
I

ogram-
1996.
a-2, in:
g Lan-

ogram-
)/IEC.

emann,
:es, 32

h, The
ial 52,

E from
1. The
associ-
hematt-
e is an
/IEC
md has
ee for
:sts in-
formal
al-time

iOCtO*-

:chnol-
I a re-

1992.
)/IEC
Ind has
WUP

nclude
:tic as-

ELSEVIER Computer Standards & Interfaces 19 (1998) 155-160

A search for fundamental principles of software engineering

Jabir ‘, J.W. Moore ‘**
’ 7803 Whirerim Tcrruce, Poromuc. M D 2 0 8 5 4 . U S A

Accepted 2Y September 1997

I

Abstract

In the Wyear history of software development, various methodologies and techniques have been proposed to facilitate
the development of software responsive to needs. Most have proved to be more specific to the then-current state of

technology than has been understood at the lime. At this time. enough examples have accumulated that we can begin to
perceive underlying principles that may be fundamental, hence enduring in applicability. This paper reports the resulfs of a
recent workshop, discussing the characteristics and criteria for identifying fundamental principles and the apphcatton of
those criteria to eight candidates. Recommendations for continuing work are provided. 0 1998 Elsevier Science B.V. All

rights reserved.

Keywordr: Software engineering: Fundamental principles; Best practice

1. Context

Our interest in the identification of the fundamen-
tal principles of software engineering results from
work in the development of software engineering
practice standards. It is widely posited that practice
standards should be based upon observation, record-
ing and consensual validation of implemented ‘best

practices’. This strategy has resulted, though, in the
development of a corpus of standards that are some-
times alleged to be isolated, unconnected and dis-in-
tegrated, because each standard performs a local
optimization of a single observed practice. It is
hoped that the identification of a set of fundamental
principles would provide a broad and rich framework
for establishing relationships among groups of prac-

’ Corresponding nuthor. Tel.: + 1 703 8837396; fax: + I 703 8835432; e-mail: moorej@acm.org
’ Repon of a workshop conducted at the Forum on Sofiware Engineering Standards Issues, Mont&l, Quebec. Canada. 2 I-25 October

1996.
’ Jabir is the collective name adopted by a group of individuals engaged in a search for the fundamental principles of software

engineering. Our namesake was an eighth century Arabian alchemist who added sulfu,r and mercury to the then accepted list of
elements-earth. Iire. air and water [I]. The selected name suggests that our search has made progress toward truth but is far from
completed. The following individuals have contributed to Jabir through personal participation or correspondence. Collective reports
published under the name of Jabir do not necessarily represent their individual opinions. Affiliations are shown only for the purpose of
Identification: (I) Alain Abran. UnivcrsitC du QuCbec B Montrial; (2) Pierre Bourque, Universiti du Quibec a Mont&l; (3) Business
Planning Group. IEEE Computer Society Software Engineering Standards Committee; (4) Robert Dupuis, Universltt du Qutbec a Mont&l:
(5) Duane Hybertson. The MITRE Corporation; (6) Jean-Philippe Jaquet. UniversitC du Qutbec B Montn?al. (7) Andreas KGller,
Competence Center Informatik: (8) Ed Lowry: (9) James W. Moore, The MITRE Corporation; (IO) Leonard Tripp. Boeing Commercial
Airplane.

0920-5489/98/$19.00 0 1998 Elsevier Science B.V. All rights reserved
PIf SO920-5489(98)00009-9

I

Jubir, J. W. Moore/Computer Stclndcrrdt & Interfaces 19 (199Rl ISS-16U

tice standards, The 1996 Mont&d workshop initiated
a long-term, if episodic, inquiry to articulate such
principles.

2. Relationship of principles, standards and prac-
tices

Fig. 1 illustrates the sought relationships among
principles, standards and practices. It is believed that
a body of fundamental principles for engineering and
some other disciplines already exists and is articu-
lated. (Most of the relevant disciplines have a history
far longer than software engineering.) Software engi-
neering principles would, in the general case, be
regarded as specializations of the principles of these
more fundamental disciplines. The software engi-
neering principles would play the role of organizing,
motivating, explaining and validating the practice
standards. Implemented practices would be based on
those practice standards. Working from the specific
toward the general, practice standards would be
recordings and idealizations of observed and vali-
dated ‘best’ practices. The software engineering
principles would be abstractions of the practice stan-
dards. Furthermore, software engineering principles
might be candidates for generalization to the status
of general engineering principles, particularly when
complexity is a concern.

3. Results of the Montreal workshop

A workshop was organized at the 1996 Forum on
Software Engineering Standards Issues [2] with the

objective of identifying some of these fundamental
principles. Position papers for the Montreal work-
shop were invited in the context presented above.
Three days of discussion resulted in:

Some-observations on the nature of fundamental
principles,
Some criteria for identifying and evaluating can-
didate principles,
Some worked examples and counterexamples,
Some recommendations for future work.

4. The nature of software engineering

To bound the scope of software engineering, we
resorted to reference to authority. Two definitions
seemed particularly useful: (I) “That form of engi-
neering that applies the principles of computer sci-
ence and mathematics to achieving cost-effective
solutions to software problems” [3]. (2) “The appli-
cation of a systematic, disciplined, quantifiable ap-
proach to the development, operation and mainte-
nance of software, i.e., the application of engineering
to software” (41.

It was accepted at the outset that any particular
articulation of fundamental principles is always im-
perfect. In fact, we established a metaphorical equa-
tion:
Conventional_Wisdom = Folklore

+ Fundamental-Principles

It was agreed that practice standards, at any point
in time, are a recording of conventional wisdom.
Fundamental principles are discovered by stripping
away the folklore component of conventional wis-
dom.

5. Problems in discovering the fundamental prin-
ciples of software engineering

It is not easy to find, isolate and articulate the
relevant principles although some attempts have been
made, e.g., [5-g]. Software engineering lacks a
well-recorded, well-organized, accepted body of
knowledge [9]. Even in the more mature disciplines
where the fundamental principles are putatively
known, the knowledge is often tacit. Validation of a
suspected principle is difficult because software ex-

nental
work-
above.

nental

g can-

es,

lg. we
litions
engi-

:r sci-
&live
appli-
le ap-
iainte-
eering

icular
0 im-
equa-

lll?S

point
sdom.
pping
I wis-

prin-

te the
: been
:ks a
ly of
plines
.tively
n of a
re ex-

Jabir, J. W. Moore /Computer Standat& & Intetfaces I9 (1998) 155- 160 157

periments are generally difficult to perform and be-
cause the identification of best practice is generally
based on anecdotally based consensus judgment
rather than experimentation.

Finally, immature disciplines (and software engi-
neering is just one example) manifest an important
qualitative difference from the more mature ones.
They emphasize the problem-solving process (as if
every problem were novel) rather than categorizing
problems into well-understood bins and applying
‘cookbook’ solutions. This difference in focus is a
fundamental and substantial barrier to the application
of general engineering principles to software engi-
neering. This barrier is expected to decrease over
lime as software engineering matures.

6. Characteristics of fundamental principles

Despite the difficulties, we identified some char-
acteristics of the desired fundamental principles,
partly by a priori reasoning and partly through our
experience in examining candidate principles.

- Any particular statement of a fundamental prin-
ciple is imperfect (but this should not be regarded as
an embarrassment).

- At any time, some fundamental principles are
tacit.

* Software engineering’s fundamental principles
are derived by ‘multiple inheritance’ from other
disciplines by adopting them as is, by specializing
them, restating them, combining them, etc.

- We are willing to believe (for working pur-
poses) that software engineering may have some
unique principles. (This may be regarded as a conse-
quence of the observation that the previously listed
three characteristics may profoundly obscure the per-
ception of the relationship to more general princi-
ples.)

In our examination of candidate principles, we
developed some criteria (possibly better regarded as
heuristics or meta-principles) for the recognition of
fundamental principles (FP):

* FPs are less specific than methodologies and
techniques, i.e., specific methodologies and tech-
niques may be selected, within a particular rechno-
logical confext, to accomplish the intent of FPs.

- FPs are more enduring than methodologies and
techniques, i.e., FPs should be phrased in a way that

will stand the ‘test of time’ rather than in the context
of current technology.

* FPs are typically discovered or abstracted from
practice and should have some correspondence with
‘best’ practice.

l Software engineering FPs should nor contradict
more general FPs; but, there may be trade-offs in the
application of FPs.

- An FP should not conceal a trade-off. By that
we mean that an FP should not attempt to prioritize
or select among various qualities of a solution; the
engineering process should do that. FPs should iden-
tify or explain the importance of the various qualities
among which the engineering process will make
trades.

- An FP should be precise enough to be capable
of support or contradiction.

- An FP should relate IO one or more underlying
concepts. (See Section 7.)

7. Underlying concepts versus fundamental prin-
ciples

In our search for fundamental principles, we dis-
covered that we often confused them with something
we eventually characterized as ‘underlying concepts’.
The following table contrasts the two:

Underlying concepts Fundamental
principles

Scientific Engineering

Descriptive Prescriplive

Validated through Validated through
experiment rigorous (but not

necessarily experimental)
assessment of practice

Judged on the Judged on the basis
basis of correctness of usability, relevance,

significance, usefulness

Underlying concepts are to be regarded as scien-
tific statements. They must be capable of validation
by experiment and are judged on the basis of their
correctness when subjected to experiment. On the
other hand, fundamental principles are to be regarded
as engineering statements which prescribe con-
straints on solutions to problems or constraints on

a

158 Jabir. 1. W. M o o r e / Computtr Skandards & Intcqiiccs 1 9 (1998) 155-160

the process of developing solutions. They should be
rigorously evaluated, but in practice rather than in
the laboratory, and judged by whether they provide
useful and substantial contributions to the successful
solution of real problems of significant size and
scope. In general, we would expect fundamental
engineering principles to be strongly related to un-
derlying scientific concepts.

8. Candidate fundamental principles

This section of the paper describes the workshop’s
consideration of several candidate principles submit-
ted from various sources. In each case, the candidate
is stated followed by a discussion of its fit to the
criteria described previously. In most cases, the can-
didate is restated or replaced with better candidates.

8.1. Candidate 1

8.1.1. First statement
Design quality comes more from knowledge of

previous solutions than the specific requirements of
the problem.

8.1.2. Discussion
The statement is descriptive rather than prescrip-

tive suggesting that, in its current form, it is a
candidate to be an underlying concept rather than a
fundamental principle. It might be true, suggesting
that stated requirements are inevitably incomplete
because important requirements are often so obvious
to the acquirer that they go unstated, even unper-
ceived.

An important problem with the statement is that it
hides a trade-off. It says that one approach is more
effective than another without explaining how the
two should be traded.

The phrasing of this statement suggests that it is
actually more general than software engineering,
possibly applying to the whole of engineering or,
even more generally, to design (including, for exam-
ple, graphics arts). Indeed, one participant suggested
that empirical validation can be found in the field of
architecture (of buildings). For our purposes, we
ignore the possibility of over-generality and, instead,
deal with the problems of failing to be prescriptive
and of hiding a trade-off.

8.1.3. Restatement
To improve design, study previous solutions to

similar problems.

8.2. Candidate 2

8.2. I. First Stalemerit
Control complexity with multiple perspectives and

multiple levels of abstraction.

8.2.2. Discussion
This candidate is stated prescriptively and some

techniques that can be traced to the statement have
been empirically validated. In fact, various phrasings
of this principle, usually more specific, have been
made for the past twenty-five years or so. This is an
example of a principle that is possibly specific to
software engineering, or other disciplines with prob-
lems of comparable complexity. Our conclusion is
that it is a fundamental principle and that no restate-
ment is needed.

8.3. Candidate 3

8.3. I. First statement
Make sure that you have valid requirements be-

fore developing a solution.

8.3.2. Discussion
This candidate appears in many articles and text-

books. In fact, some claim that violation of this
principle is the leading cause of failure in software
development programs. In fact, though, any practi-
tioner knows that the real requirements of the job
change during the development and that failure to
recognize this reality is also a leading cause of
failure. So, there is some element of truth in the
candidate but it is too imperfect to be useful; in some
circumstances, application of the candidate might
actually be harmful Two restatements seem appro-
priate.

8.3.3. Restatements
Pattern the solution after prior solutions to similar

problems. (Thus improving the chances of capturing
unknown requirements.)

“Software engineering, as part of a large system
design process, must recognize the ill-defined and
fluid nature of software requirements and take appro-

I

ons to

‘es and

some
t have
*asings
: been
s is an
ific to

1 prob-
;ion is
estate-

IIS be-

j text-
rf this
ftware
practi-
le job
ure to
ise of
in the
I some
might

appro-

similar
Curing

system
.d and
appro-

Jabir, J. W. Moore/ Computer Standards dr Inlerjbces 19 (1998) J55-I60 159

priate steps to ensure that the resulting products
faithfully meet the user’s true needs” 13).

8.6. Candidate 6

8.6.1. First statement
8.4. Candidate 4 Everyone must know the big picture and their

relationship to it.
8.4.1. First Statement

Realize that software entropy increases (similar to
a principle in Ref. [6]).

8.6.2. Discussion

8.4.2. Discussion
This is a descriptive statement hiding behind an

imperative, hence more likely to be an underlying
concept rather than a fundamental principle. It also
appears to be software-specific but seems to rely on
a metaphor with thermodynamics to provide validity.
Several possible restatements might be considered.

This candidate may even fail the test of being
conventional wisdom. It seems to contradict the prac-
tice of breaking a problem into constituent pieces
and probably represents a style of management rather
than a technical approach. Even if effective in some
instances, it is probably a short-term remedy to
compensate for poor methods of decomposition; in
other words, even if effective today, it is probably
not enduring.

8.4.3. Restatements 8.7. Candidate 7
Maintainers should measure entropy.
Maintainers should establish criteria for reengi- 8.7.1. First statement

neering as an alternative to fixing. Design without documentation is not design [6].
Evolutionary concerns should be built into the life

cycle. 8.7.2. Discussion

8.5. Candidate 5

8.5.1. First statement
Make quality No. 1 (similar to a principle in Ref.

bl).

8.5.2. Discussion
Apart from the obvious characteristic of being a

slogan, the statement begs the question of “What are
Nos. 2, 3, etc.?” Even if we knew the answer, the
candidate would still have the effect of hiding a
trade-off. Furthermore, in any particular case, the
definition of quality is context-dependent and
achievement may be more or less difficult to judge.
Finally, the statement is not true enough to be funda-
mental; after all, one can imagine situations where
factors other than quality, profitability for example,
might be preferable. All considered, the candidate
statement might be better regarded as a moral, ethic
or value. Nevertheless, a restatement of the candi-
date is possible.

As originally stated, the statement is descriptive
rather than prescriptive. To solve this problem, the
candidate can be restated as something like, ‘All
components and processes should be documented’.
The restatement is not without problems, though. It
is clearly not abstracted from common practice and
seems to be based upon the specious presumption
that any documentation is worth the cost of its
production, More basically, it is not clear that the
candidate corresponds to any experimentally validat-
able underlying concept. A more reasonable state-
ment was proposed.

8.7.3. Restatement
Plan for evolution. Document whatever is neces-

sary for the planned evolution.

8.8. Candidate 8

8.8.1. First statement
Put technique before tools (similar to a principle

in Ref. [61).

8.5.3. Restatement 8.8.2. Discussion
Articulate the desired characteristics of quality

and explicitly trade among them.
Once again, we find that the proposed principle

hides a trade-off-this time between reliance on

I

160 Jabir, J. W. Moore / Cornpurer Standards & Inrerfaccs I9 (1998) IS- It54

tooling and reliance on technique. In discussion, we
discovered that different members of the group placed
very different interpretations on the statement. Some
thought that it meant (I) ‘Use techniques rather than
tools,’ while others thought that it meant (2) ‘Select
techniques first and then choose tools that fit.’ Some
claimed that the candidate had some demonstrated
validity, for example in techniques such as ‘clean
room’.

The statement seems to have been formulated in
response to failure, but it also seems possible that the
failures might have been the result of using inappro-
priate tools. So, the enduring nature of the candidate
is questionable; it may simply be a reaction to
possibly short-term inadequacies in tooling. In short,
the statement seems more like a ‘rule of thumb’ than
a principle. An alternative was proposed, although its
intent seems substantively different.

8.8.3. Restatement
Select a combination of tools and techniques suit-

able to the job.

9. Recommendations of the workshop

As a resuit of the workshop, five observations and
corresponding recommendations were formulated:

(I) There is no commonly accepted criteria for the
recognition of fundamental principles. Therefore, the
criteria developed by the workshop should be pub-
lished.

(2) There is no consensus on a set of fundamental
principles. One of the workshop participants, Robert
Dupuis, agreed to organize and conduct a Delphi
experiment among a group of software engineering
experts using the criteria developed at the workshop.

(3) The formulation of a well-articulated set of
fundamental principles is probably a long and diff-

cult process. A follow-on workshop should be orga-
nized at the 1997 International Software Engineering
Standards Symposium.

(4) Current collections of software engineering
standards lack cohesion because they treat the (cur-
rently implicit) principles unevenly. Following a
suitable articulation of principles, the standards com-
munity should ensure that standardized practices can
be traced to fundamental principles and that those
principles, in turn, can be traced to underlying scien-
tific concepts.

(5) Existing standards may contain some poor
advice in the form of suboptimal practices. The
standards community should require some form of
empirical validation as an integral part of the stan-
dards-development process.

References

[I] 1. Asimov. The Search for the Elements I962
[2] 1996 Forum on Software Engineering Standards Issues. Pro-

ceedings can be found at URL: http://satume.info.
uqam.ca/labo_recherche/lrgl/ses96.htm.

[3] W. Humphrey, Software engineering, in: A. Ralston, (Ed.),
Encyclopedia of Computer Science, 1993.

[4] IEEE Std 610.12-1990, IEEE Standard Glossary of Software
Engineering Terminology. Corrected Edition, IEEE Standards
Press, New York, 1991.

[5] B. Boehm, Seven basic principles of software engineering. 1.
Syst. Software 3 (I) (1983)

(61 A.M. Davis, 201 Principles of Software Development, Mc-
Graw-Hill, 1995.

[7] M. Lehman, On understanding laws. evolution and conservn-
bon in the large-program life cycle, J. Syst Software I (3)
(1980).

[8] W. Royce, Managing the development of large software sys-
tems, Ninth international Conference on Software Engineer-
ing, IEEE Computer Society Press, 1987 (reprint from
WESCON ‘70. 1970).

(91 A. Abran, Teaching software engineering using IS0 standards,
Standard View 4 (19%) 1399145.

