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Abstract: Many standards mandating verification of requirements correctness do not 
comprehensively state what information should be captured and used for verification and 
quality assurance activities. Therefore, a wide range of methods, from simplistic checklists to 
comprehensive formal methods, is used to verify correctness of system and software 
requirements. In this paper, a semi-formal method to verify functional requirements using a 
graphical logic-based structured architecture referred to as Graphical Requirement Analysis is 
proposed and illustrated with a case study. Its architecture allows to trace functional system 
requirements and to show correctness (non-ambiguity, consistency, completeness) of 
specifications. The support of graphical system engineering descriptions greatly facilitates to 
simulate requirement specifications and designs.  Such capability is believed by many to be 
an essential aspect of developing and assuring the quality of highly complex systems 
requiring high integrity.  
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1. INTRODUCTION 

To deal with inconsistent and incomplete requirements, many approaches to 
software requirement analysis have been developed over the last few years. 
According to a survey and assessment of conventional software V&V 
methods [1], requirements and design techniques consist of four major 
classes and various subclasses. These major classes of techniques and the 
total number of individual techniques are as follows: 
 
Formal methods are based on a translation of requirements into 
mathematical form. Eight different techniques were discovered. 
 
Semi-formal methods are based on the expression of requirement 
specifications in a special requirement language. Eleven different individual 
techniques were discovered.  
  
Reviews and Analysis  (informal method) are based on reviews by special 
personnel of the adequacy of the requirement specification according to a 
pre-established set of criteria and detailed checklists and procedures. Seven 
different techniques were identified.   
 
Tracing and Analysis Techniques of the requirements are based on matching 
of each unique requirement element to design elements and then to the 
elements of the implementation.   Two different techniques were identified.   
 
However, there are some common problems not fully tackled by most of 
these techniques: 
Formalizing the requirements (in total or in part) presents a new viewpoint. 
But formalization itself cannot guarantee to detect error, nor can it prove that 
tthhee  rreeqquuiirreemmeenntt  ssppeecciiffiiccaattiioonn  iiss  ccoorrrreecctt..    
Mathematical verification of requirements does nnoott  sseeeemm  ttoo  ggrreeaattllyy  ssiimmpplliiffyy  
ddeevveellooppmmeenntt..    
 
Testing a specification will nnoott  ffiinndd  aallll  tthhee  ppoossssiibbllee  eerrrroorrss. For instance, 
combinatory effects are unlikely to be encountered. 
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Also, the ultimate interrelationship of the various aspects of the specification 
may not be known until the implementation is complete.  
 
Graphical Requirement Analysis (GRA) is a framework that describes a 
function into graphical logic based with a structured form. To build a module 
(functional block) it requires identifying inputs, outputs and logic into 
multilevel hierarchy. The architecture of GRA methodology provides for 
functional system requirements traceability as well as correctness 
(ambiguity, consistency, completeness) of specification. GRA support of 
system-engineering descriptions in a graphical mode greatly facilitates 
simulating requirements specification and designs [2-3]. Such capability is 
believed by many to be an essential aspect of developing and assuring the 
quality of highly complex systems requiring high integrity. In this paper 
benefits of such a graphical functional module, and lessons learned from 
implementation is presented. 
 
Summary: In this section, we highlight some limitations of the V&V Requirements 
and Design Methods.  In section 2, we present the key aspects of the proposed GRA 
approach, in section 3, a case study of its implementation, and observations in 
section 4.  
 

2. GRAPHICAL REQUIREMENT ANALYSIS (GRA) 

The GRA framework [3-4] was proposed as a verification and integration 
tool for software and system specification as well as design specification. It 
aims to visualize functional specifications (input-process-output-interfaces) 
using a logic-based graphical framework. Figure 1 illustrates the 
framework's modelling philosophy for complex embedded systems. A 
software module performing a specific action is invoked by the appearance 
of its name in an expression; it may receive an input value and return a 
single value. When a module (function) is decomposed, sub-modules 
(functions) can be identified. The GRA framework's core concept is derived 
from the functional modelling methodology and a function's basic 
characteristics as defined in the standard IEEE 610.12 [5]. However, it also 
captures some system and software engineering approaches such as 
hierarchy theory, success failure mechanism, function block diagram 
paradigm, modular programming, and the COSMIC-FFP [6] functional size 
measurement procedure. 
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 Figure 1 Modelling philosophy of the GRA framework for complex embedded systems.  
 
1. Identifying a functional user requirement FUR (effort at requirement 
specification level) 
 
* Hierarchy theory and the success-failure paradigm are used to break a FUR 
into sub-modules (components) to facilitate design and development (design 
level effort). 
 
* Inputs/outputs and algorithms of modules are identified (architectural level 
effort). 
 
2. Defining the relationships in the hierarchies, which show connections 
between different nodes of a hierarchy or between nodes of two different 
hierarchies. The relations can be characterized as: 
* Logical (Boolean) connectivity relationships are used to show the redundancy and 
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connectivity between various components; in a logical relationship the states 
of the input and output nodes are binary. 
 
* Physical connectivity relationships refer to node relations described by 
some physical laws, and are mostly represented by a continuum of values; 
accordingly, physical relationships are analogue in nature. 
 
* Uncertain (fuzzy) connectivity relationships are appropriate when 
relationships are not fully known, or physical descriptions are either not 
available or uncertain. 
 
3. Defining the operators based on the relationships between sub-modules 
 
* Physical operators are presented in the GRA framework with a macro 
function such as mathematical, data/time, string, aggregate, data type 
conversion, array, system, graph, hierarchy and database functions. 
 
* Logical operators in an expression describe the type of action the 
expression should perform, or how the expression should compare or relate 
two values, e.g., arithmetical, text, comparison, and conditional or loop 
control operators. 
 
Summary: Graphical Requirement Analysis (GRA) is a methodology for 
translating textual functional requirements to logic based graphical format 
that may or may not be understood exactly, where the user is responsible for 
telling the developer what the functional requirements should do or vice 
versa (where the developer is responsible for verifying correctness of 
functional requirements). 

3.  CASE STUDY 
 

The detailed FUR descriptions for a pressure controller were transformed 
from textual to graphical form. This process captured functional traceability 
as well as data and component traceability analysis. To build the pressure 
control function within the GRA architecture, the following documents had 
to be reviewed to ensure that all related functions were indeed included (and 
traceable backward and forward): the "Software Requirements 
Specification" (SRS) to understand what the function was supposed to do, 
the "Software Design specification" (SDR) to identify the control blocks to  



A SEMI-FORMAL METHOD TO VERIFY CORRECTNESS OF 
FUNCTIONAL REQUIREMENTS SPECIFICATIONS OF 
COMPLEX EMBEDDED SYSTEM 

6

 
be used, the "Theory Manual" to understand the pressure control system 
procedure, and the "User Guide" to identify the system variables and the I/O 
of the pressure controller. The main purpose of this reviewing process is to 
identify typical characteristics of functional user requirements:  outputs, 
inputs (user inputs, system variables, other function outputs), arithmetical 
operators or algorithms describing how these input variables provide desired 
output values, and the control procedure defining the relationships between 
inputs, outputs and logical operators. Figure 2 illustrates the results of this 
review process for a FUR of a pressure control system: user inputs are 
identified from the SRS, system variables and the function's output are 
identified from the User Guide, algorithms are identified from the Software 
Design Specification, and the control procedure is identified from the Theory 
Manual. 
 

  
Figure 2.  Pressure Control Function Procedure 
 
The pressure control function detects the main steam line pressure X1, and 
adjusts the main steam line valve to achieve the pressure set point. Its 
implementation is composed of so-called control blocks, which are operators 
producing output parameter signals out of input parameter signals. Output 
signals can then be used as input parameters to other control blocks. Thus, a 
control procedure for a component action can be constructed by coupling 
control block operators in series and in parallel. Here, five control blocks are 
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used to compose the pressure controller. Their types and identification 
numbers are Integration-INT23, Subtraction-SUBTC56, First-order lag-
LAG26, weighted summation-WSUM59 and Addition-ADD3 yielding the 
Pressure controller-204. Figure 3 presents the functionality of the pressure 
control system within the GRA framework. It clearly shows all attributes of 
a Functional User Requirement. 

 
 
Figure 3. Verification of pressure control FUR within the GRA framework 
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detectable by GRA and by review and inspection. Review and Inspection 
criteria are selected from [7-8]. Software quality engineers, configuration 
managers, and project managers evaluating products and projects can all use 
the information provided within the GRA framework. Even though we 
emphasize here verification of software requirements specifications, 
software never runs alone, but always as part of a larger system consisting of 
other software products with which it has interfaces, of hardware, humans 
and workflow. The GRA framework captures both system and software 
specifications and design attributes. Therefore, it lends itself as an alternative 
method to establish the requirements' correctness of embedded systems. 
 
Table 1. Formal review and inspection versus GRA  
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