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PurposePurpose

¡¡ The primary purpose of this work is to  The primary purpose of this work is to  
develop a develop a methodologymethodology for “for “translating”translating”
functional user requirements into a graphic functional user requirements into a graphic 
form.  form.  

¡¡ The approach (GRA) provides The approach (GRA) provides 
communication language in two directions:communication language in two directions:
ll For user/system engineer: building For user/system engineer: building 

functional specifications functional specifications 
ll For software developer: verifying For software developer: verifying 

functional requirements  functional requirements  
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Functional specifications are 
important

¡¡ Several studies have shown that about 50% Several studies have shown that about 50% 
of software faults can be traced back to of software faults can be traced back to 
requirementsrequirements

¡¡ During the integration testing of Voyager During the integration testing of Voyager 
and Galileo spacecraft,and Galileo spacecraft,
ll 197 faults were characterized as the cause 197 faults were characterized as the cause 

of catastrophic failureof catastrophic failure
¡¡ 3 were coding errors 3 were coding errors 
¡¡ 194 were traced back to a problem in 194 were traced back to a problem in 

the specifications.the specifications.
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Why?Why?

¡¡ Experience has shown that some of the reasons  why Experience has shown that some of the reasons  why 
more errors tend to occur in the requirements phase are more errors tend to occur in the requirements phase are 
as followsas follows:

ll Misunderstanding / MisinterpretationMisunderstanding / Misinterpretation of of 
requirements.requirements.

ll Incomplete Incomplete requirementsrequirements: : customer usually can not customer usually can not 
describe  exactly what the software is supposed to describe  exactly what the software is supposed to 
do.do.

ll Software requirements written in natural language Software requirements written in natural language 
by the customer may beby the customer may be ambiguousambiguous, , inconsistent inconsistent 
and/or incomplete. and/or incomplete. 
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Requirements SpecificationRequirements Specification

Ø In general, there are two types of specification relevant 
to software system development.

Ø The first is the statement of the user’s view, in 
documents referred to as a requirement specification. 
These documents must be clearly validated by users 
since only they know what they want. 

Ø The second specification is drawn up from the software 
developer’s view, and as such it is a technical 
document, which restates the requirements in a form 
meaningful to software developers. 
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Requirement Analysis TechniquesRequirement Analysis Techniques

¡¡ Formal methodsFormal methods mathematical verification of mathematical verification of 
requirements (8):requirements (8):

Based on translation of requirements into ased on translation of requirements into 

mathematical form .mathematical form .

¡¡ SemiSemi--formal methodsformal methods requirement language requirement language 
analysis (11):analysis (11):

Based on an expression of requirement Based on an expression of requirement 

specifications in a special requirement language.specifications in a special requirement language.
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Requirement Analysis TechniquesRequirement Analysis Techniques

¡¡ Informal methodInformal method reviews and analysisreviews and analysis (7):(7):

¡¡ They are based on review  of the They are based on review  of the 
requirement specifications according to a requirement specifications according to a 
prepre--established set of criteria and a detailed established set of criteria and a detailed 
checklist and procedures by specialized checklist and procedures by specialized 
person.person.

¡¡ Requirement Requirement tracabilitytracability(2):(2):

¡¡ They are based on matching of unique They are based on matching of unique 
requirement elements to design elements requirement elements to design elements 
and then to the elements of implementationand then to the elements of implementation
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Problem sProblem s

Formalizing the requirementsFormalizing the requirements (in total or in part) (in total or in part) 
presents a new viewpoint presents a new viewpoint 

ll But formalization itself cannot guarantee to detect But formalization itself cannot guarantee to detect 
system error, nor can it prove that the software system error, nor can it prove that the software 
requirement specification is correct requirement specification is correct 

ll Mathematical verification of requirements does Mathematical verification of requirements does 
not seem to greatly simplify development.not seem to greatly simplify development.
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W h at is meant by  “CORRECT”W h at is meant by  “CORRECT”

¡ Program matches the specification.

¡ However the specification itself may not be 
correct!

¡ Correctness is concerned with whether the 
software meets user or system requirements.
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Graphical Requirement Analysis GRAGraphical Requirement Analysis GRA

¡ GRA is a modeling technique for complex 
embedded systems specifications

¡ It is designed from core concept of  

l Functional modeling 

l Object-oriented design

l Hierarchical model

l Cosmic Functional Size Measurement

l Success-failure paradigm



IFIP World Congress 2002 Stream 7: Distributed and Parallel Embedded Systems

Basic Characteristics of a FunctionBasic Characteristics of a Function

¡¡ A software module that performs a A software module that performs a 
specific actionspecific action is invoked by the is invoked by the 
appearance of its name in an appearance of its name in an 
expression, may expression, may receive inputreceive input value, value, 
and and return a single valuereturn a single value.

¡¡ When a function is decomposed, subWhen a function is decomposed, sub--
functions can be identifiedfunctions can be identified”” . . 

Source: [IEEE610.12][IEEE610.12]
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A FunctionA Function
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A Case Study 1:A Case Study 1:
Control System RequirementControl System Requirement

TRACTRAC-- M Control M Control 

System Software System Software 

Requirement Requirement 
SpecificationSpecification

TRACTRAC-- M Control M Control 

System Software System Software 

Design Design 
SpecificationSpecification

TRACTRAC-- M Input Data M Input Data 

Format SpecificationFormat Specification

User’s GuideUser’s Guide

TRACTRAC-- M Control M Control 

Procedure Procedure 

Theory Manuel Theory Manuel 
APPENDIX NAPPENDIX N

FURs-Functional User 
Requirements-

Collection and Identification of Collection and Identification of FURsFURs
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Formal Review and Inspection Formal Review and Inspection 
Software Functional User Requirements
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Formal Review and Inspection
Software Design Specification

3. 4.1 Built in Control System Data Structure

3.4.2 Level Controller – Control Block Type #(8); 
23, 26, 56, 59, 11, 54, 59, 56

3. 4.4 Flow Controller- Control Block Type # (5):  
23,26,56,59,56

3. 4.3 Pressure Controller—5 Control Block Type#(5) : 
23, 26, 56, 59, 56

CNSYS 4.1 CNSYS 4.1 
Vessel Water Level Vessel Water Level 

Control SystemControl System

CNSYS 4.2CNSYS 4.2
Core Flow ControllerCore Flow Controller

CNYSYS 4.3CNYSYS 4.3
Pressure ControllerPressure Controller



IFIP World Congress 2002 Stream 7: Distributed and Parallel Embedded Systems

Pressure Control ProcedurePressure Control Procedure
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Lesson Learned:  Limited Assurance using Formal Review MethodsLesson Learned:  Limited Assurance using Formal Review Methods



A Case Study (2)A Case Study (2)
Integration of System/Software Integration of System/Software 
SpecificationsSpecifications

Generic Westinghouse Reactor Protection Generic Westinghouse Reactor Protection 
System RequirementsSystem Requirements
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High Water Level TripHigh Water Level Trip

PRESURIZER HIGH PRESURIZER HIGH 
WATER LEVEL TRIPWATER LEVEL TRIP

INITIATING TRIPINITIATING TRIP MONITORING TRIPMONITORING TRIP

Requirement 35Requirement 35 Requirement 38Requirement 38Requirement 37Requirement 37Requirement 79Requirement 79



IFIP World Congress 2002 Stream 7: Distributed and Parallel Embedded Systems
© 21

Req.79

Req.87

Req.86

Req.38 Req.35 Req.37

Monitor
Actuator

INPUT/OUTPUT RELATION BETWEEN 
REQUIREMENTS

User/system User/system 
RequirementsRequirements

Trip FunctionTrip Function
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ConclusionConclusion

¡¡ The model providesThe model provides
ll efficient and accurate way to specify functional efficient and accurate way to specify functional 

requirements. requirements. 

ll a mapping from inputs to outputs into a multia mapping from inputs to outputs into a multi--level level 
detailed system and software functionalitydetailed system and software functionality. . 

ll a means by which to verify clarity and its a means by which to verify clarity and its 
presence/absence of functionality.presence/absence of functionality.
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ConclusionConclusion

¡¡ The model helps toThe model helps to
ll identify the interconnections between modules, identify the interconnections between modules, 

functional blocks, functions and subfunctional blocks, functions and sub--functionsfunctions

ll identify the subidentify the sub--processes and boundary/layer as processes and boundary/layer as 
well as inputs/outputs/reads/writes for the well as inputs/outputs/reads/writes for the 
measuring functional size of a software module.measuring functional size of a software module.
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ConclusionConclusion

¡¡ The model can be used as a measure ofThe model can be used as a measure of

¡¡Completeness Completeness 

¡¡Consistency Consistency 

¡¡Ambiguity Ambiguity 

¡¡TraceabilityTraceability
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ConclusionConclusion

¡¡ The model can be used forThe model can be used for

ll defining and  modeling embedded defining and  modeling embedded 
system requirementssystem requirements

ll verifying functional correctness of verifying functional correctness of 
embedded systems embedded systems 
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Future WorkFuture Work

¡¡ To design smart test cases using  To design smart test cases using  
GRA functional framework such GRA functional framework such 
asas
ll Scenario based test cases,Scenario based test cases,
ll Simulating functional specifications Simulating functional specifications 

based on the Probabilistic Risk based on the Probabilistic Risk 
Assessment (PRA) report of a Assessment (PRA) report of a 
critical system. critical system. 


