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Abstract 
 

  The use of the neural networks to estimate software 
development effort has been viewed with skepticism  by the 
majority of the cost estimation community. Although, neural 
networks have shown their strengths in solving complex 
problems, their shortcoming of being ‘black boxes’ has 
prevented them to be accepted as a common practice for cost 
estimation. In this paper, we study the interpretation of cost 
estimation models based on a Back-propagation three multi-
layer Perceptron network. Our idea consists in the use of a 
method that maps this neural network to a fuzzy rule-based 
system. Consequently, if the obtained fuzzy rules are easily 
interpreted, the neural network will also be easy to interpret. 
Our experiment is made using the  COCOMO’81 dataset.      
 
1.  Introduction 
 
 Estimation models in software engineering are used to 
predict some important attributes of future entities such as 
software development effort, software reliability, and 
productivity of programmers. Among these models, those 
estimating software effort have motivated considerable 
research in recent years. The prediction procedure used by 
these software-effort models can be based on a mathematical 
function, such as βα sizeEffort ×= or other techniques 
such as artificial neural networks, analogy based reasoning, 
regression trees, and rule induction models. In this paper, we 
are concerned with cost estimation models that are based on 
artificial neural networks. The artificial neural networks 
approach is inspired from biological nerve nets. An artificial 
neural network is characterized by its architecture, its 
learning algorithmic and its activation functions. In general, 
for software cost estimation, the most commonly adopted 
architecture, learning algorithm and activation function are 
respectively the feed-forward multi-layer Perceptron, the 
Back-propagation algorithm and the Sigmoid function.  
Many researchers have applied the neural networks approach 
to estimate software development effort 
[5,13,16,17,18,19,20,21].Most of their investigations have 

focused more attention on the accuracy of the approach when 
compared to other cost estimation techniques. Table 1 shows 
a summary of artificial neural networks effort prediction 
studies. 

There are two main advantages when using estimation by 
artificial neural networks. First, it allows the learning from 
previous situations and outcomes. The learning criteria is 
very important for cost estimation models because software 
development technology is supposed to be continuously 
evolving. Second, it can model a complex set of relationships 
between the dependent variable (such as, cost or effort) and 
the independent variables (cost drivers). However, there are 
some shortcomings that prevent it from being accepted as a 
common practice in cost estimation  (Are there some specific 
references that have identified these shortcomings, or is this 
something new?): 
§ Neural networks approach may be considered as ‘black 
boxes’. Consequently, it is not easy to understand and to 
explain its process to the users. 
§ The ability of neural networks to solve problems of high 
complexity has been proven in classification and 
categorization areas whereas in the cost estimation field we 
deal with a generalization rather than a classification 
problem. 
§  There is no guidelines for the construction of the neural 
networks topologies (number of layers, number of units per 
layer, initial weights, …) 

In this work, we deal with the first limitation. Many 
researchers in different fields refuse to use neural nets 
because of their shortcoming of being ‘black boxes’, that is 
determining why an artificial neural networks makes a 
particular decision is a difficult task. This is a significant 
weakness, for without the ability to produce comprehensive 
(understandable – explainable, comprehensible  or 
something related??) decisions, it is hard to trust the 
reliability of networks addressing real-world problems. 
Consequently, we are convinced that the explanation and 
the interpretation of the knowledge stored in the 
architecture and the synapse weights of the neural nets is 
very important to gain practitioners acceptance. Our idea 
consists in the use of a method that maps one neural 
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network to an equivalent Fuzzy Rule-Based System 
(FRBS). Consequently, if the obtained if-then fuzzy rules 
are easily interpreted, then the neural network may also be 
easily interpreted. Our experiment will be based on the 
COCOMO’81 historical dataset.   
This paper is organized as follows: In Section 2, we 

present how the neural networks approach has been applied 
to software cost estimation. We present also the architecture 
of the network that will be used in our experiment. In Section 
3, we discuss the results obtained when using the network to 
estimate the software development effort. In Section 4, we 
briefly outline the principle of the Benitez’s method that will 
be used to extract the if-then fuzzy rules from our network. 
In Section 5, we apply the Benitez’s method to our network 
and we discuss the interpretation of the obtained fuzzy rules 
in software cost estimation. A conclusion and an overview of 
future work conclude this paper. 

 
2. Artificial neural networks for software cost 
estimation 
  

Many different models of neural networks have been 
proposed [13]. They may be grouped in two major 
categories. First, feed-forward networks where no loops in 
the network path occur. Second, feedback networks that have 
recursive loops. The feed-forward multi-layer perceptron 
with Back-propagation learning algorithm are the most 
commonly used in the cost estimation field. In these nets, 
neurons are arranged in layers and there are only connections 
between neurons in one layer to the following. Figure 1 
illustrates possible network architecture configured for 
software development effort estimation. The network 
generates output (effort) by propagating the initial inputs 
(cost drivers or project attributes) through subsequent layers 
of processing elements to the final output layer. Each neuron 
in the network computes a nonlinear function of its inputs 
and passes the resultant value along its output. The favored 
function is the Sigmoid function: 
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Before the network will be ready to make estimates for 
new projects, it is trained by a set of combination of inputs 
and outputs that are known as the training data. Our 
experiment consists in estimating the software development 
effort by using the neural networks approach on the 
COCOMO’81 dataset.  The COCOMO’81 dataset contains 
63 software projects [2,3,4]. Each project is described by 17 
attributes: the software size measured in KDSI (Kilo 
Delivered Sources Instructions), the project mode is defined 
as either ‘organic’, ‘semi-detached’ or ‘embedded’, and the 
remaining 15 attributes are measured on a scale composed of 
six linguistic values: ‘very low’, ‘low’, ‘nominal’, ‘high’, 
‘very high’, and ‘extra-high’. Among these 17 attributes, we 
have retained the KDSI and 12 other attributes that we had 
already fuzzified [6]. The other attributes are not used in our 
experiment because their description proved insufficient for 
fuzzification. The fuzzy sets associated to each selected 
attribute will be used in the interpretation of the if-then fuzzy 
rules deduced from our neural network. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: A neural network architecture for software 
development effort 

 
 

 
Study Learning 

algorithm 
Dataset Number 

 Of projects 
Predicting Results 

Venkatachalam Back-propagation COCOMO 63 Development effort Promising 
Wittig &Finnie Back-propagation Desharnais/ 

ASMA 
81 
136 

Effort MMRE=17% 

Jorgenson Back-propagation Jorgenson 109 Maintenance effort MMRE=100% 
Serluca Back-propagation Mermaid-2 28 Development effort MMRE=76% 
Samson et al. Back-propagation COCOMO 63 Development effort MMRE=428% 
Sarnivasan & 
Fisher 

Back-propagation Kemerer & 
COCOMO 

78 Development effort MMRE=70% 

Hughes Back-propagation Hughes 33 Development effort MMRE=55% 
Table 1: Summary of neural network studies [17] 
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The use of the neural network approach to estimate the 

software effort requires certain decisions and choices about 
the architecture, learning algorithm and the activation 
functions. In our case, the method, that we use to generate 
the if-then fuzzy rules from the neural network, requires 
that the architecture must be three multi-layer perceptron 
with the activation functions of the hidden layer and the 
output layer are respectively the sigmoid and the identity 
functions. Our neural network has 13 inputs (COCOMO 
cost drivers) and one output (effort). All the inputs as well 
as the output of the network are numeric (but it was said in 
a previous section that they were linguistic and then 
fuzzified. – there is an apparent contradiction, or a logical 
link not  clear enough). All inputs are normalized to speed 
up the training process of the network [14]. The network is 
trained by iterating through the training data many times. 
The used algorithm is Back-propagation with teaching rate 
and maximum error are equals to 0,03 and 10-5, 
respectively. Finally, Back-propagation assumes that 
weights in the network are initialized to small, random 
values prior to training. According to the architecture of 
our network, the effort (output) is given by:  

where f  is the sigmoid function, wij are the weights of the 

connections from the inputs layer to the hidden layer and  
βj are those from the hidden layer to the output layer.  
 
3. Overview of the empirical results 
 

The following section presents and discusses the results 
obtained when applying our neural network to the 
COCOMO’81 dataset. The calculations were made using a 
software prototype developed with the C language under a 
PC Microsoft Windows. The accuracy of the estimates is 
evaluated by using the magnitude of relative error MRE 
defined as: 

 

actual
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Effort
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=  

  
The MRE is calculated for each project in the dataset. In 

addition, we use the measure prediction level Pred. This 
measure is often used in the literature. It is defined by: 

N

k
ped =)(Pr  

where N is the total number of historical projects, k is the 
number of new projects with an MRE less than or equal to 
p. A common value for p is 0.25. The Pred(0.25) gives the 
percentage of projects that were predicted with an MRE 
equal or less than 0.25. Other four quantities are used in 

this evaluation: min of MRE, max of MRE, median of 
MRE, and mean of MRE (MMRE).  
 

We have conducted several experiments to choose 
(randomly ???) the number of hidden units (it is not clear to 
the unspecialised reader, what is a 'unit' and the related 
concepts, and its importance – this is very important to 
understand since this is mentioned often in the subsequent 
sections of the text). These experiments use the full 
COCOMO’81 dataset for training and testing the network. 
An acceptable accuracy is obtained with 13 hidden units 
and 300,000 learning iterations (Table 2). 
 

MRE% NN with 13 hidden units and 300,000 learning 
iterations 

Max 16,67 
Mean 1,50 
Min 0,00 

Table 2: Estimates accuracy of a network with 13 
hidden units 

 
However, many studies have proved that the neural 

network approach generates less accurate estimates when 
the training data is different from the test data [18,19]. 
Three reasons explain this phenomenon: 
§ The new project is widely different from the projects that 
are used in the training phase 
§ The number of projects used in the training phase is 
insufficient 
§ There is no relationship between the chosen cost drivers 
(inputs of the network) and the effort (output of the 
network) 

To back this affirmation, we have conducted two 
different experiments with our neural network. In the first 
experiment, we have randomly removed 23 projects from 
the COCOMO’81 dataset. These 23 projects are used to 
test the network. The 40 remaining projects are used to 
train the network. In the second experiment, we have 
removed only one project that is used for testing and we 
use all the remaining projects for training. The removed 
project is one of the 23 removed projects in the first 
experiment. The second experiment is repeated 23 times. 
Table 3 shows the obtained results for the two experiments. 
The values of MRE and pred(25) prove that, in general, the 
accuracy is increasing with the number of projects used in 
the training phase. 
 
 NN with 40 projects 

for training 
NN with 62 projects 

for training 
Pred(25) 13,04 34,78 
MMRE % 203,66 84,35 
Med MRE % 92,53 53,67 
Min MRE % 2,6 2,84 
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Max MRE % 1188,89 432,5 
Table 3: Estimates accuracy of a network with 40 and 

62 projects in the training phase. 
 

As we have noticed, in this work, we are not concerned 
with the accuracy of our network. The aim is to explain its 
process by mapping the network to a fuzzy rule-based 
system. The method developed by Benitez et al. will be 
used to extract the if-then fuzzy rules from our network [1]. 
In the next section, we present this method.   
 
4. Equivalence between neural networks and fuzzy 
rules-based systems: Background 
 

Since its foundation by Zadeh in 1965 [22], fuzzy logic 
has been the subject of many investigations. One of its 
main contributions to solve complex problems is 
undoubtedly the Fuzzy Rule-Based Systems. Basically, an 
FRBS is based on a set of if-then fuzzy rules1. A fuzzy rule 
is an if-then statement where the premise and the 
consequence consist of fuzzy propositions whereas in a 
classical production rule the premise and the consequence 
are crisp. An example of fuzzy rule in cost estimation may 
be ‘if the competence of the analysts is high then the effort 
is low’. The main advantage of fuzzy rules over classical 
rules is that they are more understandable for humans and 
may be easily interpreted. Indeed, fuzzy rules use, unlike 
classical rules, in their premises and consequences 
linguistic values instead of numerical data. As a 
consequence, some researches have investigated the 
equivalence between neural networks and FBRS’s [1,11 
(11 is not the correct reference here)]. These investigations 
have the objective to translate the knowledge embedded in 
the neural network into a more understandable language 
that is the if-then fuzzy rules. Benitez et al. have developed 
a method that proves the equality between a neural 
network, such as the one used in the previous section, and a 
fuzzy rule-based system which uses Sugeno rules [1]. In 
the following section, we present this method. 

Let us consider a three-layer perceptron neural network 
with the sigmoid function for the hidden units and the 
identity function for the output unit. This three-layer 
perceptron neural network is equal to a fuzzy rule-based 
system that uses a set of fuzzy rules Rjk associated to all 
pairs of its units (hidden, output). 

where xi are the inputs, yk is the output, wij are the 
weights of the inputs units to the hidden units, βjk are the 
weights of the hidden units to the output unit and A is a 

                                                 
1 Details of the FBRS are beyond the scope of this paper. In addition to the 
rule base, an FBRS is composed of other three parts: fuzzifier, inference 
engine and defuzzifier. 

fuzzy set with the membership function is the sigmoid 
function of the hidden units. The number of the fuzzy rules 
Rjk is equal to the number of hidden units. In order to make 
the fuzzy rules Rjk easily interpreted, Benitez et al. have 
shown that each of them can be given by: 

where i
jkA  are fuzzy sets obtained from A and wij. Their 

membership functions are given by: 

)()( ijAA
xwxi

jk
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and * is the i-or operator defined by:  
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The i-or operator is an hybrid between T-norm and T-
conorm. The fuzzy proposition x is i

jkA  may be interpreted 

as ‘x is approximately greater than 2,2/wij’ if wij is positive 
or ‘x is approximately not greater than 2,2/-wij’ if wij is 
negative.  
 
5. Validation and interpretation of the fuzzy rules 
 

In this section, we apply the method developed by 
Benitez et al. on the neural network presented and 
discussed in Sections 2 and 3. The neural network that we 
consider has 13 hidden units and uses the full 
COCOMO’81 dataset for training. Consequently, the  rule 
base obtained is composed of 13 fuzzy rules. Each fuzzy 
rule contains 13 fuzzy propositions. Each one is associated 
to one cost driver (inputs of the network). The output of 
each fuzzy rule is a numerical value (positive or negative). 
These 13 fuzzy rules express the knowledge encoded into 
the synaptic w eights of our network. The objective is to 
give a more comprehensible interpretation of these fuzzy 
rules in software cost estimation by using our previous 
experiments [6,7,8,9,10,11]. For simplicity, we discuss 
only two fuzzy rules (Table 4). 

By analyzing these two rules, we notice that the output of 
the first rule, R1, is positive (6049,77) whereas the one  of 
the second rule, R2, is negative (-2979,21). These two 
values are among the synapse weights of the hidden layer 
to the output units. Consequently, the natural interpretation 
that we can give of the output of the 13 fuzzy rules is that 
they can be considered as partial contributions to the total 
effort. They have the same role as the effort multipliers in 
the COCOMO’81 model. They can increase (positive 
value) or decrease (negative value) the total effort. The 
only difference between them is that the outputs of the 
fuzzy rules are positive or negative, because the cost 
function of the FBRS uses the summation operator, 
whereas in the COCOMO’81 model the effort multipliers 
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are higher than 1 (increase the effort) or lower than 
1(decrease the effort) because the COCOMO’81 cost 
function uses the multiplication operator.  
 
 

 
 
 
 

 
R1: R2: 

If :   If :   
DATA is approximately greater than 117,57 DATA is approximately greater than 118,46 
VIRTmi is approximately not greater than 30,14 VIRTmi is approximately not greater than 18,14 
TIME is approximately not greater than 156,28 TIME is approximately greater than 3716,39 
STORE is approximately not greater than 155,72 STORE is approximately not greater than 573,41 
VIRTma is approximately not greater than 448,88 VIRTma is approximately greater than 1232,53 
TURN is approximately not greater than 25,76 TURN is approximately not greater than 46,33 
ACAP is approximately not greater than 203,72 ACAP is approximately not greater than 393,35 
AEXP is approximately not greater than 400,37 AEXP is approximately not greater than 272,94 
PCAP is approximately not greater than 331,69 PCAP is approximately not greater than 483,23 
VEXP is approximately not greater than 1958,86 VEXP is approximately greater than 1357,35 
LEXP is approximately not greater than 921,91 LEXP is approximately greater than 985,36 
SCED is approximately not greater than 794,68 SCED is approximately not greater than 171,20 
KDSI is approximately not greater than 132,27 KDSI is approximately greater than 176,79 

Then Y=6049,77 Then Y=-2979,21 
Table 4 : Two examples of the obtained fuzzy rules 

 
 
 
 
 
 
 
 
 
  
 

Figure 2: (a) Fuzzy set associated to the qualification ‘approximately greater than 117,57’. (b) Fuzzy set 
associated to the qualification ‘approximately not greater than 30,14’ 

 
The premise of each fuzzy rule is composed of 13 fuzzy 

propositions combined by the i-or operator. Each 
proposition is expressed by a statement such as ‘x is 
approximately greater than v’ or ‘x is approximately not 
greater than v’. The linguistic qualification ‘approximately 
greater than v’ is represented by a fuzzy set with 
membership function of the equation 1. The value v is the 
one for which the membership function has a degree equal 
to 0,9 in case of ‘approximately greater’ or to 0,1 in case of 
‘approximately not greater’. According to Benitez et al., 
the values 0,1 and 0,9 are used in neural literature to 
indicate respectively the total absence of activation and full 
activation of the neurons. In our case, all the numerical 
values of the 13 inputs of the network are positive. Thus, 
we use only the positive part of the domain of the fuzzy 
sets corresponding to the qualification ‘approximately (not) 
greater than’. Figure 2 shows two examples that illustrate 

the fuzzy sets used in the two first propositions of the rule 
R1. 
 

The interpretation of each fuzzy proposition depends on 
the meaning of the cost driver used by this proposition. For 
instance, the fuzzy proposition ‘DATA is approximately 

greater than 117,57’ uses the DATA cost driver which is 
measured in the COCOMO’81 model by the following 
ratio (Figure 3): 
 
The DATA attribute represents, with other three cost 
drivers, the effect of the size and the complexity of the 
database on the software development effort. Thus, the 
higher the value of DATA, the more it will increase the 
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total effort. By using our fuzzification of the DATA 
attribute, we notice that the value 117,57 belongs to the 
linguistic value ‘high’ [6]. Consequently, the fuzzy 
proposition ‘DATA is approximately greater than 117,57’ 
may be considered as equivalent to the proposition ‘DATA 
is high or very high’. The latest proposition is easily 
understood by cost estimation community.  

However, in many fuzzy rules obtained, the value, v, 
used in the proposition ‘x is approximately (not) greater 
than v’ is out of the range values allowed for one cost 
driver. For example, in the first fuzzy rule R1, the 
proposition ‘LEXP is approximately not greater than 
921,91’ uses a value (921,91), which is not in the interval 
of all possible values of the LEXP attribute. Indeed, LEXP 
represents the programming language experience of the 
programmers and it is measured by the number of months 
of experience. In the COCOMO’81 model, the higher 
allowed value is equal to 36 months. By using our 
fuzzification of the LEXP attribute, the proposition ‘LEXP 
is approximately not greater than 921,91’ of the rule R1 
may be considered as equivalent to ‘LEXP is Q(very low)’ 
where Q is a linguistic modifier such as ‘more’. In this 
example, we have ignored the parts of the area of the fuzzy 
set representing ‘approximately not greater than 921,91’ 
which overlap with the linguistic values ‘low’, ‘nominal’ 
and ‘high’ (Figure 4). 

The same situation discussed above can be presented for 
the linguistic qualification ‘approximately greater than’. 
For example, the proposition ‘LEXP is approximately 
greater than 985,36’ of the rule R2 may be considered as 
equivalent to the proposition ‘LEXP is Q(high)’ where Q is 
a linguistic modifier such as ‘very’ or ‘extra’. 

Up to now, we have suggested a natural interpretation of 
the premises and the outputs of the obtained fuzzy rules. It 

still remains to explain the meaning of the i-or operator that 
is used to combine the fuzzy propositions of the premises.   
According to Benitez et al., the i-or operator has a natural 
interpretation and may be used in the evaluation of many 
real-world situations (evaluation of scientific papers, 
evaluation of the quality of a game developed by two tennis 
players,…). By analyzing all the 13 obtained fuzzy rules, it 
seems that the i-or operator is not appropriate to evaluate 
the effect of the premises on the effort. Indeed, the effect of 
one premise on the effort is calculated by considering all 
those associated to the 13 cost drivers. In cost estimation, 
the effect of one cost driver on the effort depends on its 
type (monotonous increasing or decreasing) and its 
importance. Moreover, according to its definition and its 
properties, the i-or operator cannot adequately model the 
complex set of relationships existing between the cost 
drivers. There are other reasons that prevent the i-or 
operator to be easily interpreted: 
§ It is neither a t-norm nor a t-conorm operator. Also, there 
is no linguistic quantifier that can express its meaning 
§ Let us consider that the truth value of one fuzzy 
proposition is closer to 1 and for all others their truth values 
are in the vicinity of 0. In such situation, when combining 
the various truth values by the i-or operator, the firing (???) 
strength of the rule will be closer to 1. This is in 
contradiction with our intuition, especially if the fuzzy 
proposition that have the truth value closer to 1 contains the 
less important cost driver. 
§ The i-or operator has the value 0.5 as a neutral element 
whereas if the truth value of one fuzzy proposition is equal 
to 0.5, the proposition must contribute in the evaluation of 
the firing strength of the premise. 

 
 

 
 
 
 
 
 
 
 

Figure 3: Membership functions of  fuzzy sets defined for the DATA cost driver [6] 
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Figure 4: Example where the value used for the LEXP attribute is out of range values 
 
 

6. Conclusion and future work 
 

In this paper, we have studied one of the most 
important limitations of neural networks, that is 
understanding why an neural network makes a particular 
decision is a difficult task. Our study is intended for the 
cost estimation field. The neural network that we have 
used to predict the software development effort is the 
Back-propagation three multi-layer perceptron with 
sigmoid function in the hidden units and the identity 
function in the output unit. We have used the full 
COCOMO’81 dataset to train and to test the network. 
The obtained accuracy of the network is acceptable. 

After training and testing the network, we have 
applied the Benitez’s method to extract the if-then fuzzy 
rules from this network. These fuzzy rules express the 
information encoded in the architecture of the network. 
The interpretation of each fuzzy rule is made by 
analyzing its premise and its output. Our experiment 
shows that we can explain the meaning of the output and 
the propositions composing the premise of each fuzzy 
rule. However, the i-or operator seems to be 
inappropriate to combine the effects of the various fuzzy 
propositions on the output of the fuzzy rule (rule's' ???) 
in software cost estimation. Consequently, we are 
looking now to the use of other methods in order to 
extract more comprehensible (understandable ??) fuzzy 
rules from the type of  neural network used in this 
experiment (????). 
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