
1

A SEMI-FORMAL METHOD TO VERIFY
CORRECTNESS OF FUNCTIONAL
REQUIREMENTS SPECIFICATIONS OF
COMPLEX EMBEDDED SYSTEM

Nihal Kececi
Department of Computer Science
Université du Québec à Montréal
Software Engineering Management Research Laboratory
nkececi@lrgl.uqam.ca

Wolgang A. Halang
Computer Engineering and Real Time Systems
Faculty of Electrical Engineering FernUniversitat
Wolfgang.Halanf@FernUni-Hagen.de

Alain Abran
École de Technologie Supérieure - ETS
1100 Notre-Dame Ouest, Montréal, Canada H3C 1K3
abran.alain@uqam.ca

Abstract: Many standards mandating verification of requirements correctness do not
comprehensively state what information should be captured and used for verification and
quality assurance activities. Therefore, a wide range of methods, from simplistic checklists to
comprehensive formal methods, is used to verify correctness of system and software
requirements. In this paper, a semi-formal method to verify functional requirements using a
graphical logic-based structured architecture referred to as Graphical Requirement Analysis is
proposed and illustrated with a case study. Its architecture allows to trace functional system
requirements and to show correctness (non-ambiguity, consistency, completeness) of
specifications. The support of graphical system engineering descriptions greatly facilitates to
simulate requirement specifications and designs. Such capability is believed by many to be
an essential aspect of developing and assuring the quality of highly complex systems
requiring high integrity.

A SEMI-FORMAL METHOD TO VERIFY CORRECTNESS OF
FUNCTIONAL REQUIREMENTS SPECIFICATIONS OF
COMPLEX EMBEDDED SYSTEM

2

Key words: Requirements engineering; functional correctness, verification; quality; modular
programming; functional decomposition; modeling of complex embedded systems
specifications.

1. INTRODUCTION

To deal with inconsistent and incomplete requirements, many approaches to
software requirement analysis have been developed over the last few years.
According to a survey and assessment of conventional software V&V
methods [1], requirements and design techniques consist of four major
classes and various subclasses. These major classes of techniques and the
total number of individual techniques are as follows:

Formal methods are based on a translation of requirements into
mathematical form. Eight different techniques were discovered.

Semi-formal methods are based on the expression of requirement
specifications in a special requirement language. Eleven different individual
techniques were discovered.

Reviews and Analysis (informal method) are based on reviews by special
personnel of the adequacy of the requirement specification according to a
pre-established set of criteria and detailed checklists and procedures. Seven
different techniques were identified.

Tracing and Analysis Techniques of the requirements are based on matching
of each unique requirement element to design elements and then to the
elements of the implementation. Two different techniques were identified.

However, there are some common problems not fully tackled by most of
these techniques:
Formalizing the requirements (in total or in part) presents a new viewpoint.
But formalization itself cannot guarantee to detect error, nor can it prove that
tthhee rreeqquuiirreemmeenntt ssppeecciiffiiccaattiioonn iiss ccoorrrreecctt..
Mathematical verification of requirements does nnoott sseeeemm ttoo ggrreeaattllyy ssiimmpplliiffyy
ddeevveellooppmmeenntt..

Testing a specification will nnoott ffiinndd aallll tthhee ppoossssiibbllee eerrrroorrss. For instance,
combinatory effects are unlikely to be encountered.

A SEMI-FORMAL METHOD TO VERIFY CORRECTNESS OF
FUNCTIONAL REQUIREMENTS SPECIFICATIONS OF
COMPLEX EMBEDDED SYSTEM

3

Also, the ultimate interrelationship of the various aspects of the specification
may not be known until the implementation is complete.

Graphical Requirement Analysis (GRA) is a framework that describes a
function into graphical logic based with a structured form. To build a module
(functional block) it requires identifying inputs, outputs and logic into
multilevel hierarchy. The architecture of GRA methodology provides for
functional system requirements traceability as well as correctness
(ambiguity, consistency, completeness) of specification. GRA support of
system-engineering descriptions in a graphical mode greatly facilitates
simulating requirements specification and designs [2-3]. Such capability is
believed by many to be an essential aspect of developing and assuring the
quality of highly complex systems requiring high integrity. In this paper
benefits of such a graphical functional module, and lessons learned from
implementation is presented.

Summary: In this section, we highlight some limitations of the V&V Requirements
and Design Methods. In section 2, we present the key aspects of the proposed GRA
approach, in section 3, a case study of its implementation, and observations in
section 4.

2. GRAPHICAL REQUIREMENT ANALYSIS (GRA)

The GRA framework [3-4] was proposed as a verification and integration
tool for software and system specification as well as design specification. It
aims to visualize functional specifications (input-process-output-interfaces)
using a logic-based graphical framework. Figure 1 illustrates the
framework's modelling philosophy for complex embedded systems. A
software module performing a specific action is invoked by the appearance
of its name in an expression; it may receive an input value and return a
single value. When a module (function) is decomposed, sub-modules
(functions) can be identified. The GRA framework's core concept is derived
from the functional modelling methodology and a function's basic
characteristics as defined in the standard IEEE 610.12 [5]. However, it also
captures some system and software engineering approaches such as
hierarchy theory, success failure mechanism, function block diagram
paradigm, modular programming, and the COSMIC-FFP [6] functional size
measurement procedure.

A SEMI-FORMAL METHOD TO VERIFY CORRECTNESS OF
FUNCTIONAL REQUIREMENTS SPECIFICATIONS OF
COMPLEX EMBEDDED SYSTEM

4

 Figure 1 Modelling philosophy of the GRA framework for complex embedded systems.

1. Identifying a functional user requirement FUR (effort at requirement
specification level)

* Hierarchy theory and the success-failure paradigm are used to break a FUR
into sub-modules (components) to facilitate design and development (design
level effort).

* Inputs/outputs and algorithms of modules are identified (architectural level
effort).

2. Defining the relationships in the hierarchies, which show connections
between different nodes of a hierarchy or between nodes of two different
hierarchies. The relations can be characterized as:
* Logical (Boolean) connectivity relationships are used to show the redundancy and

2

3

1

5

4
3

5

4

2
1

OUTPUT

6

INPUT 1

INPUT 2

INPUT 3

User/operator inputs

Outputs of another function/module

Sensor outputs

Any hardware action INPUT n

2 2

3 3

1 1

5 5

4 4
3 3

5 5

4 4

2 2
1 1

OUTPUT

6 6

INPUT 1

INPUT 2

INPUT 3

User/operator inputs

Outputs of another function/module

Sensor outputs

Any hardware action INPUT n

K

M Internal I/O

External I/O

Interface

Physical and
Logical Operators

Analog / digital signal
variables

KK

MM Internal I/O

External I/O

Interface

Physical and
Logical Operators

Analog / digital signal
variables

A FUR

A Module

A sub module

A SEMI-FORMAL METHOD TO VERIFY CORRECTNESS OF
FUNCTIONAL REQUIREMENTS SPECIFICATIONS OF
COMPLEX EMBEDDED SYSTEM

5

connectivity between various components; in a logical relationship the states
of the input and output nodes are binary.

* Physical connectivity relationships refer to node relations described by
some physical laws, and are mostly represented by a continuum of values;
accordingly, physical relationships are analogue in nature.

* Uncertain (fuzzy) connectivity relationships are appropriate when
relationships are not fully known, or physical descriptions are either not
available or uncertain.

3. Defining the operators based on the relationships between sub-modules

* Physical operators are presented in the GRA framework with a macro
function such as mathematical, data/time, string, aggregate, data type
conversion, array, system, graph, hierarchy and database functions.

* Logical operators in an expression describe the type of action the
expression should perform, or how the expression should compare or relate
two values, e.g., arithmetical, text, comparison, and conditional or loop
control operators.

Summary: Graphical Requirement Analysis (GRA) is a methodology for
translating textual functional requirements to logic based graphical format
that may or may not be understood exactly, where the user is responsible for
telling the developer what the functional requirements should do or vice
versa (where the developer is responsible for verifying correctness of
functional requirements).

3. CASE STUDY

The detailed FUR descriptions for a pressure controller were transformed
from textual to graphical form. This process captured functional traceability
as well as data and component traceability analysis. To build the pressure
control function within the GRA architecture, the following documents had
to be reviewed to ensure that all related functions were indeed included (and
traceable backward and forward): the "Software Requirements
Specification" (SRS) to understand what the function was supposed to do,
the "Software Design specification" (SDR) to identify the control blocks to

A SEMI-FORMAL METHOD TO VERIFY CORRECTNESS OF
FUNCTIONAL REQUIREMENTS SPECIFICATIONS OF
COMPLEX EMBEDDED SYSTEM

6

be used, the "Theory Manual" to understand the pressure control system
procedure, and the "User Guide" to identify the system variables and the I/O
of the pressure controller. The main purpose of this reviewing process is to
identify typical characteristics of functional user requirements: outputs,
inputs (user inputs, system variables, other function outputs), arithmetical
operators or algorithms describing how these input variables provide desired
output values, and the control procedure defining the relationships between
inputs, outputs and logical operators. Figure 2 illustrates the results of this
review process for a FUR of a pressure control system: user inputs are
identified from the SRS, system variables and the function's output are
identified from the User Guide, algorithms are identified from the Software
Design Specification, and the control procedure is identified from the Theory
Manual.

Figure 2. Pressure Control Function Procedure

The pressure control function detects the main steam line pressure X1, and
adjusts the main steam line valve to achieve the pressure set point. Its
implementation is composed of so-called control blocks, which are operators
producing output parameter signals out of input parameter signals. Output
signals can then be used as input parameters to other control blocks. Thus, a
control procedure for a component action can be constructed by coupling
control block operators in series and in parallel. Here, five control blocks are

User Defined Unit

-Name Label Data

ALGORITHMS

INT (23)

LAG (26)

SUBTC (56)

WSUM (59)

INPUTS (USER)

Steady State Control-SSC

Inputs

C1(?) user desired jet pump
discharge line mass flow rate

C2 (?) rated pump motor
torque

INPUTS (SYSTEM)

X1 (kg/sec) current jet pump
discharge line mass flow rate

OUTPUT

X out=f (X1, C1, C2)

X out (N*m) re-circulation
pump motor torque to
achieve the desired mass
flow thought the jet pump
discharge line mass flow
rate.

Signal Variables
Parameters CHAN/JET

COMPONENTS

Control
Blocks Data

Re-
circulation

pump motor
torque

Component
Action Table

Variable
Values

User Defined Unit

-Name Label Data

ALGORITHMS

INT (23)

LAG (26)

SUBTC (56)

WSUM (59)

INPUTS (USER)

Steady State Control-SSC

Inputs

C1(?) user desired jet pump
discharge line mass flow rate

C2 (?) rated pump motor
torque

INPUTS (SYSTEM)

X1 (kg/sec) current jet pump
discharge line mass flow rate

OUTPUT

X out=f (X1, C1, C2)

X out (N*m) re-circulation
pump motor torque to
achieve the desired mass
flow thought the jet pump
discharge line mass flow
rate.

Signal Variables
Parameters CHAN/JET

COMPONENTS

Control
Blocks Data

Re-
circulation

pump motor
torque

Component
Action Table

Variable
Values

Signal Variables
Parameters

Signal Variables
Parameters CHAN/JET

COMPONENTS
CHAN/JET

COMPONENTS

Control
Blocks Data

Re-
circulation

pump motor
torque

Component
Action Table
Component
Action Table

Variable
Values
Variable
Values

User Guide

Table 6-4

Theory Manuel

APPENDIX N

Software Design
Specification

Software Requirement Specification

User Guide

Table 6-4

User Defined Unit

-Name Label Data

ALGORITHMS

INT (23)

LAG (26)

SUBTC (56)

WSUM (59)

INPUTS (USER)

Steady State Control-SSC

Inputs

C1(?) user desired jet pump
discharge line mass flow rate

C2 (?) rated pump motor
torque

INPUTS (SYSTEM)

X1 (kg/sec) current jet pump
discharge line mass flow rate

OUTPUT

X out=f (X1, C1, C2)

X out (N*m) re-circulation
pump motor torque to
achieve the desired mass
flow thought the jet pump
discharge line mass flow
rate.

Signal Variables
Parameters CHAN/JET

COMPONENTS

Control
Blocks Data

Re-
circulation

pump motor
torque

Component
Action Table

Variable
Values

User Defined Unit

-Name Label Data

ALGORITHMS

INT (23)

LAG (26)

SUBTC (56)

WSUM (59)

INPUTS (USER)

Steady State Control-SSC

Inputs

C1(?) user desired jet pump
discharge line mass flow rate

C2 (?) rated pump motor
torque

INPUTS (SYSTEM)

X1 (kg/sec) current jet pump
discharge line mass flow rate

OUTPUT

X out=f (X1, C1, C2)

X out (N*m) re-circulation
pump motor torque to
achieve the desired mass
flow thought the jet pump
discharge line mass flow
rate.

Signal Variables
Parameters CHAN/JET

COMPONENTS

Control
Blocks Data

Re-
circulation

pump motor
torque

Component
Action Table

Variable
Values

Signal Variables
Parameters

Signal Variables
Parameters CHAN/JET

COMPONENTS
CHAN/JET

COMPONENTS

Control
Blocks Data

Re-
circulation

pump motor
torque

Component
Action Table
Component
Action Table

Variable
Values
Variable
Values

User Guide

Table 6-4

Theory Manuel

APPENDIX N

Software Design
Specification

Software Requirement Specification

User Guide

Table 6-4

Theory Manuel

APPENDIX N

Theory Manuel

APPENDIX N

Software Design
Specification

Software Requirement Specification

User Guide

Table 6-4

A SEMI-FORMAL METHOD TO VERIFY CORRECTNESS OF
FUNCTIONAL REQUIREMENTS SPECIFICATIONS OF
COMPLEX EMBEDDED SYSTEM

7

used to compose the pressure controller. Their types and identification
numbers are Integration-INT23, Subtraction-SUBTC56, First-order lag-
LAG26, weighted summation-WSUM59 and Addition-ADD3 yielding the
Pressure controller-204. Figure 3 presents the functionality of the pressure
control system within the GRA framework. It clearly shows all attributes of
a Functional User Requirement.

Figure 3. Verification of pressure control FUR within the GRA framework

4. LESSON LEARNED

From this case study one can draw several conclusions beneficial in
addressing the problems of functional requirements correctness. Being based
on checking listed items and criteria, formal review and inspection
techniques are able to identify functional information at certain levels, but
not functionalities in full detail. Table 1 states the levels of information

Main steam-line valve area

X(1) (Pa) Steam-line pressure:
Physical system parameter

Cbcon1 (Pa): Pressure set-point
User-defined pressure set point

23

59

56

3

Cbcon2 (0/1): Area Fraction
User-defined nominal valve
open are fraction

26

3

5

4

2

1

Xout =f (X1, C1)

204

Main steam-line valve area

X(1) (Pa) Steam-line pressure:
Physical system parameter

Cbcon1 (Pa): Pressure set-point
User-defined pressure set point

2323

5959

5656

33

Cbcon2 (0/1): Area Fraction
User-defined nominal valve
open are fraction

2626

33

55

44

22

11

Xout =f (X1, C1)

204204

56

23

59

26

3

SUBTC

WSUM

LAG

ADD

INT

204 Pressure
Controller

1

2

3

4

5

P Err

Integral of P Err

∆A valve dem

∆A valve act

A valve

56

23

59

26

3

SUBTC

WSUM

LAG

ADD

INT

204 Pressure
Controller

5656

2323

5959

2626

33

SUBTC

WSUM

LAG

ADD

INT

204 Pressure
Controller

204204 Pressure
Controller

1

2

3

4

5

P Err

Integral of P Err

∆A valve dem

∆A valve act

A valve

11

22

33

44

55

P Err

Integral of P Err

∆A valve dem

∆A valve act

A valve

XoutXout = f (X1,C1,C2) = f (X1,C1,C2) Main steam-line valve area

X(1) (Pa) Steam-line pressure:
Physical system parameter

Cbcon1 (Pa): Pressure set-point
User-defined pressure set point

23

59

56

3

Cbcon2 (0/1): Area Fraction
User-defined nominal valve
open are fraction

26

3

5

4

2

1

Xout =f (X1, C1)

204

Main steam-line valve area

X(1) (Pa) Steam-line pressure:
Physical system parameter

Cbcon1 (Pa): Pressure set-point
User-defined pressure set point

2323

5959

5656

33

Cbcon2 (0/1): Area Fraction
User-defined nominal valve
open are fraction

2626

33

55

44

22

11

Xout =f (X1, C1)

204204

56

23

59

26

3

SUBTC

WSUM

LAG

ADD

INT

204 Pressure
Controller

1

2

3

4

5

P Err

Integral of P Err

∆A valve dem

∆A valve act

A valve

56

23

59

26

3

SUBTC

WSUM

LAG

ADD

INT

204 Pressure
Controller

5656

2323

5959

2626

33

SUBTC

WSUM

LAG

ADD

INT

204 Pressure
Controller

204204 Pressure
Controller

1

2

3

4

5

P Err

Integral of P Err

∆A valve dem

∆A valve act

A valve

11

22

33

44

55

P Err

Integral of P Err

∆A valve dem

∆A valve act

A valve

XoutXout = f (X1,C1,C2) = f (X1,C1,C2)

A SEMI-FORMAL METHOD TO VERIFY CORRECTNESS OF
FUNCTIONAL REQUIREMENTS SPECIFICATIONS OF
COMPLEX EMBEDDED SYSTEM

8

detectable by GRA and by review and inspection. Review and Inspection
criteria are selected from [7-8]. Software quality engineers, configuration
managers, and project managers evaluating products and projects can all use
the information provided within the GRA framework. Even though we
emphasize here verification of software requirements specifications,
software never runs alone, but always as part of a larger system consisting of
other software products with which it has interfaces, of hardware, humans
and workflow. The GRA framework captures both system and software
specifications and design attributes. Therefore, it lends itself as an alternative
method to establish the requirements' correctness of embedded systems.

Table 1. Formal review and inspection versus GRA

REFERENCES

1. Groundwater E.H., Miller L.A., Mirsky S.M. 1995. Guidelines for the Verification
and Validation of Expert System Software and Conventional Software. Survey and
Document of Expert System Verification and Validation Methodologies
NUREG/CR-6316, SAIC-95/1028. Vol.1-7.

 [8]

Data Flow Sequence Time

Interfaces Interfaces

Internal Output -

Internal Input -

Logic, Control Block Algorithms -

External Output Output

External Inputs Inputs

GRA Analysis
Graphical Description

GRA Analysis
Functional Description

REVIEW & INSPECTION
“Criteria”

t t

A SEMI-FORMAL METHOD TO VERIFY CORRECTNESS OF
FUNCTIONAL REQUIREMENTS SPECIFICATIONS OF
COMPLEX EMBEDDED SYSTEM

9

2. Kececi N., Abran A., “An Integrated Measure for Functional Requirements

Correctness”. IWSM2001, 11th International Workshop on Software Measurement,
August 28-29, 2001 Montréal (QC) Canada

3. Kececi, N., M. Modarres, and C. Smidts. “System Software Interface for Safety-

Related Digital I&C Systems”, European Safety and Reliability
Conference, TUM Munich- Garching, September 13-17, 1999.
http://www.lrgl.uqam.ca/team/membres.html

4. Kececi N., Abran A. “Analyzing, Measuring and Assessing Software Quality in a

Logic Based Graphical Model” 4th International Conference on Quality and
Dependability-QUALITA 2001, 22-23 March 2001 Annecy France.

5. Kececi N., M. Li, C. Smidts, C. "Function Point Analysis: An Application to a

Nuclear Reactor Protection System," International Topical Meeting on Probabilistic
Safety Assessment –PSA’99, Washington, DC, August 22-25, 1999.

6. IEEE Std. 610.12-1990. IEEE Standards Glossary of Software Engineering

Standards.

7. Abran, A., Desharnais, J.M., Oligny, S., St-Pierre, D. and Symons, C. “COSMIC-
FFP Measurement Manual, version 2.1”, Software Engineering Management
Research Laboratory, Université du Québec à Montréal, Montreal, Canada, 2001.
Downloadable at http://www.lrgl.uqam.ca/ffp.html

8. IEEE 830-1998, “IEEE Guide to Software Requirements Specification”.

9. IEEE 1012-1998, ”IEEE Standards for software Verification and Validation Plan”

