
prove.
,2-11

'8 and
Jf the
180ft.

:tured
981).

, "An
gs of

;ility,

lSure-
>4-73

ring,"

;ware
itute,

Soft-
neer.

iruy-

ment
ware
[arch

.ally
lSa
~th
SEI
mse
'ISO
sive

sys.
Ion
SEI
'wc,
Igy-

;ion
.ing
md
:ac-
19i-
ent
Ive-
ing
led

l
use of standards of excellence for software engineering
practice.

The institute explores promising solutions to poten-
tially significant problems, selects the best candidate solu-
tions, and works on them to determine their value. ln some
cases, the SEI works to overcome the limitations that pre-
vent a solution from being of general use in the software
community. Finally, the SEI moves mature solutions of
proven value into widespread use; examples include the
Capability Maturity Model@ for Software (SW-CMM@),
described below, and a model curriculum for a master's
degree program in software engineering that has been
adopted by universties across the country.

SEI activities are grouped into two principal areas: soft-
ware engineering management practices and software
engineering technical practices.

SOFTWARE ENGINEERING MANAGEMENT PRACTICES

The ability to effectively manage the acquisition, develop-
ment, and evolution of software-intensive systems is a cri-
tical requirement of software-intensive sys~ms and thus
is emphasized in the SEI program of work. Success in
this area increases the ability of software engineering
organizations to predict and control quality, schedule,
cost, cycle time, and productivity when acquiring, build-
ing, and enhancing software systems.

The most widely known aspect of this work is Capabil-
ity Maturity Modeling@. Capability Maturity Models
(CMMs) provide structured, integrated collections of best
practices that organizations can use to improve their per-
formance. The SW-CMM is a model for assessing the
maturity of the software processes of an organization
and for identifying the practices that are required to
increase the maturity of these processes. The SW-CMM
has become a de facto standard for assessing and improv-
ing software processes and has been adopted by more than
5,000 organizations worldwide.

The CMM approach for improvement has been applied
to disciplines other than software development, such as
systems engineering and integrated product and process
development (IPPD). As organizations have sought a way
to successfully and easily integrate their CMM-based
improvement activities, the SEI has collaborated with gov-
ernment and industry organizations to develop a means of
integrating maturity models and their associated products
(training, assessment instruments, etc.). The Capability
Maturity Model Integration (CMMIsM) project, sponsored
by the Office of the Under Secretary of Defense and the
National Defense Industrial Association (NDIA), is inte-
grating several CMMs into a more general framework to
support enterprisewide improvement.

The SEI has also developed the Team Software
ProcessSM, which enables development teams to reduce
system-test time and increase software quality by an order
of magnitude.

SOFTWARE ENGINEERING TECHNICAL PRACTICES

SEI technical work aims to improve the ability of software
engineers to analyze, predict, and control selected func-

--

SOFTWARE ENGINEERING BODY OF KNOWLEDGE PROJECT 1401

tional and nonfunctional properties of software systems.
Work is primarily focused on defining, maturing, and
accelerating the adoption of improved technical engineer-
ing knowledge, processes, and tools.

One SEI initiative concentrates on "survivable sys-
tems"-ensuring that appropriate technology and prac-
tices are used to prevent successful attacks on networked
systems and to limit the damage caused by successful
attacks. This work builds on SEI experience with the
CERT@ Coordination Center (formerly the Computer
Emergency Response Team), which counters intrusions
into systems connected to the Internet, identifies security
flaws that permit intrusions, and works to eliminate those
flaws.

Another SEI initiative focuses on techniques for pre-
dicting the effect of software architecture decisions on a
set of desirable system properties. Still others address a
variety of technical issues: identifying and exploiting com-
monalities that exist across software systems in particular
domains, evaluating and integrating commercial off-the-
shelf (COTS) components into mission-critical systems
while preserving key qualities, and performing incremen-
tal and online system upgrades even in the presence of
faults caused by the upgrades. .

The SEI believes that software organizations will con-
tinue to be expected to do more with less. The SEI program
will continue to concentrate on key software engineering
problems and on facilitating the widespread adoption of
improvements that bring management discipling and
engineering insight to the practice of software engineering.

STEPHEN E. CROSS

SEI

SOFTWARE ENGINEERING BODY
OF KNOWLEDGE PROJECT

Identifying an agreed body of knowledge is an essential
step in moving software engineering from an ideal to a
recognized profession. Sponsored by the IEEE Computer
Society.and managed by the Université du Québec à
Montréal, the Software Engineering Body of Knowledge
(SWEBOK) project is developing a guide to the body of
knowledge of software engineering. A trial version of the
guide is currently available without charge at http://
www.swebok.org. Following an additional two years of
trial usage and feedback, the project will revise the Guide.

This article will begin by discussing the desired
characteristics of a profession for software engineering.
Then the objectives and contents of the Guide are
described. Finally, the SWEBOK project and its future
will be described.

A SOFTWARE ENGINEERING PROFESSION

ln spite of the millions of software professionals worldwide
and the ubiquitous presence of software in our society,
software engineering has not yet reached the status of a
legitimate engineering discipline and a recognized profe-
ssion. ln his Pulitzer-prize-winning book on the history

1402 SOFTWARE ENGINEERING BODY OF KNOWLEDGEPROJECT

ofthe medical profession in the Unites States, Starr (1982)
states that:

The legitimization of professional authority involves three dis-
tinctive daims: first, that the knowledge and competence ofthe
professional have been validated by a community of his or her
peerSj second, that this consensually validated knowledge
rests on rational, scientific grounds; and third, that the profe-
ssional'sjudgment and advice are oriented toward a set ofsub-
stantive values, such as health. These aspects of legitimacy
correspond to the kinds of attributes-collegial, cognitive and
moral-usually cited in the term "profession."

Starr's description notes the importance of consensually
validated knowledge. How is that knowledge to be applied?
Gary Ford and Norman Gibbs (1996) studied several
recognized professions including medicine, law, engineer-
ing and accounting. They concluded that an engineering
profession is characterized by several components:

. An initial professional education in a curriculum
validated by society through accreditation. Registration of fitness to practice via voluntary cer-
tification or mandatory licensing. Specialized skill development and continuing profe-
ssional education. Communal support via a professional society. A commitment to norms of conduct often prescribed
in a code of ethics

The SWEBOK project was formed to address the first three
of these components. Articulating a body of knowledge is
an essential step toward developing a profession because
it represents a broad consensus regarding what a software
engineering professional should know. Without such a con-
sensus, no licensing examination can be validated, no cur-
riculum can prepare an individual for an examination, and
no criteria can be formulated for accrediting a curriculum.
The development of the consensus is also prerequisite to
the adoption of coherent skill development and continuing
professional education programs in organizations.

ORGANIZATION OF THE SWEBOK GUIDE

The purpose of the SWEBOK Guide is to provide a consen-
sually validated characterization of the bounds of the soft-
ware engineering discipline and to provide a topical access
to the body of knowledge supporting that discipline. The
body of knowledge is subdivided into ten knowledge areas
and the descriptions of the knowledge areas are designed
to discriminate among the various important concepts,
permitting readers to find their way quickly to subjects
of interest. Upon finding a subject, readers are referred
to key papers or book chapters selected because they suc-
cinctly present the knowledge.

The content of the SWEBOK Guide is markedly differ-
ent from computer science. Just as electrical engineering
is based upon the science of physics, software engineering
should be based on computer science. ln both cases,
though, the emphasis is necessarily different. Scientists

extend our knowledge of the laws of nature while engi-
neers apply those laws of nature to build useful artifacts,
under a number of constraints. Therefore, the emphasis of
the guide is placed on the construction of useful software
artifacts. .

Many important aspects of information technology are
not covered in the guide, for example, specific program-
ming languages, relational databases and networks. This
is a consequence of an engineering-based approach. ln aIl
fields-not only computing-the designers of engineering
curricula have realized that specific technologies are
replaced much more rapidly than the engineering work
force. An engineer must be equipped with the essential
knowledge that supports the selection of the appropriate
technology at the appropriate time in the appropriate
circumstance. For example, software systems might be
built in FORTRAN using functional decomposition or in
C++ using object-oriented techniques. The techniques
for integrating and configuring instances of those systems
would be quite different. But, the principles and objectives
of configuration management remain the same. The
SWEBOK Guide therefore does not focus on the rapidly
changing technologies, although their general principles
are described in relevant knowledge areas.

Therefore, the SWEBOK Guide does not cover aH
knowledge that is essential to the practice of software engi-
neering. Practicing software engineers will need to know
many things about computer science, project management
and systems engineering-to name a few-that fall out-
side the body of knowledge characterized by this guide.
However, stating that this information should be known
by software engineers is not the same as stating that this
knowledge falls within the bounds of the software engi-
neering discipline. The SWEBOK Guide characterizes
only the body of knowledge falling within the scope of
software engineering.

The emphasis on engineering practice leads the
SWEBOK Guide toward a strong relationship with the
normative literature. Most of the computer science, infor-
mation technology and software engineering literature
provides information useful to software engineers, but a
relatively smaH portion is normative. A normative docu-
ment prescribes what an engineer should do in a specified
situation rather than providing information that might be
helpful. The normative literature is validated by consen-
sus formed among practitioners and is concentrated in
standards and related documents. From the beginning,
the SWEBOK project was conceived as having a strong
relationship to the normative literature of software engi-
neering. The two major standards bodies for software engi-
neering (IEEE Software Engineering Standards
Committee and ISOIIEC JTC1/SC7) are represented in
the project. [See INTERNATIONALSTANDARDSORGANIZATIONS,

SOFl'WAREENGINEERINGSTANDARDS,INSTlTUTEOF ELECI'RlCAL

ANDELECTRONICSENGINEERS(IEEE).] Ultimately, it is hoped
that software engineering practice standards will contain
principles trace able to the SWEBOK Guide. To this end,
ISOIIEC JTCl/SC7 has taken steps to initiate the adoption
of the Trial Version of the Guide as an ISOIIEC Technical
Report.

~

T
Objectives of the SWEBOK Project

The SWEBOK Guide should not be confused with the body
of knowledge itself. The body of knowledge already exists
in the published literature. The purpose of the guide is to
describe what portion ofthe body ofknowledge is generally
accepted, to organize that portion, and to provide a topical
access to it.

The Guide to the Software Engineering Body of Knowl-
edge (SWEBOK) was established with the following five
objectives:

1. Promote a consistent view of software engineering
worldwide.

2. Clarify the place-and set the boundary-of soft-
ware engineering with respect to other disciplines
such as computer science, project management, com-
puter engineering, and mathematics.

3. Characterize the contents of the software engineer-
ing discipline.

4. Provide a topical access to the software engineering
body of knowledge.

5. Provide a foundation for curriculum developJ.1lent
and individual certification and licensing material.

A development process that has engaged approximately
500 reviewers from 42 countries supported the first of
these objectives, the consistent worldwide view of software
engineering.

The second of the objectives, the desire to set a bound-
ary, motivated the fundamental organization of the
SWEBOK Guide. The material that is recognized as being
within software engineering is organized into 10 knowl-
edge areas:

. Software requirements

. Software design

. Software construction

. Software testing

. Software configuration management

. Software engineering management. Software engineering process

. Software engineering tools and methods. Software maintenance

. Software quality

Each of the 10 knowledge areas is described in a chapter of
the SWEBOK Guide.

ln establishing a boundary for software engineering, it
is also important to identify the other disciplines that
share a boundary and often a common intersection with
software engineering. To this end, the guide also recog-
nizes seven related disciplines:

. Cognitive sciencE1s.and human factors'. Computer engineering. Computer science. Management and management science

... -

SOFTWAREENGINEERINGBODY OF KNOWLEDGE PRO/ECT 1403

. Mathematics. Project management. Systems engineering

Of course, software engineers should know material from
these fields. However, it is not an objective of the SWEBOK
Guide to characterize the knowledge of the related disci-
plines.

Hierarchical Organization of the Guide

The organization of the knowledge area descriptions or
chapters, shown in Figure 1, supports the third of the pro-
ject's objectives--a characterization of the contents of soft-
ware engineering.

The SWEBOK Guide uses a hierarchica1 organization
to decompose each knowledge area into a set of topies
with recognizable labels. A two- or three-Ievel breakdown
provides a reasonable way to find topies of interest. The
guide treats the selected topies in a manner compatible
with major schools of thought and with breakdowns gener-
ally found in industry and in software engineering litera-
ture and standards. The breakdowns of tapies do not
presume particular application domains, business uses,
management philosophies, development methods, and so
forth. The extent of each topic's description is only that
needed to understand the generally accepted nature of
the topies and for the reader to successfully find reference
material. After all, the body of knowledge is found in the
reference materials, not in the guide itself.

References to the Literature

To provide a topical access to the knowledge-the fourth of
the project's objectives--the SWEBOK Guide identifies
reference materials for each knowledge area including
book chapters, refereed papers, or other well-recognized
sources of authoritative information. Each knowledge
area description also includes a matrix that relates the

Breakdown

of Topics

Matrix of Topics
and Reference

Materials

Reference
Materials

rn
Topie

Descriptions

Referencesto
Related

Disciplines

Oassiftcation
by Bloom's
fuonomy

Figure 1. Organization of knowledge areas.

1404 SOFTWAREENGINEERING BODY OF KNOWLEDGE PROJECT

reference materials to the listed topics. The total volume of
cited literature is intended to be suitable for mastery
through the completion of an undergraduate education
plus four years of experience.

It should be noted that the guide is not comprehensive
in its citations. Much material that is both suitable and
excellent is not referenced. Materials were selected be-
cause they are written in English, readily available, easily
readable, and-taken as a whole-provide coverage of the
described topics.

Depth of Treatment

ln its depth of treatment, the SWEBOK guide follows
an approach that supports the firth of the project's
objectives-providing a foundation for curriculum deve-
lopment, certification, and licensing. It applies a criterion
of generally accepted knowledge, which is distinguished
from advanced and research knowledge (on the grounds
of maturity) and from specialized knowledge (on the
grounds of generality of application). A second definition
of generally accepted cornes from the PMI: "The generally
accepted knowledge applies to most projects most of the
time, and widespread consensus validates its value and
effectiveness (Project Management Institute, 1996).

However, generally accepted knowledge does not imply
that one should apply the designated knowledge uniformly
to aIl software engineering endeavors-each project's
needs determine that-but it does imply that competent,
capable software engineers should be equipped with this
knowledge for potential application. Additionally, the
knowledge area descriptions are somewhat forward-
looking-the guide considers not only what is generally-
accepted today but also what could be generally accepted
in three to five years.

Ratings

As an aid notably, to curriculum developers, and in sup-
port of the project's firth objective, the SWEBOK guide
rates each topic with one of a set of pedagogical categories
commonly attributed to Benjamin Bloom (1956). The con-
cept is that educational objectives can be classified into six
categories representing increasing depth: knowledge,
comprehension, application, analysis, synthesis, and
evaluation.

References to Related Disciplines

The knowledge area descriptions may also contain refer-
ences to subjects within the seven related disciplines.

OVERVIEW OF THE SWEBOK GUIDE

Figure 2 maps the 10 knowledge areas and the important
topics incorporated within them. The tirst five knowledge
areas are presented in tradition al waterfall life-cycle
sequence. The subsequent knowledge areas are presented
in alphabetical order. This is identical to the sequence in
which they are presented in the SWEBOK Guide. Brief
summaries of the knowledge area descriptions appear in
the next section.

Software Requirements

A requirement is defined as a property that must be exhib-
ited in order to solve some problem of the real world.

The first knowledge subarea introduces the require-
ments engineering process, orienting the remaining five
topics and showing how requirements engineering dove-
tails with the overall software engineering process. It
describes process models, process actors, process support
and management and process quality improvement.

The second subarea is requirements elicitation, which is
concerned with where requirements corne from and how
the requirements engineer can collect them. It includes
requirement sources and techniques for elicitation.

The third subarea, requirements analysis, is concerned
with the process of analyzing requirements to:

. Detect and resolve conflicts between requirements. Discover the bounds of the system and how it must
interact with its environment. Elaborate system requirements to software require-
ments.

Requirements analysis includes requirements classifica-
tion, conceptual modeling, architectural design, require-
ments allocation, and requirements negotiation.

The fourth subarea is software requirements specifica-
tion. It describes the structure, quality and verifiability
of the requirements document. This may take the form of
two documents, or two parts of the same document with
different readership and purposes. The tirst document is
the system requirements definition document, and the sec.
ond is the software requirements specification. The
subarea also describes the document structure and stan-

dards and document quality.
The firth sub-area is requirements validation, whose

aim is to pick up any problems before resources are com-
mitte.d to addressing the requirements. Requirements
validation is concerned with the process of examining the
requirements document to ensure that it defines the right
system (Le., the system that the user expects). It is subdi-
vided into descriptions of the conduct of requirements
reviews, prototyping, model validation, and acceptance
tests. .

The last sub-area is requirements management, which
is an activity that spans the whole software life cycle. It
is fundamentally about change management and the
maintenance of the requirements in astate that accurately
mirrors the software to be, or that has been, built. It
includes change management, requirements attributes
and requirements tracing (see REQUIREMENTSMANAGE-
MENT).

Software Design
Î

Software design is an activity that spans the whole soft-
ware life-cycle (see DESIGN).The knowledge area is divided
into six subareas.

The tirst one presents the basic concepts and notions
that form an underlying basis to the understanding of
the role and scope of software design. These are general

..-
---..---...--...

-~

Guide to the Software Engineering Body of Knowledge
(Version 0.9)

Requirement r SoftwareDesign r = ;;;pt;;:d Management of

tO-

...................

r- Softwarea"alityEngineering
BasicConcepts

-
the SCM Process Management

Engineering Software Toois 1 ConceptsProcess Definitions ProcessConcepts
""""""",,,0 --- T

Maintenance Software ProcessIProject Process

r- Definition &Requlrements Key Issues ln
1

........eo....-. Process Management Infrastructure _Oeo91T_ PlanningforQuallty- TestLevels ConfigurationElicitation SoftwareDesign Identification _eo....-."""""""""""'"

T_ 1 r Technlqu9s

- KeyIssuesln Software ProcessSoftware Engineering Measurement _T_T_ RequiringTwo or
Requirement SoftwareStructure .

L
Maintenance Software Measurement More People

Test Techniques Configuration -..............
Anatysis andArchitecture Control T_

-"""""""'" Techniquesfor ProcessDefinition -- r-SupporttoOther- Maintenance _T_ Technlqu&s
...

Software Design

1

Fom1IIConIINction
Software

Requirements Test-Related SoftMre0u8IIy TooII
C> Specification

QualityAnatysis - Measures Configuration Qualitative Process

_ .J TestlngSpecial to
VI And Fvs:ahlAtinn Status Aooounting AnatysisV....."""""""'" _T_ SQAorV&.V- Process --

Requlrements Software Design
f.

Structuring for ManagingtheTest
Software

Implementation
T

Jr- DefectFindlng
Validation Notations ,- Process Configuration

andChange -- TechniquesAudlting T__eo....-. MI8ceI81eouITootM_ -
L. Software Design

1

- °
Requirements
Management

Strat&giesand -Methods """"eo....-. Dellvery ---
Useof Extema!

M- FOfmIIIIMetI'Iod8

-"""""""'"-- _M_
FonnII Conttructlon ---- -
""""eo....-.--

(a) (b) (c) (d) (e) (1) (g) (h) (1) 0)

Figure 2. Breakdown ofknowledge areas in the SWEBOKguide. (@ IEEE-Stoneman (version 0.9)-February 2001.)

1406 SOFTWAREENGINEERING BODY OF KNOWLEDGE PROJECT

concepts, the context of software design, the design process
and the enabling techniques for software design.

The second subarea presents the key issues of software
design. They include concurrency, control and handling of
events, distribution, error and exception handling, inter-
active systems and persistence.

The third subarea is software structure and architec-
ture, in particular architectural structures and view-
points, architectural styles, design patterns, and finally
familles of programs and frameworks.

The fourth subarea describes software design quality
analysis and evaluation. While a whole knowledge area
is devoted to software quality, this subarea presents the
OOpiesmore specifically related 00 software design. These
aspects are quality attributes, quality analysis, and
eValuation tools and measures.

The firth one is software design notations, which are
divided inOOstructural and behavioral descriptions.

The last subarea covers software design strategies and
methods. First, general strategies are described, followed
by function-oriented methods, then object-oriented meth-
ods, data-structure centered design and a group of other
methods, such as formal and transformational methods.

Software Construction

Software construction is a fundamental act of software

engineering: the construction of working meaningful soft-
ware through a combination of coding, validation, and
(unit) testing.

The first and most important method of breaking the
subject of software construction inOOsmaller units is 00
recognize the four principles that most strongly affect
the way in which software is constructed. These principles
are the reduction of complexity, the anticipation of di ver-
sity, the structuring for validation and the use of external
standards.

A second and less important method of breaking the
subject of software construction inOOsmaller units is ta
recognize three styles/methods of software construction,
namely, linguistic, formal and visual.

A gynthesis ofthese two views is presented and techni-
ques are classified by principle and approach.

Software Testing

Software testing consists of the dynamic verification of the
behavior of a program on a finite set of test cases, suitably
selected from the usually infinite executions domain,
against the specified expected behavior (see TESTMANAGE-
MENTANDORGANIZATION).It includesfivesubareas.

It begins with a description of basic concepts. First, the
testing terminology is presented, then the theoretical
foundations of testing are described, with the relationship
of testing 00 other activities.

The second subarea is the test levels dealing with test-
ing corresponding 00 levels of integration as weIl as testing
for specific objectives.

The third subarea describes the test techniques them-
selves. A first category describes tests based on some spe-
cified base of material; a second category describes tests
that are implemented in ignorance of the implementation.

A discussion of how to select and combine the appropriate
techniques is presented.

The fourth subarea covers test-related measures. The
measures are grouped inOOthose related 00the evaluation
of the program under test and the evaluation of the tests
performed.

The last subarea describes the management specific00
the test process. It includes management concerns and
the test activities.

Software Maintenance

Once in operation, anomalies are uncovered, operating
environments change, and new user requirements surface
(see MAINTENANCE).The maintenance phase of the life cycle
commences upon delivery but maintenance activities occur
much earlier. The software maintenance knowledge area
is divided inOOfour subareas.

The first one presents the domain's basic concepts,
including definitions, the main activities, and the pro-
blems of software maintenance.

The second sub-area describes the maintenance process,
based on the standards IEEE 1219 and ISOIIEC 14764.

The third sub-area treats key issues related 00software
maintenance. The OOpicscovered are technical, manage-
ment, cost and estimation, and measurement issues.

Techniques for maintenance constitute the fourth sub-
area. Those techniques include program comprehension,
reengineering, reverse engineering, and impact analysis.

Software Configuration Management

Software configuration management (SCM) is the disci-
pline of identifying the configuration of a system at distinct
points in time for the purpose of systematically controlling
changes 00 the configuration and maintaining the integrity
and traceability of the configuration throughout the sys-
tem life cycle (see CoNFIGURATION MANAGEMENT). This knowl-

edge area includes six subareas.
The first subarea is the management of the SCM pro-

cess. It covers the OOpicsof the organizational context for
SCM, constraints and guidance for SCM, planning for
SCM, the SCM plan itself, and surveillance of SCM.

The second sub-area is software configuration identifi-
cation, which identifies items 00be controIled, establishes
identification schemes for the items and their versions,
and establishes the oools and techniques 00 be used in
acquiring and managing controlled items. The OOpiesin
this subarea are the identification of the items 00be con-
trolled and the software library.

The third sub-area is the software configuration control,
which is the management of changes during the software
life cycle. The OOpiesare, (1) requesting, evaluating, and
approving software changes; (2) implementing software
changes; and (3) deviations and waivers.

The fourth subarea is software configuration status
accounting. Its OOpicsare software configuration status
information and status reporting.

The fifth sub-area is software configuration auditing,
consisting of software functional configuration auditing,
software physical configuration auditing, and in-process
audits of a software baseline.

--

T'

.aa.

--

The last subarea is software release management and
delivery, covering software building and software release
management.

1

t

Software Engineering Management

While it is true to say that in one sense it should be possible
to manage software engineering in the same way as any
other (complex) process, there are aspects particular to
software products and the software engineering process
that complicate effective management (see PROJECfMAN-
AGEMENT).There are three subareas for software engineer-
ing management.

The first is organizational management, comprising
policy management, personnel management, communica-
tion management, portfolio management, and procure-
ment management.

The second subarea is process/project management,
including initiation and scope definition, planning, enact-
ment, review and evaluation, and closure.

The third and last subarea is software engineering mea-
surement, where general principles about software mea-
surement are covered. The first topics presented are. the
goals of a measurement program, followed by measure-
ment selection, measuring software and its development,
collection of data and, finally, software measurement
models.

Software Engineering Process

The software engineering process knowledge area is con-
cemed with the definition, implementation, measurement,
management, change and improvement of the software
engineering process itself (see CAPABILITYMATURITYMODEL
FORSOFTWARE).It is divided into six sub-areas.

The first one presents the basic concepts: themes and
terminology.

The second subarea is process infrastructure, where the
software engineering process group concept is described,
as well as the experience factory.

The third subarea deals with ineasurements specifie to
software engineering process. It presents the methodology
and measurement paradigms in the field.

The fourth subarea describes knowledge related to pro-
cess definition: the various types ofprocess definitions, the
life-cycle framework models, the software life-cycle mod-
els, the notations used to represent these definitions, pro-
cess definitions methods, and automation relative to the
various definitions.

The firth subarea presents qualitative process analysis,
especially the process definition review and root cause
analysis.

Finally, the sixth subarea concludes withprocess imple-
mentation and change. It describes the paradigms and
guidelines for process implementation and change, and
the evaluation of the outcome of implementation and
change.

S~ftware Engineering Toois and Methods

The software engineering tools and methods knowledge
area includes both the software development environ-

- - --

SOFTWAREENGINEERINGBODY OF KNOWLEDGE PROJECT 1407

ments and the development methods knowledge areas
identified in the Strawman version of the guide (see SOFT-
WARE TOOLS]

Software development environments are the computer-
based tools that are intended to assist the software devel-
opment process. Development methods impose structure
on the software development activity with the goal ofmak-
ing the activity systematic and ultimately more likely to be
successful.

The partitioning of the software tools section uses the
same structure as the Trial version of the Guide to the

Software Engineering Body of Knowledge. The first nine
subsections correspond to the other nine knowledge areas.
Two additional subsections are provided: one for infra-
structure support tools that do not fit in any of the earlier
sections, and a miscellaneous subsection for topies, such as
tool integration techniques, that are potentially applicable
to all classes of tools.

The software development methods section is divided
into four subsections: heuristic methods dealing with
informaI approaches, formal methods dealing with mathe-
matically based approaches, prototyping methods dealing
with software development approaches based on various
forms of prototyping, and miscellaneous method issues.

Software Quality

The final chapter deals with software quality considera-
tions that transcend the life-cycle processes. Software
quality is a ubiquitous concern in software engineering,
so it is considered in many of the other knowledge areas
and the reader will notice pointers to those knowledge
areas through this knowledge area (see QUALITYAsSUR-
ANCE).The knowledge area description covers four subareas.

The first subarea describes the software quality con-
cepts such as measuring the value of quality, the ISO/
IEC 9126 quality model, dependability, and other special
types of system and quality needs.

The second subarea covers the purpose and planning of
software quality assurance (SQA) and V&V (verification
and validation). It includes common planning activities,
and both the SQA and V&V plans.

The third subarea describes the activities and techni-

ques for SQA and V&V. It includes static and dynamic
techniques as well as other SQA and V&V testing.

The fourth subarea describes measurement applied to
SQA and V&V. It includes the fundamentals of measure-
ment, measures, measurement analysis techniques, defect
characterization, and additional uses of SQA and V&V
data.

THE SWEBOK PROJECT

From 1993 to 2000, the IEEE Computer Society and the
Association for Computing Machinery (ACM) cooperated
in promoting the professionalization of soft:ware engineer-
ing through their joint Software Engineering Coordinating
Committee (SWECC). One important product of the
SWECC was a Code of Ethics completed through volunteer
efforts in 1997. The SWEBOK project was initiated by the
SWECC in 1998, although the ACM subsequently decided

1408 SOFTWAREENGINEERING BODY OF KNOWLEDGEPROJECT

to withdraw from participation. The SWEBOK project's
scope, the variety of communities involved, and the need
for broad participation suggested a need for full-time
rather than volunteer management. For this purpose,
the IEEE Computer Society contracted the Software Engi-
neering Management Research Laboratory at the Univer-
sité du Québec à Montréal (UQAM) to manage the effort.

The project team consists of personnel from the IEEE
Computer Society and from UQAM. Leonard Tripp (Boe-
ing), the 1999 President of the Computer Society, is the
Chair of the SWECC. Alain Abran (UQAM) and James
W. Moore (The MITRE Corporation) serve as Executive
Editors, with primary responsibilities for representing
the project. Pierre Bourque (École de Technologie Supér-
ieure) and Robert Dupuis (UQAM) are the project editors,
with primary responsibility for managing the project.

Like any software project, the SWEBOK project has
many stakeholders-some of whom are formally repre-
sented. An Industrial Advisory Board-eomposed of the
IEEE Computer Society, representatives from industry
(Boeing, the MITRE Corporation, Rational Software,
Raytheon Systems, and SAP Labs-Canada), and research
agencies (National Institute of Standards and Technology,
National Research Council of Canada)-has provided
financial support for the project. The financial support per-
mits making the products of the SWEBOK project publicly
available without any charge. !AB membership is supple-
mented with the chair of the appropriate international
standards committee, ISOIIEC JTC1/SC7, and the chair
of the Computing Curricula 2001 initiative. The !AB
reviews and approves the project plans, oversees consen-
sus building and review processes, promotes the project,
and lends credibility to the effort. ln general, it ensures
the relevance of the effort to real-world needs. From the

outset, it was understood that an implicit body of knowl-
edge already exists in textbooks on software engineering.
Ta ensure taking advantage of existing literature, Steve
McConnell, Roger Pressman, and lan Sommerville-the
authors of three best-selling textbooks on software engi-
neering-served on a Panel of Experts to provide advice
on the initial formulation of the project and the structure
of the SWEBOK Guide. ln all cases, the project sought
international participation to maintain a broad scope of
relevance.

The project team developed two important principles
for guiding the project: transparency and consensus.
Transparency implies that the development process is
itself documented, published, and publicized so that
important decisions and status are visible to all concerned
parties. Consensus implies that the practical method for
legitimizing a statement of this kind is through broad par-
ticipation and agreement by all significant sectors of the
relevant community.

The project plan includes three successive phases:
Strawman, Stoneman, and Ironman. An early prototype,
Strawman, demonstrated how the project might be orga-
nized. The publication of the current trial version of the
SWEBOK Guide marks the end of the Stoneman phase
of the project. Development of the Ironman version will
commence after trial application of the current SWEBOK
Guide.

The project team organized the development of the
Stoneman phase into three public review cycles. The first
review cycle focused on the soundness of the proposed
breakdown oftopics within each knowledge area. The sec-
ond review looked at the contentS of the guide from impor-
tant viewpoints (e.g., educator, practitioner). The third
review focused on the coherency of the guide as a whole.
ln aH, roughly 500 reviewers-about half from the United
States and the remainder from 41 other countries-have
provided nearly 10,000 comments. AlI review material
and comments are available on the project Web site.

FUTURE PLANS

The current trial version of the SWEBOK Guide repre-
sents an enormous step in .consensus building, but is not
yet proved by trial usage. The results of a two-year period
of field testing will be considered by the project team in for-
mulating plans for the Ironman phase of the project. Dur-
ing the Ironman phase, the document will be revised and
reviewed through additional rounds 6f-consensus forma-
tion.

Already some changes seem likely. An additional
knowledge area for component integration might directly
address software reuse and COTS component integration.
Some reviewers have suggested a knowledge area for
human-computer interface. The principles of the software
quality knowledge area might be distributed among the
other knowledge areas in order to achieve a tighter rela-
tionship. The description in the current tools and methods
knowledge area is already organized by knowledge area; a
logical next step might be to distribute the materials
among the referenced knowledge areas. FinaHy, some nas-
cent knowledge areas may emerge. ln three years, a com-
munity consensus on the nature of software architecture
might lead to the development of a distinct knowledge
area.

ACKNOWLEDGMENTS

Portions of this article are adapted, with permission, from Guide
to the Software Engineering Body of KnowlOOge, Trial version
(version 0.9), February 2001, @ Copyright 2001, Institute of Elec-
trical and Electronics Engineers.

BIBLIOGRAPHY

B. S. Bloom,00., TCJX()nonyof Educational Objectives;The Classi-
fication of Educational Goals, Handbook 1, Longmans, Green,
New York and Toronto, 1956.

G. Ford and N. E. Gibbs, A Mature Profession of Software
Engineering, Technical report CMU/SEI-96-TR-004,Software
Engineering Institute/Carnegie-Mellon University, Pitts-
burgh, PA, 1996.

Project Management Institute, A Guide to the Project Manage-
ment Body of Knowledge, Project Management Institute,
Upper Darby, PA, 1996. Available at: http://www.pmi.org/
publictn 1pmboktoc.htm 1.

--kJ

1
1

!

1

t

1

P. Starr, The Social Tranformation of Amercian Medicine, Basic
Books,New York, 1982, p. 15.

JAMES W. MOORE

The MITRE Corporation

PIERRE BOURQUE

École de Technologie Supérieure

RoBERT DUPUIS

ALAIN ABRAN

Université du Québec à
Montreal

LEONARD TmPP

Boeing

SOFTWARE ENGINEERING ENVIRONMENTS

INTRODualON

A software factory is meant to be capable ofproviding com-
puter support for the coordinated work of software deve-
lopers in large software development projects. The term
software factory hence denotes a number of things: people
and their respective roles in software development; com-
puter supported tools and their combined use in software
development; and a co-ordination process model to guide
people in their proper use of tools and in their proper
joined work integration as depicted below (see Fig. 1).

Recent developments have led from closed environ-
ments, comprising fixed sets of tightly coupled tools for
specific phases, to open environments that enable the plug-
ging of new tools as the requirements evolve (see also SoFI'-
WARE FACTORY).

To cope with this new dimension in CASE technology,
standards organizations intend to support the effort with
reference models; for example, the Information Systems
Engineering Reference Model (ISE/RM) of the ISO; the
Standards Manual of the Object Management Group
(OMG), ECMA's Reference Model for Computer Assisted
Software Engineering Environment Frameworks; ECMA's
Support Environment for Open Distributed Processing
(SE/OPD); and OSF's Distributed Computing Environ-
ment (OSF/DCE).

The concepts presented in this article have been pri-
marily developed in the Eureka Software Factory (ESF)

SOFTWAREENGINEERING ENVIRONMENTS 1409

project. This article hence carries the flavor of that project
in the way it introduces software factory concepts and in
the way it explains these concepts in the larger context
of computer-aided software development (see also EUREKA
SOFTWARE FACTORY).

Computer support in a software factory will be provided
by a software system that is called factory support environ-
ment (FSE). ln order to support software development in
the manner outlined above, the FSE is needed to provide
a number of integration services. FSE integration services
will be explained first by introducing a conceptual view of a
software factory and later on as an architectural view.
The conceptual view, called the software factory core,
introduces a number of integration stages: interworking,
interaction, interoperation, and interconnection. The
architectural view introduces the mechanisms that
support integration at the respective stages.

THE SOFTWAREFAaORY CORE

What the ESFCoRe Contains

The ESF CoRe is a road map of the Software Factory
domain. As such, it embodies a view of what industrial
software production means: what sorts of entities and
events ought to be distinguished in software factories,
and how these relate to each other. Concretely, the CoRe
consists of a set of definitions, some arguments as to
what those definitions imply, and some pictures showing
how the definitions are interrelated.

The structure of the CoRe derives from a strategic deci-
sion ta view industrial software production as supported
by layered communication processes. Two views result:

. A conceptual view, using an extended OSI layer
model to distinguish leveIs of factory communication
and the kinds of work that can be conducted at each
levei.

. An architectural view, which categorizes the entities
that communicate through and across each of the
layers, and places them in an evolutionary context.

The conceptual view hence introduces an extended
reference model for factory communication and the archi-
tectural view the essential ingredients of a software fac-
tory support environment.

Process model

People Computers Figure 1. Software factory model.

- -- --

ENCYCLOPE DIA OF
SOFTWARE ENGINEERING

SECOND EDITION

VOLUME 2

John J. Marciniak, Editor-in-chief

(ID
1" A Wiley-Interscience Publication

John Wiley & Sons, Inc.
P SE) R é F
190 f]o~rl
v, J.-

-- - -- -

This book is printed on acid-free paper. @

Copyright (Q 2002 by John Wiley & Sons Inc., New York. AlI rights reserved.

Published simultaneously in Canada.

No part ofthis publication may be reproduced, stored in à retrieval system or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording, scamiing or otherwise,
except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without
either the prior written permission of the Publisher, or authorization through payment of the
appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA
01923, (978) 750-8400, fax (978) 750-4744. Requests to the Publisher for permission should be
addressed to the Permissions Department, John Wiley & Sons, Inc., 605 Third Avenue, New York,
NY 10158-0012, (212) 850-6011, fax (212) 850-6008, E-Mail: PERMREQ@WILEY.COM.

For ordering and customer service, calIl-800-CALL-WILEY.

Library of Congress Cataloging-in-Publication Data is available.

Marciniak, John J.
Eneyclopedia of Software Engineering, Second Edition

ISBN -Volume 1 0-471-21008-0
ISBN - Volume 2 0-471-21007-2
ISBN - Set 0-471-37737-6

Printed in the United States of America.

10 9 8 7 6 5 4 3 2

