Copyright © IFAC Real-Time Programming,
Istanbul, Turkey, 2004

ELSEVIER

IFAC

PUBLICATIONS

www_elsevier.com/locate/ifac

TRACEABILITY ANALYSIS:
MODELING FUNCTIONAL REQUIREMENTS SPECIFICATIONS

Nihal Kececi* and Alain Abran**

*Center for Technology Risk Studies, Reliability Engineering
University of Maryland, College Park,
MD 20742, USA
nkececi@eng.umd.edu

** Department of Software Engineering
Ecole de Technologie Supérieure — ETS — Université du Québec
Montréal, H3C 1K3 Canada
aabran@ele.etsmtl.ca

Abstract: Traceability analysis is recognized as a concern in an increasing number of
standards and guidelines for requirements engineering. However, there are many challenges in
applying current traceability approaches to complex and dynamic software development
processes. In this paper, functional traceability is introduced, and difficulties related to
implementing traditional traceability methods are discussed. To address these challenges, we
propose a model aimed at building functionality into a logic-based graphical framework in
order to define the interrelationships between software-based system components, functions,
and sub-functions, as well as the interrelationships between software life cycle phases. The
proposed model provides functional traceability for a large-scale software development
process. The architecture of the Functional Traceability Model (FTM) captures both system
and software specifications and design attributes into a multi-level hierarchy. Implementation
of the model to assess functional requirements traceability is illustrated as a case study.
Copyright © 2004 IFAC

Keywords: Traceability analysis, functional correctness, requirements assessment, verification,

large-scale complex system

1. INTRODUCTION

Traceability analysis is a technique that provides a
path to the validation and verification of stakeholder
requirements to ensure that their needs are met by the
systems delivered. Within any system development
life cycle, there must exist a mean, so that system
requirements, including the functional requirements,
can be traced both forward and backward to ensure
that the system is being designed and produced
correctly. While implementing adequate and full
traceability in large-scale complex system
development is challenging, it is even more so when
the context includes software engineering and
development.

31

Traceability assessment methods establish the
relationships between the requirements specifications
and the design, matching elements of one to those of
the other. Once matching has been completed, all that
remains is either a set of unmapped requirements
elements or unfulfilled requirements, or a set of
unmotivated additional design elements or
unintended design functions.. The first clear signal is
design inadequacies, and the second raises strong
concerns that the non-specified additional functions
might lead to unexpected errors.

There are many different views of traceability, all of
them changing with the stakeholder’s view of the

system. For example, to the customer, traceability
could mean being able to ascertain that the system
requirements are satisfied. The primary concermn of
the maintenance engineer with traceability may be
how a change in a requirement will affect a system,
what modules are directly affected, and which other
modules will experience residual effects. In addition,
traceability is critical to the operation and
maintenance phace, in particular when cignificant
stakcholder changes may be made and when 1equired
impact analyses must be performed. Although tracing
such changes is difficult, the process must
nevertheless be carried through to ascertain the full
extent of the impact of additions, deletions, or
modifications to the system.

In this paper, we review the current traceability

D 00 T

discuss allenges in implementing traditional
traccablhty analy51s to perform the functional
traceability process in section 3. In section 4, we
introduce the set of traceability definitions. To
address the problems associated with the traditional
raceability approach, Functional Traceability Model
(FTM) is proposed in section 5. The implementation
of the FTM is illustrated with a case study in section
6, and the lessons learned in section 7.

2. CURRENT TRACEABILITY DEFINITIONS,
METHODS, AND TOOLS

2.1 Traceability definitions

The definitions most commonly cited in the literature

are the following:

e (1) The degree to which a relationship can be
established between two or more products of the
development process; and (2) The degree to
which a requirement and the design of a given
software component match [IEEE Std.610.12].

e “A Software Requirements Specification (SRS) is
traceable if the origin of each of its requirements
is clear and if it facilitates the referencing of each
requirement in future development or
enhancement documentation.” Forward and
backward traceability are also recommended
[IEEE Std. 830].

o (1) A given term, acronym, or abbreviation means
the same thing in all documents; (2) A given item
or concept is referred to by the same name or
description in the documents; (3) All material in
the successor document has its basis in the
predecessor document, that is, no untraceable
material has been introduced; and (4) The two
documents do not contradict one another” [DoD-
Std-2167A].

In summary, DoD-Std-2167A associates
requirements completeness, necessity, and
consistency with traceability analysis. IEEE
Std.610.12 focuses on the relationships between
products of the development process, while IEEE
Std. 830, in contrast, establishes a link between

s la)

traceability analysis and requirements correctness.
Since there is no standard available for defining
complete views of traceability, the traceability
process is often misunderstood and misapplied, and
is seldom performed correctly.

2.2 Techniques

Many techniquee have been proposed for providing
uaccability, including. cross rcferencing scheomes
[Evans89]; key-phrase dependencies [Jackson91];
Requirement Traceability (RT) matrices [Davis 90];
matrix sequences [Brown91]; hypertext; integration
documents; and more. Some general-purpose
requirements verification and validation techniques
have also been proposed for tracing, most of which
have been developed to directly support textual

T o o e

quantity and diversity of information they can trace
between, in the number of interconnections they can
control between information, and in the extent to
which they can maintain requirements traceability
when faced with on going changes to requirements.
The quality or the resulting requiremente rracaanility,
however, depends on the rigid adherence to pre-
specified procedures and notations for development.
A number of commercially available requirements
tools have been developed to support traceability.
One of the features common to all tools and
techniques is the establishment of links between
words/phrases across development life cycle
activities to ensure traceability. It has been noted by
[Palmer90] that currently available tools are poorly
integrated and lack of flexibility.

3. CHALLENGES TO IMPLEMENTING
TRACEABILITY ANALYSIS

Many standards for systems and software
development recommend the practice of
requirements traceability. However, very few
guidelines are available on how to establish this
traceability or on what should be traced. Some of the
challenges to applying traditional traceability
approaches are the following:

3.1 Lack of a common understanding of what must be
traced

Individual practitioners’ understanding of what must
be traced leads to diverse applications of
requirements traceability. Some examples found in
the literature are listed below [Orlena 02]:

® Purpose-driven (defined in terms of what the
process should do): “the ability to adhere to the
business position, project scope and key
requirements that have been signed off”

e Solution-driven (defined in terms of how the
process should be performed): “the ability of
tracing from one entity to another based on a
given semantic relation”;

e Information-driven (emphasising traceability
information);
e Direction-driven traceability = (emphasising

traceability direction).
3.2 Complexity

In a typical large-scale project, there will be a large
number of requirements derived from different
sources and expressed at various levels of system
detail. This makes it difficult to carry out the
mapping when the need for effective mapping is even
greater: in such projects, there are more opportunities
to generate unmapped or unfulfilled requirements, as
well as unmotivated or unintended design functions.
Mapping system functional requirements to software
functional requirements is a first critical step in the
development of software, and, of course, an
important potential source of risks when not achieved
with the degree of rigor required for safety-critical
systems. It is crucial to record and maintain this
derivation in order to make it possible for the impact
of any subsequent changes to the requirements to be
assessed.

In safety-critical systems, such as in a nuclear power
plant, software performs two major types of
functions. The first type is related to performing the
plant safety functions themselves. These safety
functions are identified at the system level, and flow
down through the software requirements, design, and
code. The second type is associated with maintaining
the integrity of the system and of the software
elements that perform the primary safety functions,
such as error checking and fault tolerance. These
integrity functions are partially identified at the
system level, but are significantly expanded within
the software itself. Successful safety system
development depends on the ability to trace safety
functions at system level and to reflect these in the
delivered system. Well-defined traceability analysis
methods and tools must play a major role in ensuring
that the delivered system is safe and that the
delivered system functions properly and as intended.

3.3 Software requirements in natural language

If the requirements are expressed textually in a
requirements specification, then a number of
validation processes can take place, such as syntactic
and semantic checking. Language semantics are
needed to ensure that the trace is related to the
meaning or context of the requirement or set of
requirements, while syntax is necessary to trace to a
specific word or phrase, without regard to meaning or
context. However, experience has shown that lack of
a common terminology and the use of natural
language lead to more errors in the requirements
phase. Moreover, it was noted in the [Hennell 87]
study (contrary to the views expressed in many books
[DeMarco 1979, Jackson 1983]) that ‘functions
cannot be deduced necessarily or exclusively from

33

the use of verbs.” Further, it is noted that “there is no
known way in which details of functionality can be
extracted from natural language text with any degree
of certainty.” The achievement of requirements
traceability, more specifically functional
requirements traceability, requires verifying
functional correctness and completeness. Therefore,
the use of natural language to define functionality is
the first issue to address in performing traceability
correctly.

4. DEFINITIONS FOR FUNCTIONAL
REQUIREMENTS TRACEABILITY

System requirements constitute a complex
combination of both functional and non-functional
requirements. At the present time, no model and no
standards are available to support and define
functional requirements traceability. To design a
framework which allows the fundamental cause of
requirement traceability problems to be located and
addressed, we first document the definitions to be
used in this framework.

4.1 Function

The definition of a function used in this study is
taken from IEEE Std. 610.12:

“(1) A function; is a module that performs a specific
action, is invoked by the appearance of its name in
an expression, may receive an input value, and
returns a single value; (2) A module is a logically
separable part of a program.”

4.2 Functional characteristics

The definition of functional characteristics is adapted
from the definition of a function, as mentioned
above. The characteristics recognized for functional
traceability are: inputs, outputs, process, and
interfaces (boundary).

4.3 Functional traceability

The definition of functional traceability is modified
from IEEE Std. 610.12, and is defined by the authors
as follows: (1) the degree to which a relationship can
be established between two or more functions and
functional characteristics of the system (user)
requirements; and (2) the degree to which a
requirement and design of a given software module
match.

4.4 Functional analysis

Functions are discrete actions that the system must
perform. Functional analysis begins by identifying
top-level system requirements and decomposing
these functions into a hierarchy of sub-functions to
form a functional architecture. The objective is to
break the system down into simple tasks which can
be performed by people, hardware, and software, and

which, when combined with other sub-functions, will
achieve the performance of the top-level system
functions [Chapman 92]. Although there are many
tools and methods wused to analyze system
requirements, functional analysis ensures that each
system function requirement is traced to a software
requirement and then to a software design element.

5. FUNCTIONAL TRACEABILITY MODEL

To perform functional traceability, an FTM (that is,
extended-functional modelling) is proposed. FTM is
a logic-based analysis method providing a graphical
framework to establish traceability for multilevel
system components of large-scale complex systems.
It is aimed at visualizing functional specifications
within the characteristics of functionality such as
inputs-processes-outputs using a logic-based
graphical framework. Figure 1 illustrates the FTM
modelling technique of a function (as defined above),
as it transforms textual functionality into graphical
form using the following graphical language
notation.

1. External output: A rectangle on the top
represents an output set. An output can be an

input to another module, a signal to any
hardware action, a functional user’ requirement,
or a monitor requirement.

2. External inputs: A set of inputs is represented as
a rectangle on the left. User inputs, sensor
outputs, system variables, and outputs of another
component are examples of an external input set.

3. Intemal inputs/outputs: The numbered circles
represent the output of a sub-process which will
be an input to another sub-process within a time
sequence, as shown in Figure 1.

4. Sub-functions: These are illustrated with
decision logic symbols in Figure 1.

Mathematical operators and control algorithms
are examples for sub-functions.

5. A _module/function: A rectangle in the centre
represents a module or a function in a multilevel
hierarchy.

6. Data movement: Circular connectors are used to
map input data to processing steps, and
processing steps to outputs.

7. Boundary: This is identified by the entry and exit
points of a software module.

A general strategy for functional decomposition is to
define the required functional processes as a mapping
from inputs to outputs. Ideally, the traceability
analysis proceeds in top-down fashion, first
identifying the functions associated with the system
- as a whole. Each level of the hierarchy adds detail
about the processing steps necessary to accomplish
the more abstract function above, a function which
controls the processing of its sub-functions. In a
complete decomposition of a functional requirement,

1 ;
User can be either a system or a human

34

the functional hierarchy specifies the algorithms, the
internal inputs needed to achieve these algorithms,
and the internal outputs resulting from these
algorithms, as well as their interrelationships. Any
output of any module can be an input to another
module or vice versa.

A summary of these steps, together with the
graphical notations used, is presented in Table 2.

Figure 1. Modelling functionality within the FTM
framework

Table 1. Graphical Description of a Functional
Requirement

FTP Graphical
Bessyipton Language Language
Function: “A software module that performs a
specific action is invoked by the appearance of its Function S
name in an expression, may receive input value, {Goal/
and return a single value.” Process
Module: “A logically separable part of a program™
Input: To receive data from an external source Value of Function .
Output: To transmit data to an external destination ~ =xemal 1O
Algorithms: Any seq of op))
for performing a specific task Logic/ Algorithms >
Sub-f ion When a function is d Sub- functions/
sub-functions can be identified sub-module/sub-processes ‘
Internal Inputs and Outputs Value of sub-functions
Internal 1/0 @
Functional boundary is identifies entry and exit poem==——=
points of a software module Functional Boundary !
Entry: A point in a software module at which I]
execution of the module can be begun
Exis: A point in a software module at which
execution of the module can be terminate
_Da.'a A'reprwmmiun u_r &:13.. concept or /O data variable .
for P Write/Read
or by humans or by automatic means feie

6. A CASE STUDY

An application of the FTM framework on a Vessel
Water Level Controller, which is one of the
functional user requirements (FURs) of TRAC-M
code is provided in this section.. To build the FTM,
the functional characteristics (input/output/process)

of the Vessel Water Level Controller are searched
through the various documents produced during the
software development process. The description of the
Vessel Water Level Controller function is taken from
the System Requirements specification, and is as
follows: “The level controller provides the dynamic
level position inside a given component along with
the current feed water line and steam line mass flow
rates. The output consists of the mass flow rate of the
FILL component, which provides the inlet flow of the
feed-water system.”’

LAYER 1: Identifying the external I/O

Control block number 202 is identified in the User
Manual as the Vessel Water Level Controller
function. The control block mathematical operation is
described as follows:

Control Block no.: 202

Control Block name: Vessel water level
controller

Control Block Mathematical Operation:
X (out) = f (X1, X2, X3, cl, c2)

Block Inputs: X1, X2, X3

Block Constant: cl, c2

To achieve the Vessel Water Level Controller
function, five external inputs are identified in the
User Guide, as follows:

1. Xl(meter) should be provided with the
vessel down (comer?) water level, which
could be provided by type 106 signal
variable?.

2. X2 (kg/sec) should be provided with the
current time step feed water line mass flow
rate.

3. X3(kg/sec) should be the current time step
steam line mass flow rate.

4. cl (meter) is the user-desired vessel
collapsed water level position,

5. ¢2 (kg/sec) is the nominal steady state feed
water line mass flow rate (kg/sec)

The External /O of the Vessel Water Level
Controller is illustrated in the FTM framework with
rectangles outside the functional boundary in

Figure2.
LAYER 2: Identifying Sub-functions — Internal I/0

The control block function operators belonging to the
Vessel Water Level Controller were identified from
the Software Design Specification (SDS). These are
traced forward and backward to the User Manual. To
achieve the process goal of each control block
function operator (sub-functions) as listed in Table 2;
their internal inputs/outputs were searched using a
functional decomposition technique. The mapping
from sub-functions to internal I/O identified that
SUBT 54 has an incorrect control block number. This
has been replaced by ADD3 in Figure 2.

35

Figure 2. Analyzing the TRAC-M Vessel Water
Level Control Function into the FTM
Framework

Tracing the functional characteristics of each control
block function helped us to identify incorrect and
incomplete sub-functional processes, as well as to
assess design accuracy. Table 2 summarizes the
results of the FTM analysis for design accuracy.

Table 2. Functional Traceability for Design Accuracy

SRS/User Manual [FTM !
Control Control Block Control Block
Block type & name number and type |
number |
202 Level Controller 202
23 ING (Integrate) ING 23,
26 LAG First-order lag | LAG 26
56 SUBTC (Sum SUBTC56
constant)
59 WSUM (Weighted | WSUM 59
summer)
11 DEAD (Divide) DEADI!
54 SUBT (Subtract) ADD3
59 WSUM (Weighted WSUM 59
summer)
56 SUBTC (Sum | SUBTC56
constant) |

The control block function operators are identified
with the decision symbol, while the I/O values of
block functions are represented with numbered
circles in Figure 2.

The external inputs identified in layer 1 are mapped
to the internal inputs of the lowest level of sub-
process obtained using functional decomposition of
the system requirement in Layer 2.

As shown in Figure 2, the inputs of the Control Block
Function numbers 11, 3, 56, and 23 are mapped to
the external inputs. After verifying the correctness of

the external inputs into the FTM framework, these
inputs are mapped to the SRS documents; all that
remains is identification, leading to either a set of
unmapped requirements elements or to a set of
unnecessary requirements.

Figure 2 is built from top to bottom (that is, tracing
functional characteristics from the User Manual to
the SDS and to the SRS), and traceability analysis is
executed Tom bottom to top (that is, from the SRS to
the SDS ad to the User Manual)

7. LESSONS LEARNED AND CONCLUSION

The success of traceability analysis is highly
dependent on the availability and quality of the
software development life cycle documentation. In
theory, SRS should capture all the information
related to the functional requirements, e.g. the
inputs/process/outputs paradigm. However, in
practice, as happened in the project analyzed in this
case study, the data and the information required had
to be collected not only from the SRS, but from
throughout the life cycle process documents as well.
Furthermore, there was always be occasions when
the information required was either: not be there; be
tailored to a different audience; or not be entirely
suited to the purpose at hand. However, even when
suitable information is available, the ability to
augment this face-to-face communication was found
to be desirable, often essential, and even a
fundamental working practice. To account for the
context of end-use, research is needed to provide
flexible functional traceability, where trace can
dynamically mature to queries.

The multilayered nature of functional requirement
traceability problems are illustrated in this paper. A
new graphical model is proposed that captures a
complete set of functional characteristics which can
be located in the documentation of any phase of the
software development life cycle. For FTM,
automation would need to build upon research
carried out to date on modelling automation.

REFERENCES

Brown, P.G., (1991). QFD: Echoing the Voice of the
Customer, AT&T Technical Journal March/April
pp- 21-31.

Davis, AM., (1990). “Software Requirements:
Analysis and Specifications.” Prentice-Hall, Inc.

DeMarco T., (1979). “Structured Analysis and

- System Specification”. Prentice-Hall.

DOD-STD-2167 (1998). Defence System Software

- Development-DOD-STD-2167-A. US.A
Department of Defence Military Standard,
Washington D.C., Feb 29 1998,

Evans, M.W., 1989. “The Software Factor”. John

Wiley and Sons.

36

Hennell, M.A., 1987. “Requirement Specification &
Testing.” Edited by B. Littlewood. Blackwell

Scientific Publication.

IEEE 830. “IEEE Guide to Software Requirements
Specification,” 1998.

IEEE 610.12. “Standard Glossary of Software
Engineering Terminology, 1990.

Jackson, J., 1991. “4 key-phrase-based Traceability
Scheme, Tools and Techniques for Maintaining
Traceability during Design,” IEEE Colloquium,
Computing and Control Division, Digest No:
1991/180.

NUREG-0800: “Guidance on the Software Review
Process for Digital Instrumentation and Control
Systems.” US.A. Nuclear Regulatory
Commission (NRC). June 24, 1997.

Orlena C.Z., Anthony C.W., Finkelstein A., 2002.
“An Analysis of the Requirements Traceability
Problem”.

http://www.cs.ucl.ac.uk/
papers/rtprob.pdf

Palmer, J.D., 1990. Software Systems Engineering,
John Wiley and Sons, New York, N.Y., 1990

staff/A.Finkelstein/

