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ABSTRACT  

 
This paper investigates with the fuzzy representation of 
software project attributes. The aim is to generate fuzzy 
sets and their membership functions from numerical data of 
software project attributes. The proposed fuzzy sets 
generation process consists in two main steps: First, we use 
the well-known Fuzzy C-Means algorithm (FCM) and the 
Xie-Beni validity criterion to decide on the number of fuzzy 
sets. Second, we use a Real Coded Genetic Algorithm 
(RCGA) to build membership functions for these fuzzy sets. 
Membership functions can be trapezoidal, triangular or 
Gaussian. This study uses the software attributes given in 
the  COCOMO’81 dataset. 
 
Keywords : Software project attributes, Fuzzy clustering, 
Real Coded Genetic Algorithms.  

 
1. INTRODUCTION 
 
Software project attributes are used by estimation models in 
software engineering to predict some important attributes of 
future entities such as software development effort, 
software reliability and programmers productivity. For 
example, software cost estimation models use as inputs 
some software project attributes, also called cost drivers, 
such as software size, software reliability, and experience 
of the personnel involved in the software project in order to 
estimate the required software development effort (Boehm, 
1981) (Boehm, 1995) (Burgess, 2001) (Idri, 2002) 
(Shepperd, 1997) (Vicinanza, 1990) (Wittig, 1997).  
In general, many software project attributes are measured 
either on Nominal or Ordinal scale type composed of 
linguistic values such as, low, very low, complex, and 
important. For example in the COCOMO II software cost 
estimation model (Boehm, 1995) 17 among 23 cost drivers 
are measured on an Ordinal scale composed of six 
linguistic values: very low, low, nominal, high, very high, 

and extra-high. As a consequence, when dealing with 
linguistic values handling imprecision, uncertainty and 
partial truth is unavoidable. However, the software 
engineering community often uses numbers or classical 
intervals to represent these linguistic values. Furthermore, 
such transformations and representations do not mimic the 
way in which humans interpret linguistic values and 
consequently cannot deal with imprecision and uncertainty. 
To overcome this limitation, we have suggested the use of 
fuzzy sets rather than classical interval (or numbers) to 
represent linguistic values (Idri, 2000) (Idri, 2001) (Idri, 
2002). The main motivation of fuzzy sets theory, founded by 
Zadeh in 1965, is apparently the desire to build a formal 
quantitative framework that captures the vagueness of 
humans knowledge since it is expressed via natural language. 
 Fuzzy set theory (Zadeh, 1965) suggests through the fuzzy 
set concept a more suitable representation of linguistic 
values. Indeed, a fuzzy set, by contrast to a classical set, is 
associated with a membership function, which maps the 
elements of a domain W  in a real interval [ ]1,0 . Thus, a 
fuzzy set representation captures the vagueness of one 
linguistic value by the use of gradual rather than abrupt-step 
membership function. In this paper, we investigate the fuzzy 
representation of linguistic values measuring software project 
attributes. 
Fuzzy representation of linguistic values has been 
successfully used in many other fields such as control, image 
processing, and pattern recognition. An overview of 
techniques to generate fuzzy sets and their membership 
functions is presented in (Medasani, 1998). They may be 
grouped into two major categories: (1) empirical techniques 
which construct membership functions from expert 
knowledge (Idri, 2000) (Sicilia, 2005), and (2) automatic 
techniques, which construct membership functions from 
historical data using clustering techniques (Liao, 2001) 
(Chen, 2005) (Guillaume, 2004). In an earlier work (Idri, 
2000), we have empirically built fuzzy sets of twelve 
COCOMO’81 cost drivers based on their descriptions given 
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in (Boehm, 1981). These fuzzy sets are associated with 
trapezoidal membership functions. The aim of this work is 
to generate fuzzy sets and their membership functions using 
the fuzzy C-Means clustering technique and a Real Coded 
genetic algorithm.  
The proposed fuzzy sets generation process consists in two 
main steps (Figure 1). First, we use the well-known Fuzzy 
C-Means algorithm (FCM) and the Xie-Beni validity 
criterion to decide on the number of clusters (fuzzy sets) 
(Bezdek, 1981) (Xie and Beni, 1991). Second, we use a 
Real Coded Genetic Algorithm (RCGA) to build 
membership functions for these fuzzy sets (Herrera, 2003) 
(Mühlenbein, 1993). Membership functions can be 
trapezoidal, triangular or Gaussian. Fuzzy C-Means 
algorithm is a fuzzy clustering method used to generate a 
known number of clusters. The determination of this 
number is still an open problem in clustering. Often, an 
empirical knowledge or a set of evaluation criteria is used 
to choose the best set of clusters. In this work, we use the 
fuzzy cluster validity criterion proposed in (Xie, 1991).  
This study uses a dataset that contains 252 historical 
Software projects. This dataset is deduced from the 
COCOMO’81 dataset (Boehm, 81). Each project is 
described by 13 attributes: the software size measured in 
KDSI (Kilo Delivered Source Instructions) and the 
remaining 12 attributes are measured on a scale composed 
of six linguistic values: ‘very low’, ‘low’, ‘nominal’, 
‘high’, ‘very high’ and ‘extra high’. These 12 attributes are 
related to the software development environment such as 
the experience of the personnel involved in the software 
project, the method used in the development and the time 
and storage constraints imposed on the software (Table 1). 
 

Table 1: COCOMO attributes selected for fuzzification  
 

Attribues  Designation  
SIZE  Software Size 
DATA Database Size 
TIME  Execution Time Constraint 
STOR  Main Storage Constraint 
VIRTMIN, 
VIRT MAJ 

Virtual Machine Volatility 

TURN Computer Turnaround 
ACAP  Analyst Capability  
AEXP  Applications Experience  
PCAP   Programmer Capability  
VEXP  Virtual Machine Experience  
LEXP  Programming Language Experience 
SCED  Required Development 
 
This paper is organized as follows. Section 2 describes 
briefly the Fuzzy C-Means algorithm and presents the 
results of its application to the software project attributes of 
the COCOMO’81 dataset. Section 3 presents how a Real 
Coded Genetic Algorithm is used to build membership 
functions of the fuzzy sets generated by the FCM 
algorithm. Section 4 presents and discusses the obtained 

membership functions when applying RCGA to software 
project attributes of the COCOMO’81 dataset. A conclusion 
and an overview of future work conclude this paper. 
    
2. FUZZY C-MEANS ALGORITHM FOR 
CLUSTERING SOFTWARE PROJECT 
ATTRIBUTES 
 
2.1 FCM algorithm: An overview 
 
Fuzzy C-means algorithm (FCM) is a fuzzy clustering 
technique which is different from classical C-means that uses 
hard partitioning. FCM uses fuzzy partitioning such that a 
data point can belong to all clusters with different 
membership grades between 0 and 1. FCM is an iterative 
algorithm that aims to find cluster centers (centroids) that 
minimize the following objective function: 
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where  
{ }nxxX ,...,1= is a data set of points; 

c is the desired number of clusters; 
m  is the control parameter of fuzziness; 

( )ijuU = is the partition matrix, containing the membership 
values of all data in all clusters; 

( )icC =  is the set of cluster centers 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 1. Fuzzy sets generation process 
 
To obtain a fuzzy partition using the FCM algorithm, the 
membership matrix (U) is randomly initialized according to 
Equation 2. To reach a minimum of the objective function, 
there are two conditions. First, the centers are computed 
according to the Equation 3. Second, the matrix U is 
calculated according to the Equation 4. By iteratively 
updating the cluster centers and the membership grades for 

Attribute 
  Numerical values 

Fuzzy clusters 
 Centers 
 Membership degrees 

Fuzzy sets 
 Membership functions 



each data point, FCM moves the cluster centers to the 
"right" locations within a data set. 
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The outline of the FCM algorithm can be stated as follows 
(Bezdek, 1981): 
 
Step 1. Randomly initialize the membership matrix (U) that 
has constraints in Equation 2. 
Step 2. Calculate centroids(ci)  by using Equation 3. 
Step 3. Compute dissimilarity between centroids and data 
points using Equation 1. Stop if its improvement over 
previous iteration is below a threshold. 
Step 4. Compute a new U using Equation 4. Go to Step 2. 
 
2.2 Empirical results 
 
This subsection presents the obtained results when applying the 
FCM algorithm to the COCOMO’81 software projects 
attributes. The calculations were made using a software 
prototype developed with Matlab under a Microsoft 
Windows PC environment. 
For each software project attribute, several experiments 
were conducted with the FCM algorithm each time using 
different initial matrix U. The desired number of clusters 
(c) is varied within the interval [3,6] because all the 
COCOMO’81 attributes are evaluated on a scale composed 
of at most six values (Boehm, 1981). The parameter m is 
fixed to 2 in all experiments. As mentioned earlier, we use 
the Xie-Beni criterion to decide on the number of clusters 
to be used in the next section. Table 2 shows the variation 
of the Xie-Beni index according to the number of clusters 
for each COCOMO’81 attribute.  
For each attribute, we choose the number of clusters that 
minimizes the value of Xie-Beni criterion. (bold cell in 
table 2). Figures 2 and 3 show the fuzzy partition generated 
by the FCM algorithm of the DATA and TIME attributes 
respectively.   
After generating fuzzy sets (clusters) with their partition by 
FCM, we use a Real Coded Genetic Algorithm (Herrera, 
2003) (Mühlenbein, 1993) to build membership functions 
for these clusters; membership functions can be trapezoidal, 
triangular or Gaussian. 
 
 
 
 
 
 

Table 2: Variation of Xie-Beni index according to the number of 
clusters for the COCOMO’81 attrubutes 

 
 Number of clusters   

Attributes  3 4 5 6 
SIZE 0.012 0.037 0.055 0.113 

DATA 0.012 0.269 0.168 0.120 
TIME 0.076 0.060 0.083 0.068 
STOR 0.072 0.091 0.066 0.111 

VIRTMIN 0.087 0.076 0.083 0.089 
VIRTMAJ 0.078 0.109 0.064 0.066 

TURN 0.144 0.093 0.070 0.1031 
ACAP 0.102 0.068 0.099 0.075 
AEXP 0.065 0.184 0.130 0.104 
PCAP 0.077 0.086 0.087 0.058 
VEXP 0.078 0.068 0.057 0.073 
LEXP 0.121 0.091 0.123 0.087 
SCED 0.128 0.148 0.135 0.151 
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Figure 2: fuzzy partition for DATA attribute 
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Figure 3: Fuzzy partition for TIME attribute 

 
 
3. BUILDING MEMBERSHIP FUNCTIONS OF 
FUZZY SETS USING REAL CODED GENETIC 
ALGORITHM 
 
3.1 Problem formulation 
 
Let us suppose we know a partition composed by c fuzzy 
clusters generated when applying the FCM algorithm to a 
given dataset { }nxxX ,...,1= . Consider that 



njniuU ij ≤≤≤≤= 1;1,)(  is the partition matrix 

containing membership grades of data { }nxxX ,...,1=  to 
the c fuzzy clusters. cicC i ≤≤= 1),( , ci are the cluster 
centers. The problem consists on building a set of 
membership functions cii ≤≤1),(µ , that are interpolating 
the known membership values uij of the partition matrixU ; 
membership functions can be trapezoid, triangular, or 
gaussien. Hence, the problem can be formulated as an 
optimization problem, which consists of finding the 
membership functions, cii ≤≤1),(µ , minimizing the 
mean square error defined as follows:  
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According to the shape of membership functions, which are 
often not differentials, we suggest approaching this 
problem with a Real Coded Genetic Algorithm. 
 
3.2 Experiment design of a Real Coded Genetic 
Algorithm to build membership functions 
 
Genetic algorithms (GAs) are stochastic methods based on 
the principles of genetics and the natural evolution 
(Goldberg, 1989) (Holland, 1975). They are used in search and 
optimization problems. The main idea is to evolve over 
time a finite part of search space, called population, using 
three operators: selection, crossover, and mutation until a 
termination criterion is reached. Each element in the 
population is treated as a chromosome, and represents a 
candidate solution to the problem. Furthermore, a 
chromosome is associated with a value called fitness which 
reflects its goodness and its adaptability capabilities; it is 
often calculated from the objective function. When tackling 
an optimization problem with variables in a continuous 
domain, GAs are called Real Coded Genetic Algorithms 
(RCGAs) (Mühlenbein,, 1993) (Herrera, 2003). In this 
case, each chromosome in the search space is coded by a 
vector of real numbers and specific operators are used. In 
our case, the use of an RCGA to find membership functions 

jµ   requires the determination of certain parameters such 
as the coding scheme, the fitness function and the various 
genetic operators (selection, crossover and mutation).    
Concerning the coding scheme, a chromosome in the 
population of our RCGA, Mimi ≤≤1, , represents  the set 
of  the unknown membership functions cjj ≤≤1),(µ  

associated to the c fuzzy sets generated by the FCM. The 
shape of the membership functions can be trapezoidal, 
triangular or gaussien. Thus, each chromosome encodes a 
set of membership functions in a real vector ),...,( 1 K

ii mm . 

The genes j
im  are obtained from the shape of the 

membership functions. Furthermore, in order to avoid 
incoherent situations, such us the peak value of one function 
being greater than the peak value of the next one, each gene 

j
im  (a real value) must be within a fixed interval. These 

intervals are often determined by experts. Here, we use the 
cluster centers cjcC j ≤≤= 1),(  to decide on these 
intervals. Taking into account these aspects, we propose 
three coding schemes of im  that are associated to the 
trapezoidal, triangular, and gaussien shapes respectively. 

 
 For the trapezoidal shape, each membership function, 

12, −≤≤ cjjµ , is represented by 4 parameters 
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++ jjjj aaaa  are considered in the 
coding scheme. Figure 4 shows the structure of an 
chromosome mi encoding trapezoidal membership functions. 
The size of this chromosome is defined by the 
expression 22 −= cK . The variation intervals associated to a 
chromosome ),...,( 1 K

iii mmm =  are defined in Table 3. 
 
Table 3: Variation Intervals of a chromosome mi associated 

to trapezoidal membership functions 
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 For the triangular shape, each membership 

functions 12, −≤≤ cjjµ  is represented by 3 parameters 
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represented by 2 parameters, ),( 1
3

1
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cc aa  
respectively. In order to obtain a fuzzy partition, the 
parameter ja2  of each function jµ  is the same as the 



parameters 1
3
−ja  and 1

1
+ja  of the adjacent functions 1−jµ  

and 1+jµ  respectively. Thus, only one of these parameters 
(the center of a triangular function), is considered in the 
coding scheme. Figure 5 shows the structure of a 
chromosome encoding triangular membership functions. 
The size of this chromosome is given by cK = . The 
variation intervals associated to a chromosome 

),...,( 1 K
iii mmm =  are defined in Table 4. 

 
 
 
 
 
 

 

Table 4: Variation intervals of a chromosome mi  associated to 
triangular membership functions 

 
 

 
Figure 4: Structure of a chromosome associated to trapezoidal membership functions 

 

Figure 5: Structure of a chromosome associated to traingular membership functions 
 

 
 

 
 
 

 
 
 

Gene Variation interval 
 1

im  
⎥
⎦

⎤
⎢
⎣

⎡ −
+

2
),min( 12

1
cc

cX  

l
im , 12 −≤≤ cl  

⎥
⎦

⎤
⎢
⎣

⎡ −
+

−
+ +−

− 2
,

2
11

1
ll

l
ll

l
cc

c
cc

c

K
im  

⎥
⎦

⎤
⎢
⎣

⎡ −
+ −

− )max(,
2

1
1 X

cc
c cc

c  

1
im  2

im  3
im . . 2−K

im 1−K
im     K

im  

 1
2a    1

3a       2
2
−ca   2

3
−ca  

2
1a    2

2a  2
3a      1

1
−ca   1

2
−ca  1

3
−ca

   3
1a  3

2a      ca1  ca2  

0

1 

1
3a

 

1
4a       2

2
−ca

 

2
3
−ca   2

4
−ca    

2
1a

 

2
2a  2

3a  2
4a

 
    1

1
−ca   1

2
−ca  1

3
−ca

 

1
4
−ca

 
  3

1a  3
2a       ca1  ca2  

1
im  2

im  3
im  4

im     3−K
im  2−K

im 1−K
im K

im  

0 

1 



 For the Gaussien shape, each membership function 
cjj ≤≤1,µ  is defined by 2 parameters: the width jσ  and 

the center jc . Figure 6 shows the structure of a 

chromosome encoding gaussien membership functions. The 
size of this chromosome is given by cK 2= . The variation 
intervals associated to a chromosome ),...,( 1 K

iii mmm =  are 
defined in Table 5. 
 
Concerning the fitness function F, we use the following 
formula: 
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Table 5: Variation intervals  of a chromosome mi associated to 

Gaussian membership functions 
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For the three genetic operators (selection, crossover and 
mutation), we use those that are specifics to Real Coded 

Genetic algorithms: 
• Selection: The linear ranking is used as a selection operator 
(Baker, 1987). Fitness values are first sorted into decreasing 
order. A chromosome is then randomly selected according to 
its rank in the population with the probability computed as 
follows.  
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where M  is size of the population, and [ ]1,0∈η .  

 
• Crossover : The line recombination method is considered 
as a crossover operator (Mühlenbein, 1993). It performs 
recombination between real coded chromosomes. Let 
be 1P and 2P  the chromosomes to be crossed, and 1O  a 
chromosome generated by this operator. 1O  is constructed 

gene by gene, and each gene lO1  is the result of combining 
the genes in the parents according to the expression:  
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where α a scaling factor chosen uniformly, for all pairs of 
parents, at random in the interval ]25.1,25.0[ . 
 
• Mutation: As a mutation operator, we consider the Breeder 
Genetic Algorithm (Mühlenbein, 1993), which performs a 
mutation of real coded chromosomes by perturbing each gene 

l
im of the chromosome im according to the expression:   
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where, im∆ is the range of the variation interval associated to 

l
im , the sign (–) or (+) is selected with probability 0.5, and 

δ  is a distributed amplitude of the perturbation favoring  the 
worst values.  
 

 
Figure 6: Structure of a chromosome associated to Gaussian membership functions 
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4. EMPIRICAL RESULTS 
 
This section presents the obtained membership functions when 
applying the RCGA algorithm to the COCOMO’81 
software projects attributes. The calculations were made 
using a software prototype developed with Matlab under a 
Microsoft Windows PC environment. 

For each software project attribute, we have applied the 
RCGA algorithm, as it is designed in the previous section, 
to the fuzzy clusters generated by the FCM algorithm in 
order to build their membership functions. The RCGA 
algorithm is applied with populations sized to 300, 
mutation probability fixed to 0.9, and the umber of 
generation is equal to 200. For each attribute, the number of 
membership functions is equal to the number of fuzzy 
clusters generated by the FCM algorithm with the Xie-beni 
criterion (Section 2). Figure 7 and Figure 8 show three 
different shapes of membership functions associated to the 
fuzzy sets of the DATA and TIME attributes respectively. 
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(c) 
Figure 7: Membership functions associated to the fuzzy sets of the 
DATA attribute. (a) Trapezoidal. (b) Triangular. (c) Gaussian. 
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Figure 8: Membership functions associated to the fuzzy sets of the 
TIME attributer. (a) Trapezoidal. (b) Triangular. (c) Gaussian. 
 
5. CONCLUSION AND FUTURE WORK 
 
In this paper, we have proposed and validated the use of the 
FCM algorithm and a Real Coded Genetic Algorithm to 
generate fuzzy sets and their membership functions for 
software project attributes. The proposed fuzzy sets 
generation process consists in two main steps. First, we have 
used the well-known Fuzzy C-Means algorithm (FCM) and 
the Xie-Beni validity criterion to decide on the number of 
clusters (fuzzy sets). Second, we have used a Real Coded 
Genetic Algorithm (RCGA) to build membership functions 
for these fuzzy sets. Membership functions can be 
trapezoidal, triangular or Gaussian. This study has used the 
13 attributes of the COCOMO’81 dataset. 
The obtained fuzzy sets and their membership functions of 
the 13 attributes of the COCOMO’81 dataset will be used for 
software cost estimation. Indeed, in some earlier works, we 
have developed a set of software cost estimation models 
based on an empirical-construction of fuzzy sets (Idri et al., 
2000) (Idri et al., 2002). Hence, we are looking currently at 
the investigation of the fuzzy sets obtained in this work to 
compare the accuracy of cost estimation models when using 
FCM and RCGA rather than empirical knowledge for 
building fuzzy sets.  
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