
DSML Success Factors and Their Assessment

Criteria

Abdelilah KAHLAOUI, Alain ABRAN, Éric LEFEBVRE

Abstract

Over the past few years, a number of Domain Specific Modeling Languages (DSMLs)

have been developed, and their use has increased in approaches such as Model Driven

Engineering (MDE), software factories and even MDA (Model Driven Architecture).

However, developing a DSML is still a challenging and time-consuming task. Issues to

tackle include the DSML development process, DSML quality and DSML model

verification and validation (V&V). Therefore, techniques and solutions are needed to

make DSML development easier and more accessible to software developers and domain

experts. This paper recommends a list of success factors to consider when developing or

choosing a DSML for those developing it, and for software developers and domain

experts interested in using it. The paper then maps these success factors to a set of

assessment criteria that can be used to assess DSML quality.

1. Introduction

Models play a central role in the Model Driven Engineering (MDE) approach, and they
constitute the main artifacts to develop in the software development life cycle. While they
have traditionally been used mainly for documentation purposes, models are considered
in MDE as first-class entities that can (and should) be used for code generation.

This use of models as inputs to code generation increasingly demands high-quality
domain-specific modeling languages capable of producing formal models that can be
processed by tools (i.e. generators, interpreters, compilers, etc.) [1]. Examples of the
quality characteristics required include formality, domain specificity and expressiveness,
among others.

Most of the existing modeling languages lack such characteristics. To help developers
have a clear idea of what makes a good DSML, and to help deciders choose the right
DSML to meet their needs, a set of assessment criteria for both functional and quality
attributes, as well as their related measures, should be set up.

In this paper, we provide a list of the success factors we consider important for domain-
specific modeling languages and propose a technique for converting them into
assessment criteria. The technique was designed to be generic, so that it can be used for
domains other than DSMLs.

This paper is organized as follows. Section 2 summarizes related work on the quality of
models and modeling languages. Section 3 identifies a set of success factors that should
be considered when building a DSML. Section 4 describes a technique for converting
success factors into assessment criteria. Finally, section 5 concludes the paper with a
discussion.

2. Related work

The subject of domain-specific modeling languages has been studied from a variety of
perspectives, among them DSML design, the DSML definition process, DSML building
tools and DSML quality. Three of these topics constitute a good starting point for the
study of DSML success factors. They are:

a. Quality of models: The effort in this domain has been focused on finding
solutions to improve the quality of models by proposing methods and techniques
which help build better-quality models. Here, a distinction is made between
studies which have focused on models built using the Unified Modeling Language
(UML) [2;3] and those which have extended their scope to cover conceptual
models in general, regardless of the modeling language used to build them.

Quality characteristics that have been found to be essential in the case of UML
can be directly applied to DSML. However, it is to be noted that these are not
enough, and do not take into account some of the specific aspects of DSMLs,
namely those characteristics related to domain specificity, models transformation
and code generation.

Similarly, it has been noted that the studies that have examined conceptual models
in general usually focus on specific categories of models, such as process models
[4;5], requirements models, data models [6;7], etc., and also that there is a need
for research to investigate the quality of models from a domain-specific
perspective.

b. Quality of modeling languages: Authors in this field have looked at the issue of
modeling language quality and assessment from a variety of perspectives. These
studies cover modeling language evaluation [8-10], the development of evaluation
methodologies [11] [12;13] and design principles for modeling languages [14].

Similarly, it has been noted that aspects related to the nature of domain-specific
modeling languages are missing.

c. DSML design experiences: In the last fifty years or so, hundreds of DMSLs have
been built. The experience accumulated in developing these languages can serve
as a good resource for identifying success factors. For example, lessons reported
by Wile [15] can be very easily transformed into success factors.

3. DSML Success Factors

3.1. Identification of success factors

The following success factors have been identified by combining the results of work
carried out in the three dimensions described in the previous section:

• Domain expertise: DSML development requires an in-depth knowledge of the
domain of interest, and domain knowledge facilitates the identification of domain
concepts, terminology, rules and constraints. This can be achieved using domain
analysis methods.

• Domain scoping: Defining the appropriate scope for the domain is a critical task,
as it determines the utility and usefulness of the DSML. If the scope is too broad,
DSMLs will be less specific and less expressive; if it is too narrow, the return on
investment might be low.

• Effective support tools: DSML development is difficult. It needs to be supported
by a set of tools that can automate some of the more tedious tasks in the DSML
development process (i.e. analysis, verification, validation, code generation, etc.).

• Effective meta-model: Developers should choose the meta-models used to define
their DSML carefully. An effective meta-model will make it easier to define
formal, unambiguous and expressive DSMLs. By contrast, an inappropriate meta-
model may have a negative impact on a DMSL’s quality.

• Effective underlying generator: Since the aim of domain-specific modeling is to
increase productivity by eliminating, or at least reducing, manual coding,
generators capable of transforming DSML models into code are required. Without
these transformation tools, DSML models will only be used for documentation
purposes.

• High level of abstraction: For a DSML to be effective and useful, it should define
abstractions that use domain experts’ vocabulary; in other words, it should raise
the level of abstraction to bring the implementation world closer to the
specification world. This can be done by defining languages based on domain
concepts rather than on code concepts.

• Domain engineering environment (DEE): Ideally, DSML development should
occur within a DEE. This is where all the core assets (i.e. reusable components,
architectures, patterns, design, etc.) should be developed. DEE include, among
others, domain engineers, domain experts, domain developers and DSML
designers. Their primary goal is to collect, organize and model domain
knowledge. The availability of rich domain knowledge is critical in identifying
concepts and defining DSML elements.

• Language development expertise: Defining a domain-specific language is not an
easy task. Skilled specialists in language development are required to define
convenient DSMLs, and a lack of expertise may lead to some awkward and
unfitted DSMLs. Any organization that decides in favor of in-house DSML
development should consider assigning (or possibly hiring) the appropriate staff
to accomplish the job;

• Viewpoint orientation: Viewpoints are a great way to separate and organize
stakeholder concerns, and a viewpoint-oriented DSML is most likely to fit the
needs of its users. Focusing on one perspective of the system at a time makes
DSML models more specialized and useful;

• Purpose-orientation: A DSML is a specialized language designed to deal with a
particular problem within a single domain;

• Domain expert support: Domain experts are the primary users of DSMLs. Their
praise for the DSML and their approval of it are critical to its adoption.
Developers of these languages should make sure that they provide a DSML that
fills domain experts’ needs.

• Effective DSML definition process: As with any engineering activity, DSML
development should be based on a set of well-defined processes, practices and
tools. The process describes the activities to perform and the artifact to deliver
when developing a DSML.

3.2. Categorization of success factors

In this section, a categorization scheme similar to that proposed by Wile [15] is given to
help differentiate among the success factors listed above (see Table 1).

• Organizational: related to the organizational culture (i.e. the organization’s
mission, values, beliefs, norms, etc.);

• Personal: related to human resources’ capabilities (i.e. competencies,
experiences, expertise, etc.);

• Social: related to social behaviors and relationships;
• Technical: related to technical issues, such as tools and technologies.

Table 1 Success Factor Classification

Success Factor Technical Organizational Social Personal

Domain expertise X
Domain scoping X
Effective supporting tools X
Effective meta-model X
Effective underlying generator X
Domain engineering environment X
High level of abstraction X
Language expertise X
Viewpoint orientation X
Purpose-orientation X
Domain expert support X
Effective DSML definition process X

4. Transformation Technique

To transform DSML success factors into criteria for DSML assessment, a four-step
technique has been designed (see

Figure 1). The technique is presented below, and the way in which it can be used to
extract DSML assessment criteria from the above DSML success factors is explained:

1. Identifying success factor impact: the existence (or non-existence) of a success
factor has a direct (or indirect) impact on the quality of the DSML. The
existence/absence of a success factor has a positive/negative impact and, usually,
affects one or more elements of the subject (here, the subject is a DMSL).

2. Identification of the EAI (Elements Affected by the Impact): identification of
the elements (i.e. some aspects related to the subject) affected by the success
factor impacts.

3. EAI attribute identification: For each EAI, we determine the features and
properties that characterize it and assist in its assessment. These features and
properties are then organized into categories to facilitate the selection of those that
affect the quality of the subject;

4. Selecting attributes that have a direct effect on quality: selection of the
attributes that affect the quality of the subject (i.e. internal quality, external
quality and quality in use as defined in the ISO/IEC 9126 models of the quality of
software products [16]).

Table 2 illustrates an application of this technique to derive assessment criteria for
DMSLs:

- From the list of DSML success factors identified in section 2, we identified a set
of positive and negative impacts related to the existence or the absence of these
factors;

- Then, we identified the elements affected by this impact for each success factor.
For a DMSL, we have identified four elements:

a. Abstract Syntax: defines the essential concepts and structures to be
modeled in a DSML;

b. Concrete Syntax: defines a notation (i.e. visual appearance) for the
concepts defined by the abstract syntax and how these abstract concepts
are realized in a concrete notation such as text or graphics;

c. Semantics: gives a meaning to the abstract concepts and their
relationships;

d. Views: defines a perspective from which a given aspect of a software
product can be described [1].

- Finally, we extracted a list of assessment criteria for each element, each time
taking into account the impact at hand.

DSML Success Factors

Identify the success factor impacts

Selecting attributes which have a direct effect

on quality

Evaluation criteria

Negative ImpactsPositive Impacts

Existence of the success

factor
Absence of the success factor

EAI Attribute Identification

Identification of the elements affected by the

impact (EAI)

Figure 1 Process of transformation of success factors into assessment criteria

Table 2 Success Factors and Assessment Criteria Mapping

Success Factors Positive Impact Negative Impact EAI Assessment Criteria
Domain expertise Good knowledge of domain

concepts, vocabulary and

terminology => Expressive

DSML

Incomplete domain knowledge

=> Inexpressive DSML, lacking

functionalities

Abstract syntax Expressiveness

Completeness

Domain scoping Fitting business needs Domain too broad or too narrow Abstract syntax

Concrete syntax

Simplicity

Suitability

Completeness

Effective

supporting tools
Faster, better and cheaper

DSML development

Costly DSML All elements Cost-effectiveness

Productivity
Effective meta-

model
Easy definition and upgrade of

expressive, high-level abstract

DSML.

Ambiguity

Poor semantics

Abstract syntax

Semantic

Formality

Expressiveness

Comprehensibility

Scalability
Effective

underlying

generator

Better exploitation of DSML

models

Models exclusively intended for

documentation purposes

Abstract syntax

Semantic

Utility

Transformability

Interpretability
Domain

engineering

environment

Specialized and dedicated

teams for DSML definition

Weak domain expertise All elements Supportability

Suitability

High level of

abstraction
Close to the real-world

separation of concerns

Platform-dependent DSML Abstract syntax

Simplicity

Expressiveness
Language

expertise
Coherent models, useful and

non-redundant functionality.

Incoherent models’ useless,

redundant functionalities

All elements Uniqueness

Coherence
View point

orientation
Specialized DSMLs Some stakeholders may be

neglected

Views Utility

Suitability
Purpose-

orientation
Focused DSMLs Incoherent models Views Consistency

Utility

Domain expert

support
More support and fast adoption Resistance and sabotage All elements Usability

Utility

Effective DSML

definition process
Well-established practices for

DSML definition

Individual approaches’

unintended results

All elements Scalability

Maintainability

5. Discussion

While in the past few years, a number of DSMLs have been developed and their use has
increased in approaches, such as Model Driven Engineering (MDE) and MDA (Model
Driven Architecture), there has been little work done on the quality of such languages.
The motivation for the work reported here was to identify DSML assessment criteria that
should be built in by those developing these languages, and that should be looked for by
those software developers and domain experts interested in using them.

On the basis of success factors documented in the literature for DSMLs, we have
proposed a technique to convert them into assessment criteria.

The list of DSML success factors and their corresponding assessment criteria is aimed at
helping evaluators and decision makers assess these languages. Evaluators in other areas
of knowledge may also use the success factor assessment criteria conversion technique to
identify criteria that help them assess their products.

We do not claim that the list of success factors and assessment criteria presented in this
paper is exhaustive. More effort is needed to investigate its completeness. Case studies
are also required to verify and validate the relevance of these factors and assessment
criteria in industrial contexts.

Bibliography

[1] Greenfield, J., & Short, K. (2004). Software factories: assembling applications

with patterns, models, frameworks, and tools: Wiley Pub.
[2] Lange, C. F. J. (2006). Improving the quality of UML models in practice
http://doi.acm.org/10.1145/1134285.1134472 in Proceeding of the 28th International

Conference on Software Engineering (pp. 993-996). Shanghai, China ACM
Press.

[3] Unhelkar, B. (2005). Verification and validation for quality of UML 2.0 models.
Hoboken, N.J.: John Wiley.

[4] List, B., & Korherr, B. (2006). An evaluation of conceptual business process
modelling languages.

http://doi.acm.org/10.1145/1141277.1141633 in Proceedings of the 2006 ACM

Symposium on Applied Computing (pp. 1532-1539). Dijon, France ACM Press.
[5] Krogstie, J., Sindre, G., & Jørgensen, H. (2006). Process models representing

knowledge for action: a revised quality framework. European Journal of

Information Systems, 15, 91-102.
[6] Moody, D. L. (2005). Theoretical and practical issues in evaluating the quality of

conceptual models: current state and future directions.
http://dx.doi.org/10.1016/j.datak.2004.12.005 Data Knowl. Eng. , 55 (3), 243-276
[7] Moody, D. L., Sindre, G., Brasethvik, T., & S\&\#248;lvberg, A. (2003).

Evaluating the quality of information models: empirical testing of a conceptual
model quality framework, in Proceedings of the 25th International Conference on

Software Engineering (pp. 295-305). Portland, Oregon IEEE Computer Society.
[8] Nysetvold, A., & Krogstie, J. Assessing Business Processing Modeling

Languages Using a Generic Quality Framework. In Proceedings of the CAiSE '05

Workshops, Vol. 1, Tenth International Workshop on Exploring Modeling

Methods in Systems Analysis and Design, J. Castro and E. Teniente (eds.), FEUP

Edições, Porto, 2005, pp. 545-556.
[9] Krogstie, J. (2003). Evaluating UML using a generic quality framework In UML

and the unified process (pp. 1-22): Idea Group Publishing.
[10] Krogstie, J., & Arnesen, S. Assessing Enterprise Modeling Languages using a

Generic Quality Framework. Information Modeling Methods and Methodologies,
63-79.

[11] Morris, S., & Spanoudakis, G. (2001). UML: an evaluation of the visual syntax of

the language. Paper presented at the System Sciences, 2001. Proceedings of the
34th Annual Hawaii International Conference on System Sciences (HICSS-34),
ed. R.H. Sprague, Jr. (IEEE Computer Society, 2001)..

[12] Bobkowska, A. (2005). Modeling pragmatics for visual modeling language
evaluation.

http://doi.acm.org/10.1145/1122935.1122950 in Proceedings of the 4th International

Workshop on Task Models and Diagrams (pp. 75-78). Gdansk, Poland, ACM
Press.

[13] Bobkowska, A. (2005). A Methodology of Visual Modeling Language
Evaluation. In SOFSEM 2005: Theory and Practice of Computer Systems, LNCS

3381: Springer.
[14] Paige, R. F., Ostroff, J. S., & Brooke, P. J. (2000). Principles for modeling

language design. Information and Software Technology, 42(10), 665-675.
[15] Wile, D. (2004). Lessons learned from real DSL experiments. Science of

Computer Programming, 51(3), 265-290.
[16] ISO/IEC 9126:1999. Software Engineering – Product quality. Int. Org. for

Standardization, ISO 9126, 1999.

