
Compositional Structured Component Model:

Handling Selective Functional Composition

Hamdan Msheik, Alain Abran, Eric Lefebvre
Electrical Engineering Department, École de Technologie Supérieure,

1100 Notre-dame Ouest, Montréal, Québec
Canada H3C 1K3

hamdan.msheik.1@ens.etsmtl.ca, aabran@ele.etsmtl.ca, elefbvre@ele.etsmtl.ca

Abstract

Software component technology has been promoted

as an innovative means to tackle the issues of software
reuse, software quality and, software development
complexity. Several component models (CORBA, .Net,
JavaBeans) have been introduced, yet certain issues
and limitations inherent to components still need to be
addressed. As software components with hosts of
functionalities tend to be coarse to large-grained in
size and since the set of functionalities required by an
application varies according to the particular
application context, an excessive number of unwanted
functionalities might be generated by such components
within the application. In this paper, we present the
Compositional Structured Component Model (CSCM)
designed to handle the issue of unwanted component
functionalities and to provide a flexible approach for
easier customization, adaptation, and reuse. The
CSCM model is designed to handle this issue via
component functional composition using metadata
composition instances which allow selective
composition of a component’s required functionalities.

1. Introduction

Software components represent a major step in the
evolution of computing technology. Peter Maurer
describes the process of software construction using
components as another computing revolution on a par
with those of stored programs and programming
languages [1]. However, the idea behind software
components is not new: it first appeared in a NATO
conference on software engineering in the late 1960’s
[2].

Software components have been defined in many
different ways [1, 3-6]. From these definitions we have
selected the following characteristics which are

common to all software components: a) they have
interfaces and interface implementations used in
interconnecting with other components; b) their
behaviour is almost independent; and c) their from is
binary so that it can be treated as black boxes.
Heineman’s definitinon [6] goes a little further, in that
a software component is required to comply with a
component model which defines the component’s
interactions and composition standards.

The technology of software components is aimed
among other at addressing the issues of better software
reuse, better quality and easier development in the
context of growing numbers of functionalities, large-
scale software complexity and requirements mutability.
Inappropriate handling of these issues often leads to
software applications which are monolithic [7, 8] less
flexible, more complex, difficult to reuse and costly to
develop and maintain.

In an effort to reduce the complexity of software
applications, increase the potential for software reuse
and enhance software distribution and interoperability,
several component models (CORBA, .Net, EJBs,
JavaBeans) have emerged. While these component
models represent significant technological
improvements, they still have several limitations. For
instance, these models were originally introduced to
satisfy particular aspects, such as applications
interoperability, object distribution [9], and rapid GUI
(Graphical User Interface) construction.

The unwanted functionalities exhibited by software
components in particular application contexts are
caused by the tendency of the size of software
components to be coarse to large-grained. In such
components, the set of useful and required
functionalities provided by a particular component
varies according to the particular software application
context. Typically, during the development of software
application families, considerable effort is expended on
the wrapping, adaptation, and customization of the

functionalities of components shared by the various
constituent applications.

In this paper, we present our Compositional
Structured Component Model (CSCM) designed to:
• Handle the issue of unwanted component

functionalities; and
• Provide an easier and more flexible software

customization, adaptation, and reuse approach for
application development.

The idea behind this model is to develop
components with physically disjoint functional
fragments called compositional interfaces. At
composition time, the application developer selects the
functionality fragments needed to form the basis for a
new software component.

We start Section 2 by presenting background
information on component-based software engineering
and component-based software construction. In Section
3, we present the CSCM model. We present the CSCM
component-based software construction process in
Section 4. In Section 5, we discuss a number of CSCM
Java inheritance issues. This is followed by Section 6
in which we present related work. Section 7 briefly
presents current and future work. Finally, Section 8
terminates with a summary and a discussion.

2. Background

2.1 Component-based software engineering
(CBSE)

Software engineering processes have evolved
through several programming paradigms: from the
structured paradigm of the late 1960’s and the 1970’s,
moving to the object-oriented paradigm of the early
1980's to the more recent component-oriented
paradigm of the first half of the 1990’s.

CBSE is divided into two distinct processes [10,
11]: component engineering and application
engineering. The first deals with the analysis and
development of domain-generic and domain-specific
components, while the latter deals with software
application development by assembly, composition,
integration, and plugging of components such as COTS
(commercial off-the-shelf) and other in-house
developed components.

The Software Engineering Institute at Carnegie
Mellon University [12] uses the term CBSD to refer to
the process of software development by the assembly
and integration of software components. Essentially,
the terms CBSE and CBSD both more or less refer to
the same process. The focus of CBSE is the
development of software by assembling and integrating
COTS and other existing types of components with an

emphasis on composition rather than on programming
[13]. It assumes that certain software parts are common
to several software applications; therefore, it would be
advantageous to reuse them for several reasons [12]:
• Better quality and diversity of COTS.
• Pressure to reduce development and maintenance

costs.
• Use of standards, open systems, and the

emergence of integration mediators such as
CORBA ORBs (Object Request Brokers).

• Increase in enterprise inventory of potentially
reusable software components.

2.2. Component-based software construction

Software construction can be considered as a sub-

process which matches the implementation phase in the
software development life cycle. Software construction
per se is a software engineering act which encompasses
the activities of software coding, validation and unit
testing. According to the SWEBOK (Software
Engineering Body of Knowledge) Guide [14], this sub-
process must be instantiated taking into account four
general principles (reduction of complexity,
anticipation of diversity, structuring for validation and
the use of external standards) as well as the tools used
by this subprocess such as compilers, code generators,
and development tools.

As software design breaks software down into
smaller parts for construction, those parts are expected
to comply with the general principles of software
construction. Interestingly, component-based software
construction meets these four general principles. For
instance, components can reduce the complexity of an
application since they offer modular reusable parts
which can be bought from specialized suppliers instead
of being developed in-house. In addition, components
are reusable and replaceable parts, thus they meet the
anticipation of diversity principle. Furthermore, by
breaking down a software application into modular
components, the validation of these components will
be easier. Finally, software components generally
conform to a component model, and therefore they
make use of standards.

The SWEBOK Guide [14] identifies three styles of
software construction: linguistic, visual and formal.
These styles are general and are applicable to almost
any software development process. The process of
software construction by component assembly and
composition may use any style or a combination of
these styles.

One of the goals of software engineering is to
transfer the construction process to higher levels of
automation [14] in order to reduce software complexity
and achieve better reuse. Coincident with this is the

goal of using component assembly approaches and
compositional languages for software construction.
The type of construction languages used in software
construction by assembly and composition of
components are configuration, compositional, scripting
and general-purpose programming languages. The
choice of construction language is dictated by various
factors which can be related to the granularity of the
software components used in the construction process
as well as to other aspects such as the simplicity and
flexibility, and the expressive power of the
construction language itself.

3. Compositional Structured Component
Model

The Compositional Structured Component Model
(CSCM) (see Figure 1) is designed to construct
software components through selective functional
composition based on component metadata
composition descriptor instances. This selective
composition property provides flexibility for the
adaptation and customization of components, as well
as for facilitating software maintenance and helping to
more readily achieve software reuse.

The CSCM model can be seen as an extension to
the object oriented model which provides
compositional capabilities. Consequently, a CSCM
component instance is an object with an enhanced
capability allowing selective functional composition of
disjoint compositional parts.

A compositional part is a method implemented
independently outside of the component
implementation. We call such a part a compositional
interface for being independently implemented and
physically disjoint from the component’s
implementation. CSCM component’s compositional
interfaces are methods and not types as they are Java
interfaces.

The proposed CSCM model is generic and can be
implemented in various programming languages. From
an object oriented perspective, CSCM components
instances can be considered as objects since they
possess and exhibit similar properties and
characteristics to those of objects. CSCM components
support inheritance; however, they are provided with a
powerful composition and retrogression mechanism
which allows CSCM component to either include or
exclude compositional interfaces according to the
information provided by the component metadata
instance.

CSCM components mechanism of composition and
retrogression is based on:

• An extension to the syntax (see Table 1) of an
object oriented programming language to support
compositional members.

• The use of the composition principle to selectively
include the required functionalities suitable for a
software application.

• The use of the delegation principle which permits
the dispatching of the component methods’ calls to
the compositional interfaces of the component.

Component metadata:
composition
descriptor

CSCM
compiler

CSCM
compiler

Component core
definition and
compositional

interfaces definitions

Compositional
interface
skeletons

Compositional
interface
skeleton

implementations

Core
skeleton

Compositonal
interfaces

implementations

Core
skeleton

implementation

Core
implementation

Figure 1. CSCM component construction process

A CSCM component compositional interface differs

from CSCM ordinary methods in that they are
selectable via the component metadata composition
descriptor instance. In other words, the same
component in two different applications might have
different subsets of compositional interfaces,
depending on the functional requirements needed by
the hosting application.

The CSCM model does not handle the aspects of
distribution, synchronization, and interoperability.
Therefore, CSCM components rely for these aspects on
the underlying mechanisms provided either by other
component models or by host programming languages

in which CSCM components are implemented. Indeed,
the current scope of our research is focused on
providing a solution for the issue of components
having an excess of unwanted functionalities and on
finding an easier approach to components composition,
customization, adaptation, and reuse.

3.1. CSCM component structure

A CSCM component is a software part possessing

compositional interfaces, and a composition descriptor
which captures metadata information specifying the
various aspects, characteristics, dependencies and
properties necessary for functional composition. The
structure of a CSCM component (see Figure 2) is
composed of three logical parts: a definition part, a
metadata part and an implementation part.

Component metadata

Component implementation

methods

attibutes

Core
members

Interfaces
implementations

Compositional
interface
members

Compositional
interfaces

Proxy methods

Component definition

Compositional
interface
member

definitions

Composition descriptor

Core
member

definitions

Figure 2. CSCM component structure

3.1.1 CSCM component definition. The component
definition part includes the definition of two distinct
categories of members: core members and
compositional interface members.

Core members are composed of method and
attribute members acting as the component core for
any CSCM component instance. Compositional
interface members are selectively available for
composition through CSCM component instances.
CSCM components instances behave almost like
objects. Without their compositional members
(interfaces) CSCM component instances are
indistinguishable from ordinary objects.

The definition of a CSCM component has to be
done using the host programming language in addition
to the syntax constructs of Table 1. The definition of
core members and the definitions of compositional
interface members are necessary to generate the
component core skeleton as well as the compositional
interface skeletons.

As illustrated in Table 2 a CSCM component
definition has to be defined in a file similar to the way
object oriented source classes are defined. This
definition defines the component "Compressor" with
one core method and two compositional interfaces.

Table 1. Reserved words of CSCM components

Reserved words Role

component Declares the beginning of a
CSCM component

compositional Declares a compositional
interface member

Table 2. Component definition

import java.io.File;

Component Compressor {
public String displayUsage(){…}
// compositional members
 // zip algorithm
Compositional public File zip(File f,
 String oper){}
 // gzip algorithm
compositional public File gzip(File f,
 String oper){}

}

3.1.2 CSCM component metadata. The component
metadata part contains the composition descriptor
which captures in XML format the descriptive
metadata information of the component. In particular,
the composition descriptor provides all the necessary
information on a component’s members and their
dependencies so that at composition-time the selection
of an interface will also result in load-time selection of
all compositional members on which the interface
depends. Furthermore, this metadata information can
also be used to specify useful information on other
aspects of CSCM components such as, constraints,
licensing, cataloging and indexation. A partial sample
of a composition descriptor for the component shown
in Table 2 is illustrated in Table 3.

3.1.3 CSCM component implementation. The CSCM
component implementation part contains one core
implementation class for the component core members

and a different class for each compositional interface.
Though logically related, a component’s compositional
interface implementations are physically disjoint,
thereby providing compositional capabilities,
flexibility, and an easier software development,
maintenance, and reuse method.

The core class is connected to the classes of
compositional interfaces via a composition relationship
as illustrated in Figure 3.

zipClassgzipClass

Compressor

Figure 3. Relationship between the component core
class and the component compositional interfaces

Besides the implementation of core members, the

component core class also provides a proxy delegate
method for each compositional interface.

The implementation of the CSCM composition
mechanism is based on the composition and delegation
principles. Furthermore, the implementation of
compositional interfaces as separate classes helps also
realizing the implementation of this mechanism.

Typically, object methods can access one another.
This is also true for CSCM compositional interfaces;
they can access each others through the delegation
mechanism which uses the core instance to dispatch
access requests to the concerned interface members by
calling their proxy methods.

4. CSCM component-based software
construction process

The CSCM component-based software construction
process is divided into two processes: the component
construction process and the application construction
process.

4.1. Component construction process phases

The construction process of CSCM component

passes through four phases as illustrated in Figure 4:
• Component core definition and compositional

interface definitions.
• Compilation and generation of core skeleton and

compositional interface skeletons.
• Core implementation and compositional interface

implementations.

• Compilation and metadata composition descriptor
generation.

Table 3. A partial illustration of the composition
descriptor elements for the component defined in

Table 2
<component name”Compressor”>
 <import-list>
 <package>java.io.File<package>
 </import-list>
 <core-members>
 <methods>
 <method name=”displayUsage”
 return-type=”String”/>
 <modifiers-list scope=”public”/>
 <parameters/>
 <dependency-list/>
 <methods>…</methods>
 <attributes>…<attributes>
 </dependency-list>
 </method>
 </methods>
 </core-members>
 <compositional-members>
 <attributes/>
 <interfaces>
 <interface name="zip" selected=
 "true" return-type="File"/>
 <modifiers-list scope="public"/>
 <parameters>
 <parameter Type="File" name="f">
 <parameter Type="String"
 name="oper">
 </parameters>
 <dependency-list/>
 <methods>
 <method name="displayUsage"
 return-type="String"/>
 <modifiers-list
 scope="public"/>
 <parameters/>
 </dependency-list>
 </dependency-list>
 </interface>
 <interface name="gzip" selected=
 "true" return-type="File"/>
 <modifiers-list scope="public"/>
 <parameters>
 <parameter Type="File"
 name="f">
 <parameter Type="String"
 name="oper">
 <parameters/>
 <dependency-list/>
 <methods>
 <method name="displayUsage"
 return-type="String"/>
 <modifiers-list
 scope="public"/>
 <parameters/>
 </dependency-list>
 <methods>
 </dependency-list>
 </interface>
 </interfaces>
 </compositional-members>
</component>

During the first phase, the component core members

and compositional interface members must be defined
by the software constructor in a similar way to that in
which object-oriented classes are defined. The output
of this phase is the component definition source code
as illustrated in Table 2.

Component
core defintion

and
compostional
interface

definitions

Core
implementation

and
compositional

interface
implementations

Compilation and
generation of core

skeleton and
compositional

interface
skeletons

Compilation of
skeleton

implementations
and generation
of composition

descriptor

Figure 4. CSCM component construction process

phases

During the second phase, the component definition
source code is passed to the CSCM compiler for
compilation. The outputs of this phase, as illustrated in
Figure 1, are the core skeleton as well as the skeletons
for each compositional interface.

The implementation of the component skeletons has
to be done by the software constructor in the third
phase. The output of this phase (see Figure 1) is the
component implementation source code which includes
the implementation of the core skeleton as well as the
implementation of each compositional interface
skeleton.

During the fourth phase, the component
compositional interface skeleton implementations and
core skeleton implementation are passed again to the
CSCM compiler (see Figure 1) to generate the
composition descriptor as well as the source and binary
code of the components implementation. The output of
this phase is a CSCM component ready for
composition, inheritance and instantiation.

 Illustrations of the source code implementation for
the core skeleton and compositional skeletons for the
component shown in Table 2 are presented respectively
in Table 4 and Table 5.

4.2. Software application construction process

The process of software application construction
using CSCM components requires the completion of
two tasks: first, the software constructor has to select

the component’s compositional interfaces needed (to
satisfy the application requirements) via the
components’ composition descriptors. Second, the
software constructor has to use and manipulate the
components as if it were casual object oriented class.

Whenever an instance of a CSCM component is to
be created with a different combination of
functionalities, this instance must be provided with the
appropriate composition descriptor instance. For
instance, to select a particular interface implementing a
required functionality, the developer has to set the
value of the parameter "selected" of the
compositional interface element to "true" in the
component composition descriptor as shown in Table
3. The name of the file containing the composition
descriptor instance must be passed at instantiation as a
parameter to the component‘s constructor.

Table 4. Component core implementation code
public class Compressor {
 /* this code is generated by CSCM
 compiler */
 java.util.Hashtable

 compositionalInterfaces;

 Compressor(new File(
 "compositonDescriptor"){
 initializeCompositionals();

 }
 Public void initializeCompositionals(){
 compositionalInterfaces = new

 java.util.Hashtable();
 /* for every selected interface in the
 composition descriptor create an
 instance of the interface and store
 in the hash table
 compositionalInterfaces */

 }
// core method

 public String displayUsage(){
 return new String();

 }
 // compositional interfaces
 Private File gzip(File f,String oper){

 return((gzipClass)
 compositionalInterfaces.get(

 "gz")).gzip(f, oper);
 }
 private File zip(File f, String oper){

 return((zipClass)
 compositionalInterfaces.get(
 "z")).zip(f, oper);

 }
}

5. CSCM Java inheritance issues

CSCM component are object oriented types
equipped with a composition mechanism which after
transformation by the CSCM compiler are mapped to
ordinary Java components.

In this section, we explain how the object-oriented
inheritance mechanism is handled by a Java
implementation of CSCM model.

Table 5. Compositional interfaces skeletons

implementation code
Public class zipClass {
 /* The code is generated by the CSCM
 Compiler */

Compressor __This;
zipClass(Compressor comp){
__This = comp;
}
public File zip(File f, String oper) {
 __This.displayUsage();
 return new File("testTextFile.txt");
}

}
Public class gzipClass{
 Compressor __This;
 gzipClass(Compressor comp){
 __This = comp;
 }

public File gzip(File f, String oper){
 __This.displayUsage();
 return new File("testTextFile.txt");

 }
}

5.1 CSCM and Java class inheritance

CSCM components may inherit other CSCM
components as well as casual Java classes using the
same syntax rules of Java class inheritance; i.e., using
the reserved word "extends". Consequently, the same
rules that apply to class inheritance apply also to
CSCM components inheritance with minor differences
as will be shown below.

When a CSCM component inherits another base
CSCM component, not only it inherits the composition
descriptor of the base component, but also its
compositional interfaces.

However, when a CSCM component inherits a
casual Java class, the members of the inherited base
class will be available to other CSCM components as
core members only.

5.2 CSCM and Java interface inheritance
 CSCM components may inherit Java interfaces using
the Java "implements" keyword. Similar to the way in
which Java classes implement interfaces, CSCM
components have to fulfill the contract dictated by the
interface they implement. Moreover, the inherited
members will be available as core members only.

6. Related work

Several software construction approaches have

emerged to enhance software reuse, flexibility and

maintenance. For instance, Mixin and role oriented-
programming [15] allows the reduction of redundancy
in different classes by sharing their common behavior
through roles. View-oriented programming [16] allows
object evolving over time to attach new views
depending on new requirements.

Aspect-oriented programming [17], which is the
most popular among these approaches, allows for
automatic cross-cutting static waving of aspects such
as logging, failure handling, etc. across objects [18].
Consequently, these aspects which are separate code
chunks injected across objects yield therefore less
entangled code [19].

Although these approaches represent significant
enhancement and extension to the object oriented
paradigm, they have been designed to tackle different
issues from the main issue addressed by the CSCM
model.

Unlike Aspect-oriented programming, CSCM
model CSCM model tackles dynamic composition of
existing functions of components. In other words
CSCM model does not inject code chunks, but
provides a flexible mechanism for selective
composition of existing functionalities.

The difference between the CSCM model and the
approaches mentioned above is that the CSCM model
is designed to allow for the construction of software
components with a specified variable list of
functionalities. The functionalities are selected in a
composition descriptor at runtime. The modification of
the composition descriptor is a configuration task
which does not lead to modification of the source code
nor even its presence. It is this property of dynamic
selection of the functions of CSCM components which
tackles the issue of excessive unwanted functionalities.

Similar work conducted by Al-Hatali and Walton
[20] on the issue of excessive unwanted functionalities
suggests the use of compositional wrappers to hide a
component’s unwanted functionalities, thereby
remedying this behavioral side effect. However, such
an approach does not completely solve the problem
because even it is hidden the excessive functionalities
code persists inside the component’s code.
Furthermore, considerable efforts must be expended to
devise the wrapping code, which is not the case when
CSCM component are used instead.

7. Current and future work

Currently, we are concentrating our efforts on the
development of the CSCM compiler targeted to the
Java programming language. Future work will explore
and address distribution and interoperability through
integration of the CSCM with other component model
such as CORBA. Even though attribute composition is

an interesting issue, it is not currently addressed for
implementation efficiency reasons and could be
addressed later. Once the implementation is ready,
validation with a variety of components and
applications will be conducted. Furthermore, an
empirical study to validate and measure the efficiency
of the model will be the subject of a subsequent
research work. Also, we intend to explore venues for
optimization in order to reduce the computational
overhead that might be incurred. Furthermore,
possibility of implementing the CSCM in C++ will be
considered.

8. Summary and discussion

In this paper, we have presented the CSCM model
designed to allow the construction of software
components with variable lists of functionalities
selected according to components’ composition
descriptor instances at runtime. The capability offered
by CSCM component to select the required
functionalities tackles the issue of excessive unwanted
functionalities. Furthermore, software maintenance,
modification and reuse can be significantly eased and
simplified.

It can be argued that this model incurs a certain
computational overhead due to initialization tasks and
per instance composition descriptor file loading. This
observation can be made about most of component
models, however.

Moreover, the computational overhead incurred
when using CSCM components might be reduced by
means of native language support and optimization.

We think that the power of CSCM components can
be efficiently tackled in the development of software
application families. Software application families are
most likely to reuse coarse to large-grained software
components across families of applications with
different functional configuration and capabilities.

10. References

[1] P. Maurer, Component-Level Programming: Pearson

education Inc., 2003.
[2] M. D. McIlroy, "Mass Produced Software

Components," NATO Software Engineering
conference, 1968.

[3] D. E. C. Microsoft Corporation, "The Component
Object Model Specification."
http://www.microsoft.com/com/resources/comdocs.asp,
1995.

[4] C. Szyperski, "Emerging component software
technologies--a strategic comparison," Software--
Concepts & tools, pp. 2-10, 1998.

[5] I. Jacobson, "Component-based Development with
UML," 1998.

[6] T. Heineman, G. and T. Council, W., "Component-
Based Software Engineering," Addison-Wesely, 2001.

[7] J. Li, "A Survey on Microsoft Component-based
Programming Technologies," Concordia University,
Montreal 1999.

[8] L. Vanhelsuwe, Mastering JavaBeans: Sybec Inc.,
1997.

[9] J. Ongg, "An Architectural Comparison of Distributed
Object Technologies," MIT june 1997.

[10] S. Ghosh, "Improving Current Component
Development Techniques for Successful Component-
Based Software Development," ICSR7 2002 Workshop
on Component-based Software Development Processes,
2002.

[11] A. Rashid, "Aspect-Oriented and Component-Based
Software Engineering," IEEE Proceedings-Software,
2001.

[12] SEI, "CBS Overview." [Online]:
http://www.sei.cmu.edu/cbs/index.html: Software
Engineering Institute, 2003.

[13] C. P. Clements, "From Subroutines to Subsystems:
Component-Based Software Development," in
Component-Based Software Engineering: Selected
Papers from the Software Engineering Institute. Los
Alamitos, CA: IEEE Computer Society Press, 1996.

[14] A. Abran, J. Moore, P. Bourque, R. Dupuis, and L.
Tripp, Guide to the Software Engineering Body of
Knowledge - SWEBOK. Los Alamitos (USA): IEEE-
Computer Society Press, 2001.

[15] J. Brown, T., Spence, T., Kilpatrick, P., "Mixin
programming in Java with reflection and dynamic
invocation," Proceedings of the Inaugural conference
on the Principles and Practice of programming, and
Second workshop on Intermediate representation
engineering for virtual machines, Dublin, Ireland, 2002.

[16] H. Mili, J. Dargham, A. Mili, O. Cherkaoui, and R.
Godin, "View programming for decentralized
development of OO programs," Proceedings on
Technology of Object-Oriented Languages and
Systems, 1999., 1999.

[17] R. J. Walker, E. L. A. Baniassad, and G. C. Murphy,
"An initial assessment of aspect-oriented
programming," Proceedings of the 1999 International
Conference on Software Engineering, 1999.

[18] C. Krzysztof, Eisenecker, W., U., Steyaert, P., "Beyond
Objects: Generative Programming," presented at
Proceedings of the Aspect-Oriented Programming
Workshop At ECOOP97, Finland, 1997.

[19] S. K. Miller, "Aspect-oriented programming takes aim
at software complexity," Computer, vol. 34, pp. 18-21,
2001.

[20] M. S. Al-Hatali and H. G. Walton, "Smart Features for
Compositional Wrappers," ICSR7 2002 Workshop on
Component-based Software Development Processes,
Austin, Texas, 2002.

