
Extending CSCM to support Interface Versioning

Hamdan Msheik, Alain Abran
Software engineering department, École de Technologie Supérieure, Université du Québec

 1100 Notre-Dame Ouest, Montréal, Québec
Canada H3C 1K3

hamdan.msheik.1@ens.etsmtl.ca, aabran@ele.etsmtl.ca

Abstract-Software component has been a main stream
technology used to tackle issues such as software reuse, software
quality and, software development complexity. In spite of the
proliferation of component models (CORBA, .Net, JavaBeans),
certain issues and limitations inherent to components are still not
addressed adequately. For instance, composing software
components especially those provided by different suppliers may
result in faulty behavior. This behavior might be the result of
incompatibilities between aging components and/or freshly
released components and their respective interfaces. This paper,
present an approach to tackle component interface
incompatibilities via the use of a component and interface
versioning scheme. This approach is designed as an extension to
the Compositional Structured Component Model (CSCM), an
ongoing research project. The implementation of this extension
makes use of code annotations to provide interface versioning
information useful in detecting interface incompatibilities.

I. INTRODUCTION

Software development has been evolving for the past 30 to
40 years over several software development paradigms:
structured, functional, and object oriented. Lately, the
component based software engineering paradigm has been
gaining significant attention.

This component based software engineering paradigm has
been considered by Peter Maurer as a computing revolution on
a par with those of stored programs and programming
languages [1]. However, the idea behind software components
is not new: it first appeared in a NATO conference on software
engineering in the late 1960’s [2].

Software components have been defined in many different
ways [1, 3-6] The common characteristics among these
definitions are: a) they have interfaces and interface
implementations used in interconnecting with other
components; b) their behavior is almost independent; and c)
their form is binary so that they can be treated as black boxes.
Another definition from Heineman [6] goes a little further and
requires a software components to comply with a component
model which defines components interactions and composition
standards.

In a context of growing software functionalities, increased
software complexity and ever changing requirements,
component based software development has been proposed as
the answer. The Software component technology addresses
several issues, including: better software reuse and modularity,
better quality and easier and faster development. Not
addressing these issues adequately often leads to monolithic [7,
8] software applications which are less flexible, more complex,
difficult to reuse and costly to develop and maintain.

Several component models (CORBA, .Net, EJBs,
JavaBeans) have been developed to address the complexity of
software applications, increase the potential for software reuse
and enhance software distribution and interoperability.
Originally, these models were introduced to address issues
such as applications interoperability [9], object distribution
[10], and rapid GUI (Graphical User Interface) construction.
While the aforementioned component models represent
significant technological improvements, they still have several
limitations.

When developing software application families,
considerable effort is expended on the adaptation, and
customization of the functionalities of components shared by
the various constituent applications. Typically, the set of
useful and required functionalities provided by a particular
component varies according to the particular software
application context. Put differently, a number of
functionalities provided by certain components are not used by
their applications, compromising application integrity and
security in addition to wasting memory. To tackle this
limitation, the CSCM component model [11] provides a
solution to the unwanted functionalities exhibited by software
components.

However one important limitation of the CSCM
component, as well as for the above mentioned component
models, is their lack to support component interface
versioning. In this paper, we present an extension to the
CSCM model to address this limitation. This extension is to
allows CSCM components to:
• Eliminate the problems that might arise from the use of

incompatible component interfaces;
• Improves the overall quality of a software component by

reducing application faults and bugs related to interface
obsoleteness;

• Contribute to the enhancement of the CSCM model to
provide an easier and more flexible software
customization, adaptation, and reuse approach for
component based software construction.

Section 2 starts by presenting background information on
the CSCM model, interface definition languages and
component interface versioning. Section 3 presents the CSCM
model versioning scheme. Finally, a summary and a
discussion of current and future works are presented in section
4.

II. BACKGROUND

A. CSCM Overview
The Compositional Structured Component Model (CSCM)

[11] is designed to construct software components based on
selective functional composition. CSCM component
functionalities are partly selected based on metadata
information provided by a metadata composition descriptor
instance associated with that particular component. This
selective composition property provides flexibility for adapting
and customizing components, as well as for facilitating
software maintenance and helping to more readily achieve
software reuse.

A CSCM component instance is an object with enhanced
capabilities allowing selective functional composition of
disjoint compositional parts (see Fig. 1). A compositional part
is a method implemented independently and disjointly from a
component implementation to which it is attached. We call
such a part a compositional interface for being independently
implemented and physically disjoint from the component’s
implementation.

CSCM component instances can be considered as objects
since they possess and exhibit similar properties and
characteristics to those of objects. CSCM components support
inheritance; however, they are provided with a powerful
composition and retrogression mechanism which allows
CSCM components to either include or exclude compositional
interfaces. This inclusion and exclusion of functionalities is
done according to information provided by the component
metadata composition descriptor instance.

CSCM components mechanism of composition and
retrogression is based on:
• An extension to the syntax of an object oriented

programming language to support compositional
members.

• The use of the composition principle to selectively include
the required functionalities suitable for a software
application.

• The use of the delegation principle which permits the
dispatching of the component methods’ calls to the
compositional interfaces of the component.

CSCM component’s compositional interfaces are methods
and not types in comparison to Java interfaces. A CSCM
component compositional interface differs from CSCM
ordinary methods in that they are selectable via the component
metadata composition descriptor instance. In other words, the
same component in two different applications might have
different subsets of compositional interfaces, depending on the
functional requirements needed by the hosting application.

B. CSCM component structure
A CSCM component is a software part possessing

compositional interfaces, and composition descriptor which
captures metadata information specifying various aspects,
characteristics, dependencies and properties necessary for
functional composition.

Component metadata

Component implementation

methods

attibutes

Core
members

Interfaces
implementations

Compositional
interface
members

Compositional
interfaces

Proxy methods

Component definition

Compositional
interface
member

definitions

Composition descriptor

Core
member

definitions

Fig. 1. CSCM component structure

The structure of a CSCM component (see Fig. 1) is composed
of three logical parts: a definition part, a metadata part and an
implementation part.

CSCM component definition: The component definition part
includes the definition of two distinct categories of members:
core members and compositional interface members.

Core members are composed of method and attribute
members acting as the component core for any CSCM
component instance. Compositional interface members are
selectively available for composition through CSCM
component instances.

As illustrated in Table I, a CSCM component definition has
to be defined in a file similar to the way object oriented source
classes are defined. This definition defines the component
"Compressor" with one core method displayUsage() and one
compositional interface zip(…).

CSCM component metadata: A CSCM component
composition descriptor part captures metadata information in
XML format. The composition descriptor provides all
necessary information on a component’s members and their
dependencies so that at composition-time the selection of an
interface will also result in load-time selection of all
compositional members on which the interface depends. A
partial sample of a composition descriptor for the component
shown in Table I is illustrated in Table II.

CSCM component implementation: The CSCM component
implementation part contains one core implementation class
for the component core members and a different
implementation class for each compositional interface. Besides

the implementation of core members, a component core class
also provides a proxy delegate method for each compositional
interface.

TABLE I
COMPONENT DEFINITION

import java.io.File;

@ComponentVersion (
 name = "Compressor",
 major = 1,
 minor = 2,
 micro = 1)
Component Compressor {
public String displayUsage(){…}
// compositional members
 // zip algorithm
Compositional public File zip(File f,
 String oper){}
}

TABLE II

A PARTIAL ILLUSTRATION OF THE COMPOSTION DESCRIPTOR
ELEMENTS FOR THE COMPONENT DEFINED IN TABLE I

<component name”Compressor”>
 <version>
 <major>1<major>
 <major>2<minor>
 <major>1<micro>
 <version>
 </import-list>
 <core-members>
 <methods>
 <method name=”displayUsage”
 return-type=”String”/>
 <modifiers-list scope=”public”/>
 <parameters/>
 <dependency-list/>
 <methods>…</methods>
 <attributes>…<attributes>
 </dependency-list>
 </method>
 </methods>
 </core-members>
 <compositional-members>
 <attributes/>
 <interfaces>
 <interface name="zip" selected=
 "true" return-type="File"/>
 <modifiers-list scope="public"/>
 <parameters>
 <parameter Type="File" name="f">
 <parameter Type="String"
 name="oper">
 </parameters>
 <dependency-list/>
 <methods>
 <method name="displayUsage"
 return-type="String"/>
 <modifiers-list
 scope="public"/>
 <parameters/>
 </dependency-list>
 </dependency-list>
 </interface>
 </interfaces>
 </compositional-members>
</component>

C. Component interfaces and interface definition languages
Component interfaces can be considered as communication

channels between components whether these components are
deployed in a local or external computation environments.
Component interfaces are usually specified using an IDL
(Interface Definition Language). A component interface can
be considered as a type which contains a set of method
signatures whose implementations are provided by particular
components. Current IDL languages do not allow the
developer to specify interface extra-information which can be
used during a component operational life.

A component interface conveys a description of what
computation will be done while its implementation provides
how the computation is done. Therefore, component interfaces
provide flexibility and usefulness since they are not concerned
of how the implementation will be done.

To overcome inter-components interoperability and
development complexity problems, many definition languages
have been designed to provide components with interfaces.
Component model IDLs provide abstraction layers to reduce
development effort as well provide reusable component
intercommunication mechanisms within heterogeneous
computing environments.

Currently available component models provide little or no
semantic properties [12, 13]. Component interfaces express
only functional aspects of a component without any
consideration for aspects such as interface versioning.
Nevertheless, attempts have been done to provide software
component interfaces with semantics for different purposes.
For instance, [12-15] describe approaches for providing
component interfaces semantics and to express certain aspects
such as quality of service and interface versioning.

D. Component interface versioning
Software components are distinguished by their use of

interfaces to inter-communicate with each others. Obviously,
components and interfaces are subject to modification and
upgrade during their operational life cycle. As a result,
modified interfaces can be a source of incompatibilities. For
instance, different suppliers can provide different interface
implementations (versions) for the same component interface
either as updates or as fresh interface releases. These interface
versions might be incompatible with a particular component
version. To remedy this interface incompatibility problem,
detection for such incompatibilities can be done at load-time
before program execution. Eventually, integrity problems
and/or data corruption can be avoided due to faulty behavior
caused by interface incompatibilities.

Several tools and frameworks have been used as IDL
extensions [12, 16] to annotate component interfaces. Such
annotations provide metadata information useful for expressing
various interface non functional aspects. To our knowledge,
interface annotations have not been used yet to represent
component and interface versioning information. The novelty
of our approach is the use of annotation to represent
component and interface versioning metadata information.

TABLE III

COMPOSITIONAL INTERFACES SKELETONS PARTIAL
IMPLEMENTATION

 /* The code is generated by the CSCM
 Compiler */

@InterfaceVersion(
 interfaceVersion =
 @ComponentVersion (
 name = "zipClass",
 major = 3,
 minor = 3,
 micro = 1),
 compatibleComponentVersion = {
 @ComponentVersion (
 name = " zipClass",
 major = 3,
 minor = 3,
 micro = 1)}
)
Public class zipClass {
public File zip(File f, String oper) {
 __This.displayUsage();
 return new File("testTextFile.txt");
}
}

III. CSCM INTERFACE VERSIONING SCHEME

A. CSCM interfaces
CSCM interface are object methods defined inside the

component. However, their implementation is provided
externally in a separate class. They can be thought about as
method signatures which receive a list of parameters as input
and returns back a value as output. The reason behind
providing their implementation externally is to give the
developer the ability to select only those interfaces required to
satisfy his particular application requirements.

While their implementation is done separately outside their
owner’s component, CSCM component interfaces are not
“types” like Java types, COM or CORBA interfaces; this is
quite an important difference between CSCM interfaces and
the interfaces of other component models. CSCM component
interfaces are not defined using an IDL language. They are
defined as ordinary methods augmented with the modifier
“compositional” to differentiate them from ordinary methods.
This modifier signals their presence for the CSCM compiler
which handles them appropriately and generates their skeleton
implementations.

B. CSCM model interface versioning scheme
One of the drawbacks of the CSCM model is its lack to

support component and interface versioning. Therefore, we
present in this paper a scheme and a specification of such
versioning information.

This scheme associates each component and each of its
interfaces with metadata versioning information. The software

component developer is the party responsible for providing this
versioning information. Ultimately, at application load time,
component versioning information can be checked to verify
whether the deployed interfaces are compatible with the
specific component version used by the application.
Eventually, if incompatible interfaces were detected, the
application will be handled adequately leading to a safe
program halt without risking data corruption or loss. Checking
for interface or component incompatibilities can be done via
extending or providing the class loader with an interface
compatibility detector.

C. CSCM versioning information implementation
The versioning information is expressed in terms of code

annotations for each component and interface. Following
industrial conventions of associating three numbers with a
specific version (major, minor, micro), each component has to
be associated with a specific version and similarly for each
interface. In addition to its specific version information,
component interfaces are also associated with a set of
component versions to which a particular interface is
compatible with. Implementing this versioning scheme
requires language constructs to express versioning information.
Fortunately, Java 5.0 has been provided with such annotations
constructs [17]. Table V shows CSCM component version
annotations. Table VI shows CSCM interface version
annotations which, in addition to expressing the interface
version, expresses information on the component versions with
which this interface is compatible. CSCM Component and
interface version annotations are illustrated in the example
component shown in Tables I, II, III and IV.

Attaching CSCM component and interface versioning
annotations are the responsibility of the component and
interface developer. On application startup and before the
selection of compositional interfaces, a compatibility check is
done automatically to detect possible interface
incompatibilities. If incompatibilities are detected, the
program stops execution in a predictable manner. The code
responsible for interface compatibility checking is generated
by the CSCM compiler and is injected inside the constructor of
the component. It can be argued that this new feature of the
CSCM model incurs a certain computational overhead due to
checking of instance incompatibilities. However, this
computational overhead can be optimized by requiring only
freshly installed and upgraded CSCM components and
interfaces to be checked for compatibility.

IV. DISCUSSION

In this paper, we have presented an extension to the CSCM
model to address the issue of interface incompatibilities. The
approach we used to handle this issue is based on the use of
annotations which are now supported natively by Java 5.0.
Tackling interface incompatibilities using versioning is
important in particular to reduce faulty behavior and data
corruption or loss when incompatible interfaces are used.
Remedying this issue of interface incompatibilities is

particularly significant since CSCM component interfaces are
method-like and disjointly implemented. This new capability
offered by CSCM component builds upon its other advantages
to improve software quality and to ease and simplify software
maintenance, modification and reuse.

Component models have emerged to enhance software reuse,
increase application flexibility and reduce maintenance. A
number of these component models lack the mechanisms to
express non-functional aspects such quality of service
properties and interface versioning. Several research works
have provided extension to IDLs to express component non-
functional aspects. For instance, fault tolerance has been
addressed in [14] by extending CORBA IDL.

TABLE IV

COMPONENT CORE PARTIAL IMPLEMENTATION

@ComponentVersion (
 name = "Compressor",
 major = 1,
 minor = 2,
 micro = 1)
public class Compressor {
 /* this code is generated by CSCM
 compiler */

// core method
 public String displayUsage(){
 return new String();
 }
 // compositional interfaces
 Private File zip(File f,String oper){
 return((zipClass)
 compositionalInterfaces.get(
 "zip")).zip(f, oper);
 }
 }

TABLE V

ILLUSTRATES A COMPONENT VERSION ANNOTATION

@Retention(RetentionPolicy.RUNTIME)
@Target({ElementType.TYPE})
@interface ComponentVersion {
String name()
int mainVersion ();
int minorVersion();
int microVersion();
}

TABLE VI

ILLUSTRATES AN INTERFACE VERSION ANNOTATION

@Retention(RetentionPolicy.RUNTIME)
@Target({ElementType.TYPE})
@interface InterfaceVersion {
 ComponentVersion interfaceVersion();
 ComponentVersion []
 compatibleComponentVersion();
}

Similarly, in [15] a specification for an extension to an IDL
has been given to express aspects such as quality of service
properties. To our knowledge, little effort has been spent on
the issue of interface incompatibilities. The novelty in our
approach is the use of Java 5.0 annotations to provide CSCM
components and interfaces with metadata versioning
information to detect interface incompatibilities.

Current work in progress includes the development of the
CSCM compiler with interface versioning. The
implementation of CSCM compiler is targeting Java 5.0, for it
supports annotations natively. Future work will explore and
address distribution and interoperability through integration of
the CSCM with other component model such as CORBA.
Once the implementation is ready, validation with a variety of
components and applications will be conducted.

REFERENCES
[1] P. Maurer, Component-Level Programming: Pearson Education Inc.,

2003.
[2] M. D. McIlroy, "Mass Produced Software Components," presented at

NATO Software Engineering Conference, 1968.
[3] C. Szyperski, "Emerging component software technologies--a strategic

comparison," Software--Concepts & tools, pp. 2-10, 1998.
[4] D. E. C. Microsoft Corporation, "The Component Object Model

Specification." http://www.microsoft.com/com/resources/comdocs.asp,
1995.

[5] I. Jacobson, "Component-based Development with UML," 1998.
[6] T. Heineman, G. and T. Council, W., "Component-Based Software

Engineering," Addison-Wesely, 2001.
[7] J. Li, "A Survey on Microsoft Component-based Programming

Technologies," Concordia University, Montreal 1999.
[8] L. Vanhelsuwe, Mastering JavaBeans: Sybec Inc., 1997.
[9] C. Exton, D. Watkins, and D. Thompson, "Comparisons between

CORBA IDL & COM/DCOM MIDL: interfaces for distributed
computing," presented at Technology of Object-Oriented Languages and
Systems, 1997. TOOLS 25, Proceedings, 1997.

[10] J. Ongg, "An Architectural Comparison of Distributed Object
Technologies," MIT june 1997.

[11] H. Msheik, A. Abran, and E. Lefebvre, "Compositional structured
component model: handling selective functional composition," presented
at Euromicro Conference, 2004. Proceedings. 30th, 2004.

[12] D. Watkins and D. Thompson, "Adding semantics to interface definition
languages," presented at Software Engineering Conference, 1998.
Proceedings. 1998 Australian, 1998.

[13] D. C.Schmidt, D. L. Levine, and S. Mungee, "The Design of the TAO
Real-Time Object Request Broker," IEEE Computer Communications
Journal, vol. 21, pp. 294-324, 1998.

[14] C. Exton, "Distributed fault tolerance specification through the use of
interface definitions," presented at Technology of Object-Oriented
Languages, 1997. TOOLS 24. Proceedings, 1997.

[15] H.-A. Jacobsen and B. J. Kramer, "Modeling interface definition
language extensions," presented at Technology of Object-Oriented
Languages and Systems, 2000. TOOLS-Pacific 2000. Proceedings. 37th
International Conference on, 2000.

[16] D. Watkins, "Using interface definition languages to support path
expressions and programming by contract," presented at Technology of
Object-Oriented Languages, 1998. TOOLS 26. Proceedings, 1998.

[17] Q. H. Mahmoud, "The All-New Java 2 Platform, Standard Edition (J2SE)
5.0 Platform," [Online]:
http://java.sun.com/developer/technicalArticles/releases/j2se15langfeat/,
2004.

