still remains to explain the meaning of the i-or operator that
is used to combine the fuzzy propositions of the premises.
According to Benitez et al., the i-or operator has a natural
interpretation and may be used in the evaluation of many
real-world situations (evaluation of scientific papers,
evaluation of the quality of a game developed by two tennis
players,…). By analyzing all the 13 obtained fuzzy rules, it
seems that the i-or operator is not appropriate to evaluate
the effect of the premises on the effort. Indeed, the effect of
one premise on the effort is calculated by considering all
those associated to the 13 cost drivers. In cost estimation,
the effect of one cost driver on the effort depends on its
type (monotonous increasing or decreasing) and its
importance. Moreover, according to its definition and its
properties, the i-or operator cannot adequately model the
complex set of relationships existing between the cost
drivers. There are other reasons that prevent the i-or
operator to be easily interpreted:
§ It is neither a t-norm nor a t-conorm operator. Also, there
is no linguistic quantifier that can express its meaning
§ Let us consider that the truth value of one fuzzy
proposition is closer to 1 and for all others their truth values
are in the vicinity of 0. In such situation, when combining
the various truth values by the i-or operator, the firing (???)
strength of the rule will be closer to 1. This is in
contradiction with our intuition, especially if the fuzzy
proposition that have the truth value closer to 1 contains the
less important cost driver.
§ The i-or operator has the value 0.5 as a neutral element
whereas if the truth value of one fuzzy proposition is equal
to 0.5, the proposition must contribute in the evaluation of
the firing strength of the premise.

Figure 3: Membership functions of fuzzy sets defined for the DATA cost driver [6]

Low Nominal High Very High

5 10 55 100 550 1000

1

D/P

Very Low Low Nominal High

0,5

 0,5 1 2 4 8 12 36 921,91

Approximately not
greater than 921,91

2002 World Congress on Computational Intelligence, Honolulu, Hawaii, May 12-17, 2002 7

Figure 4: Example where the value used for the LEXP attribute is out of range values

6. Conclusion and future work

In this paper, we have studied one of the most
important limitations of neural networks, that is
understanding why an neural network makes a particular
decision is a difficult task. Our study is intended for the
cost estimation field. The neural network that we have
used to predict the software development effort is the
Back-propagation three multi-layer perceptron with
sigmoid function in the hidden units and the identity
function in the output unit. We have used the full
COCOMO’81 dataset to train and to test the network.
The obtained accuracy of the network is acceptable.

After training and testing the network, we have
applied the Benitez’s method to extract the if-then fuzzy
rules from this network. These fuzzy rules express the
information encoded in the architecture of the network.
The interpretation of each fuzzy rule is made by
analyzing its premise and its output. Our experiment
shows that we can explain the meaning of the output and
the propositions composing the premise of each fuzzy
rule. However, the i-or operator seems to be
inappropriate to combine the effects of the various fuzzy
propositions on the output of the fuzzy rule (rule's' ???)
in software cost estimation. Consequently, we are
looking now to the use of other methods in order to
extract more comprehensible (understandable ??) fuzzy
rules from the type of neural network used in this
experiment (????).

7. Bibliography

[1] J. M. Benitez, J.L. Castro, I. Requena, ’Are Artificial
Neural Networks Black Boxes?’, IEEE Transaction on Neural
Networks, Vol. 8, NO. 5, September, 1997, pp. 1156-1164
[2] B.W. Boehm, Software Engineering Economics, Prentice-
Hall, 1981.
[3] B.W. Boehm, and al., “Cost Models for Future Software
Life Cycle Processes: COCOMO 2.0”, Annals of Software
Engineering on Software Process and Product Measurement,
Amsterdam, 1995.
[4] D.S. Chulani, “Incorporating Bayesian Analysis to
Improve the Accuracy of COCOMO II and Its Quality Model
Extension”, Ph.D. Qualifying Exam Report, USC, February,
1998.
[5] R.T Hughes, ‘An Evaluation of Machine Learning
Techniques for Software Effort Estimation’, University of
Brighton, 1996
[6] A. Idri, L. Kjiri, and A. Abran, “COCOMO Cost Model
Using Fuzzy Logic”, 7th Intenational Conference on Fuzzy
Theory & Technology, Atlantic City, NJ, February, 2000. pp.
219-223

[7] A. Idri, and A. Abran, “Towards A Fuzzy Logic Based
Measures For Software Project Similarity”, Sixth Maghrebian
Conference on Computer Sciences, Fes, Morroco, November,
2000. pp. 9-18
[8] A. Idri, and A. Abran, “A Fuzzy Logic Based Measures
For Software Project Similarity: Validation and Possible
Improvements”, 7th International Symposium on Software
Metrics, IEEE computer society,4-6 April, England, 2001. pp.
85-96
[9] A. Idri, and A. Abran, “Evaluating Software Project
Similarity by using Linguistic Quantifier Guided
Aggregations”, 9th IFSA World Congress/20th NAFIPS
International Conference, 25-28 July, Vancouver, 2001. pp.
416-421
[10] A. Idri, A. Abran, T. M. Khoshgoftaar, “Fuzzy Analogy:
A new Approach for Software Cost Estimation”, 11th
International Workshop in Software Measurements, 28-29
August, Montreal, 2001, pp. 93-101
[11] A. Idri, T. M. Khoshgoftaar, A. Abran, , “Estimating
Software Project Effort by Analogy based on Linguistic
values”, To be presented in 8th IEEE International Software
Metrics Symposium”, 4-7 Ottawa, Canada, 2002
[12] J. S. Jang, C. T. Sun, ‘Functional equivalence between
radial basis function networks and fuzzy inference systems’,
IEEE Transaction on Neural Networks, Vol. 4, 1992, pp. 156-
158
[13] M Jorgersen, ‘Experience with Accuracy of Software
Maintence Task Effort Prediction Models’, IEEE Transaction
on Software Engineering, Vol. 21(8), 1995, pp. 674-681
[14] A. Lapedes, Farber R., ‘Nonlinear signal prediction using
neural networks’, Prediction and System modeling’, Los
Alamos National Laboratory, Tech. Report, LA-UR-87-2662,
1987
[15] R. P. Lippman, , ‘An Introduction to computing with
neural nets’, IEEE ASSP Mag, vol. 4, pp.4-22, 1987
[16] B. Samson, Ellison D., Dugard P, ‘Software Cost
Estimation using an Albus Perceptron’, 8th International
COCOMO Estimation meeting, Pittsburgh, 1993
[17] C. Schofield, ‘Non-Algorithmic Effort Estimation
Techniques’, Tech. Report TR98-01, March, 1998
[18] C. Serluca, ‘An Investigation into Software Effort
Estimation using a Back-propagation Neural Network, M.Sc.
Thesis, Bournemouth University, 1995
[19] K. Srinivasan, Fisher D, ‘Machine Learning Approaches
to Estimating Softawre Development Effort’, IEEE
Transaction on Software Engineering, Vol. 21, No. 2,
February, 1995, pp. 126-136
[20] A. R. Verkatachalam, ‘Software Cost Estimation using
Artificial Neural Networks, International Joint Conference on
Neural Networks, Nogoya, IEEE, 1993
[21] G. Wittig, G. Finnie, ‘Estimating Software Development
Effort with connectionist Models’, Information and Software
Technologie, vol. 39, 1997, pp. 469-476
[22] L.A. Zadeh, “Fuzzy Set”, Information and Control, Vol.
8, 1965, pp. 338-353

 8

