
Qualita 2001 – 4e congrès Pluridisciplinaire Qualité et sûreté de fonctionnement
Annency, France, 22-23 mars 2001

1

ANALYZING, MEASURING & ASSESSING SOFTWARE
QUALITY WITHIN A LOGIC-BASED GRAPHICAL

FRAMEWORK

Nihal Kececi and Alain Abran

Department of Computer Science
Software Engineering Management Research Laboratory (SEMRL)

Université du Québec à Montréal
P.O. Box 8888, Centre-Ville Postal Station

Montréal (Québec) Canada H3C 3P8

nkececi@lrgl.uqam.ca abran.alain@uqam.ca

Résumé: La mesure de la qualité d’un logiciel doit supporter la gestion, le contrôle et
l’amélioration du processus de développement du logiciel, mais les critères de qualité du logiciel
ne sont toutefois ni bien définis, ni facilement mesurables. Cet article propose un cadre
dynamique pour décrire la structure de systèmes d’évaluation capables d’englober les diverses
dimensions (humains-logiciels-matériel) qui interagissent lorsque l’on évalue la qualité d’un
logiciel faisant partie d’un système d’ensemble global de production. Ce cadre vise à faciliter
l’identification des relations entre les caractéristiques de qualité du logiciel et du système global,
des relations entre les requis de qualité et des caractéristiques mesurables, des mesure communes
à plusieurs attributs de qualité et comment ces mesures peuvent être combinées pour une
évaluation de la qualité du tout.

Abstract: Although software measurement is a key factor in managing, controlling and
improving the software development process, software quality criteria are neither well defined nor
easily measurable. This paper proposes a new logic-based graphical technique for modeling the
dynamic interactions of the variables that affect software quality within a whole system
production process. The framework presented here describes the properties of a complex quality
assessment system composed of human-software-hardware interactions in terms of their quality
requirements, and is designed to address the following issues: (1) What are the relationships
between software and system measurable characteristics in terms of their contribution to whole-
system quality? (2) What are the relationships between quality requirements and their measurable
characteristics? (3) What are the common measures used to compute more than one quality
attribute? (4) How can software-quality-related measures be combined to produce an overall
assessment of quality?

Keywords: software quality model; modeling measurement complexity; dependability analysis;
quality assessment for safety critical control systems.

1. INTRODUCTION

Although the term “quality” might seem
self-explanatory in each application
domain, in practice there are many

different views of what we mean by
quality, how it should be achieved and
how it can be measured as part of a
whole system production process. An
increasing number of software quality
standards for software processes and

Qualita 2001 – 4e congrès Pluridisciplinaire Qualité et sûreté de fonctionnement
Annency, France, 22-23 mars 2001

2

products emphasize the need for
measurement. However, most of these
standards provide little guidance as to
exactly what should be measured and
how the results should be used in the
assessment of software quality. Since the
relative importance of the software
quality acceptance criteria depends on
the context of use and the purpose for
which quality characteristics are being
described, there is no general rule on
how measures can be combined to
produce an overall assessment of quality.

Software always runs as part of a larger
system, typically consisting of other
software products with which it is
interfaced: human operators, hardware
and workflow [ISO99]. Therefore, the
whole-system characteristics have an
influence on the criteria for software
quality acceptance. This leads to issues
such as: what the relationships are
between the measurable characteristics
of high-level software quality
requirements, how they should be
analyzed and how they can be made to
work together to benefit high-quality
integrated software systems.

To address these issues, we propose in
this paper a conceptual quality
assessment framework, developed using
a graphical logic-based technique. Many
of the ideas in this paper are derived
from approaches developed in the
system-engineering field, such as
hierarchy theory and functional
modeling. The flexible architecture of
our quality assessment framework can be
used for different sets of quality
requirements in different application
domains.

2. HIERARCHY THEORY AND

FUNCTIONAL MODELING

System engineering views each system as
an integrated whole, even though it is
composed of diverse components, such as
hardware, software and human
subsystems. The objective of the system

engineering discipline is to design
subsystems which, when integrated into
the whole, provide the most effective
system possible to achieve the overall
objectives. Some of the most challenging
problems in building complex systems
today arise in the interfaces between
components. Hierarchy theory was
developed to deal with the fundamental
differences between one level of
complexity and another.

Many modeling techniques have been
developed and used in scientific
disciplines such as artificial intelligence,
risk assessment, reliability engineering
and cognitive science. Each of these
techniques is dedicated to a specific aspect
of complex systems, and most utilize a
functional/structural/behavioral modeling
approach to describe a system.

Functional modeling is an approach used
to model any man-made complex system
by identifying the designer -defined overall
goal it must achieve and the designer/user-
defined functions it must perform. The
characteristics and types of functional
modeling can vary.

Functional modeling has been widely used
for analyzing complex systems. The Goal
Tree Success Tree (GTST), Dynamic
Master Logic Diagram (DMLD) and
GTST -DML methodologies are some
examples of the implementation of this
methodology for the analysis of complex
systems [Mod&al 99], [Kec&al 99a],
[Kec&al 99b].

3. SOFTWARE QUALITY AND

RELATED VIEWS

Approaches to Measurement

Many authors have classified software-
related measures as either product
measures or process measures. Pressman
[Pre97] classifies software measures along
two orthogonal dimensions. Along one
axis lie size-oriented, function-oriented
and human-oriented measures. Technical,

Qualita 2001 – 4e congrès Pluridisciplinaire Qualité et sûreté de fonctionnement
Annency, France, 22-23 mars 2001

3

quality and productivity measures occupy
the other axis. Fenton [FEN97]] adds
resource measures to these two. Resources
are the items used in the creation of the
software system, processes are the
methods followed for creating software
systems, and products are the end-results
of process activities. Moeller & Paulish
[MOE93] categorize software measures in
terms of size, product quality and process
quality.

Each software measure in any of the
above categories can be either direct,
meaning it can be directly measured from
the entity itself, or indirect, meaning it is
derived through transformation of some
other measures.

Various researchers have produced
models (usually taxonomies) to measure
the software quality characteristics or
attributes that to “rank” the level of
achievement each of product's quality
attributes. It can be useful for rating the
quality of a software product. The models
often include proposed ratios and
formulae

Thus, each of the various types of
empirical investigation plays a part in
learning how various process, product and
resource factors affect software quality.

Approaches to Software Quality Models

There are many software quality models
that suggest ways to tie together different
attributes. Each model helps us to
understand how the several factors
contribute to the whole. When we
evaluate the quality of the product, we
must see this big picture. Various
researchers have built models to relate the
user’s external views to the developer’s
internal view of the software.

McCall’s model of software quality
incorporates 11 criteria encompassing

product operation, product revision and
product transition. McCall and his
colleagues have shown how external
quality factors are related to product
quality criteria [McCall & al 77].
Boehm’s model [Boehm & al 78] is
similar to McCall’s in that it presents a
hierarchy of characteristics, each of which
contributes to overall quality. His model is
based on a wider range of characteristics
and incorporates 19 criteria It has been
noted that Boehm’s notion of successful
software includes characteristics of
hardware performance that are missing in
the McCall model [Pfleeger 98].

Dromey has addressed product quality by
defining all the related sub characteristics
in such a way that they can be measured
and amalgamated into higher-level
characteristics. [Dromey 96]

In the early 1990s, the International
Standardization Organization ISO/IEC
attempted to consolidate the many views
of quality into one model. The ISO/IEC
9126 series standards have introduced a
hierarchical model with six major quality
characteristics, each very broad in nature.
They are divided into 27 sub
characteristics, which contribute to
external quality, and 21 sub
characteristics, which contribute to
internal quality. ISO/IEC 9126-1 is
concerned primarily with the definition of
quality characteristics and sub
characteristics in the final product.
ISO/IEC 9126-2 gives examples for
external quality metrics, the specified
function of which is to measure such
quality attributes as they relate to the
operation and behavior of the system
containing the software. ISO/IEC 9126-3
(under development at the time of this
analysis) gives examples for internal
quality metrics, the specified function of
which is to measure such attributes as they
relate to software quality characteristics.

Qualita 2001 – 4e congrès Pluridisciplinaire Qualité et sûreté de fonctionnement
Annency, France, 22-23 mars 2001

4

Figure 1 ISO/IEC 9126-quality model [1998]

Most of the external metrics use
measurement values derived from test
cases and the results of problem detection
in validation testing or operation testing.
Most of the internal metrics are also
derived from review processes
[ISO/IEC98].

Each model has a different set of
attributes at the highest level of the
taxonomy: selection of, and definitions
for, the attributes at all levels may differ.
They may also have a different number of
hierarchical levels.
One major difficulty with these models is
that the hierarchy is strict: each high-level
quality characteristic (see Figure 1) is
related to exactly a set of sub
characteristic and/or only a set of quality
attribute. High level quality factors are
also assumed to be independent of each
other, and are related to the user's view of
the software, rather than to the whole-
system (software-hardware-human)
characteristics.

4. ADDRESSING THE PROBLEMS

These models, and many others, are
helpful in articulating just what it is that
we value in the software we build and use.
But there are a number of difficulties in
the direct application of any of the above
models.

First, since quality has been defined as
meeting requirements, it is not possible
from a practical point of view to define
one generic model, which can fit into all
types of application domain. It is
necessary, therefore, to develop a flexible
conceptual quality framework. For
instance, these models do not fully take
into account either the requirements
quality attributes (such as ambiguity,
completeness, traceability, volatility,
correctness, stability, etc.) or management
measures (such as productivity, cost
scheduling, etc.). Moreover, both
dependability and integrity are quality
attributes, which are recognized as critical
properties in safety-critical systems, but

Functional i ty

Eff ic iency

Reliabil i ty

Maintainabi l i ty

Usabil ity

Por tab i l i ty

Suitabil i ty

Accuracy

Secur i ty

Interoperabil i ty

Compl iance
Maturi ty

Faul t To lerance

Recoverabil i ty

Compl iance
T ime Behav ior

Resource Behavior

Compl iance
Analyzabi l i ty

Change-abi l i ty

Stabil i ty

Testabi l i ty

Compl iance

Adaptabil i ty

Install-ability

Co-existence

Replace-abil i ty

Compl iance

Understandabi l i ty

Learn-abil i ty

Operabi l i ty

Attract iveness

Compl iance

Factors Sub-factors

Q
u

al
it

y
IS

O
/E

C
 9

12
6

Qualita 2001 – 4e congrès Pluridisciplinaire Qualité et sûreté de fonctionnement
Annency, France, 22-23 mars 2001

5

none of the above-mentioned models
either includes them or discusses their
potential relationships with whole-system
quality.

Secondly, these models take for granted
that all high -level quality attributes are
independent of each other. Based on this
assumption, they have decomp osed
higher-level quality factors into lower-
level ones independently. While a high-
level quality factor can be measured by a
certain set of metrics, some of these
metrics can be used for the quantification
of other quality attributes. In addition, the
data available to support an indirect
measure could be used to support many
other indirect measures. For instance,
software size is a measure used to derive
many indirect measures, such as defect
density, effort, productivity, fault density,
etc.

Thirdly, these models are static: they do
not describe how to measure quality from
current values at subsequent changes.
Hardware and software can behave
differently when changes are made. For
instance, although repairs generally
restore the hardware to its previous state,
changes to a software requirement almost
always change the software state.
Measurement of system and software
quality, therefore, should consider both
deterministic and probabilistic approaches
in the same measurement framework. In
addition, the level of complexity between
internal and external quality attributes has
not been addressed yet.

Finally, the behavioral, functional and
structural diversity of system components
(such as software, hardware and human
characteristics), as well as the
interrelationships of measures, introduce
additional complexity to existing
approaches to software quantification. In
summary, the complex relationships
between direct measures and quality
factors, as well as the complexity between
indirect measures and quality factors,

make it difficult to determine overall
quality.

5. OUR APPROACH TO QUALITY
ASSESSMENT

Building a Conceptual Framework for
Analyzing Measurable Quality
Variables

Every high-level software quality
requirement can be a function of many
variables of whole-system characteristics ,
and their behavior can change with use
cases. When software quality
requirements are defined for a specific
application domain, the quality subfactors
and/or attributes that contribute to the
quality requirements should be identified
hierarchically. To avoid confusion, we
have used the terminology defined in
IEEE 610.12 - quality factors, sub-factors
and attributes - it is normally necessary to
provide at least one measure for each of
the attributes. For many cases, one
measure can be used for the evaluation of
more than one attribute, or vice-versa.

From these assumptions, the proposed
quality assessment framework is built as a
logic-based framework, with three major
components: (1) Objectives, (2) functions
and (3) primary data:

Objectives, including predefined quality
requirements that can relate to human,
hardware and software characteristics.
Objectives-goals are decomposed until
measurable characteristics -attributes can
be identified.

Functions (indirect measures, models
and/or base data), including prediction
and estimation models. Functions (simple
algorithms/ratios or complex formulae)
are derived through the transformation of
some other measures. For instance, simple
functions – mostly ratios – are generally
based on primary data that can be:
interpreted. These data are used to obtain
parameters calculated according to
predefined formulae.

Qualita 2001 – 4e congrès Pluridisciplinaire Qualité et sûreté de fonctionnement
Annency, France, 22-23 mars 2001

6

Figure 2 Graphical Dynamic Quality Assessment (GDQA) framework

Primary data: generally single values
collected from process documentation or
system/software specifications (e.g.
number of errors, review effort in hours,
etc.).
These components of a quality system
interact with each other in a complex
manner. For instance, while reliability is
one major quality objective , reliability
estimation models are functions of this
objective. Maturity, fault tolerance,
recoverability and compliance measures
are sub functions influencing reliability
with certain importance weightings. Fault
density, which can be calculated with
number of detected faults and product
size, is an indirect measure of software
reliability where the number of faults is a
primary datum.

By contrast, reliability may be measured
externally by observing the number of
failures in a given period of execution
time during a trial of the software system,
and internally by inspecting the detailed

specifications and source code to assess
the level of fault tolerance.

6. GRAPHICAL DYNAMIC QUALITY
ASSESSMENT (GDQA) FRAMEWORK

The totalities of software quality factors,
which can be process-, product -,
management - and/or human-related, are
classified into a hierarchical tree structure,
as illustrated in Figure 2. The highest level
of this structure consists of quality factors
and the lowest level consists of software
quality attributes. Measurable
characteristics of these factors are also a
complex combination of whole-system
characteristics as well as internal and
external quality attributes. The main focus
in the model is to specify the relationships
between high-level quality factors and
primary data (top to bottom). The
framework can be used from bottom to
top as well as from top to bottom.
The use of the proposed framework
requires five steps:

Software Quality Assessment

Measure n

Measure 1

Measure 2

Measure 3

Data n

Data 1

Data 2

Data 3

Internal Attribute (1) Internal Attribute (2) Internal Attribute (n)

Sub-Factor (1) Sub- Factor (2) Sub- Factor (n)

 Functional Size Measurement

Procedure,
Standard

Requirement Specification

 Measurable Characteristics

 Sub- Factors

 Factors

Size

Quality Factor (2) Quality Factor (n)Quality Factor (1)

Qualita 2001 – 4e congrès Pluridisciplinaire Qualité et sûreté de fonctionnement
Annency, France, 22-23 mars 2001

7

1. The first step implements a structural
hierarchy to decompose software
quality factors into sub-factors and
quality attributes. The decomposition
process is repeated until some lowest
level of measurable software
characteristic is reached. In a
multiple-layer hierarchy, the output of
the first lower level can be directly
linked to the inputs of the other layer
sub-elements. The hierarchy may not
be perfect, however, as some
attributes may contribute more that
one sub-factor and/or quality factor.

2. The second step assesses the priorities

for the quality/subquality attributes:
A weighting system will be used to
make comparisons between attributes
and to reflect the relative importance
of distinct attributes. Weights are
used to normalize with a sum to 1.0,
for ease of comparison.

3. The third step defines the

relationships between the factors and
the sub-factors, since these sub
factors, defined at the second or third
level of the decomposition process,
can have relationships across multiple
quality attributes.

4. The fourth step identifies the indirect

measures to quantify the values of
software quality factors/sub -factors.
This step provides a map from
software attributes, which are
decomposed into a multi-level
structural hierarchy, to their
associated available measurement
techniques.

5. The fifth step determines the input

variables that may be collected from
the documentation of the
development process (including
requirements documentation, testing
and maintenance reports and designs,
as well as code).

7. CONCLUDING REMARKS

In this paper, we have proposed a new
graphical dynamic quality assessment
(GDQA) framework for modeling the
dynamic interactions that affect software
quality. This framework, and its
components, is derived from system
design engineering approaches aimed at
making the entire modeling process
objective, systematic and computationally
fast. Many features and properties have
been pointed out which make GDQA a
flexible and potentially very useful
alternative to current approaches in
existing quality models. Furthermore, the
GDQA framework helps facilitate:

(1) The identification of testing

objectives;
(2) The use of a broad range of quality

factors, sub factors, attributes, and
their measures – direct/indirect,
external/internal – for the whole
system;

(3) The identification of the
interrelationships betw een software-,
hardware- and human-related
characteristics that have an influence
on the quality of the product;

(4) The identification, through its
dynamic nature, of trends in quality
by observing the time behavior of the
variables;

(5) The identification of co mmon
measures used to compute more than
one quality attribute.

REFERENCES

[Boehm & al 78] Boehm, B.W., J.R.
Brown, J.R. Kaspar, M. Lipow, and G.
MacCleod. Characteristics of Software
Quality. Amsterdam : North Holland.
1978

[Dromey 96] Dromey, R.Geoff.
“Cornering the chimera”. IEEE
Software, vol. 13, no 1, January, p. 33 -
34, 1996

[FEN97] Fenton, N. and S.L. Pfleeger.
Software Metrics: A Rigorous and

Qualita 2001 – 4e congrès Pluridisciplinaire Qualité et sûreté de fonctionnement
Annency, France, 22-23 mars 2001

8

Practical Approach, PWS Publishing
Company, 20 Park Plaza, Boston, MA
02116 -4324, 1997.

[Pre97] Pressman, R. Software
Engineering A Practitioner’s Approach,
fourth edition, McGraw-Hill Companies,
Inc., New York, 1997.

[McCall & al 77] McCall, J.A., P.K.
Richards, and G.F. Walters. Factors in
Software Quality, vol. 1,2, and 3, AD/A-
049-014/015/055. Springfield, VA:
National Technical Information Service,
1977

[Mod & al 99] Modarres, M., Y-S. Hu.
Applying Fuzzy-Logic-Based Hierarchy
for Modeling Behaviors of Complex
Dynamic Systems. System & Software
Computing in Nuclear Engineering. Da
Ruan ed., Springer-Verlage (in Print),
1999.

[Kec&al 98] Kececi, N. and M. Modarres.
“Software Development Life Cycle
Model to Ensure Software Quality”,
Proceedings of the 4th International
Conference on Probabilistic Safety
Assessment and Management, New York
City, USA 1998.

[Kec&al 99a] Kececi, N., M. Modarres,
and C. Smidts. “System Software
Interface for Safety-Related Digital I&C
Systems”, European Safety and
Reliability – ESREL’99 Conference,
TUM Munich- Garching, September 13-
17, 1999

[Kec&al 99b] Kececi N., M. Li, C.
Smidts, C. "Function Point Analysis: An
Application to a Nuclear Reactor
Protection System," International
Topical Meeting on Probabilistic Safety
Assessment –PSA’99, Washington, DC,
August 22-25, 1999.

[IEEE 90] IEEE Std. 610.12-1990. IEEE
Standards Glossary of Software
Engineering Standards.

[ISO/IEC 98] ISO/IEC 9126
“Information Technology Software
Quality Characteristics and Metrics ”;
Part 1: Quality model, Part 2: External
metrics, Part 3:Internal metrics.

[MOE93] Moeller, K.-H. and D. Paulish.
Software Metrics: A practitioner’s
Approach to Improved Software
Development. Chapman & Hall, and
IEEE Computer Society Press, Los
Alamitos, CA, 1993.

