
CoMet: A Tool Using CUMM to Measure Unused Component Members 
 
 

Hamdan Msheik1, Alain Abran1, Hamid Mcheick2, Dimitrios Touloumis1, Adel Khelifi3 
Software Engineering Department, École de Technologie Supérieure, Université du Québec,  

1100 Notre-Dame Ouest, Montréal (Québec) Canada,  H3C 1K3 
hamdan.msheik.1@ens.etsmtl.ca1, aabran@ele.etsmtl.ca1, 

dimitrios.touloumis.1@ens.etsmtl.ca1 
  

Department of Computer Science, Université du Québec à Chicoutimi, 555, Boulevard de 
l’Université, Chicoutimi (Québec) Canada, G7H 2B1 

 hamid_mcheick@uqac.ca2 
 

Department of Software Engineering, ALHOSN University, Abu Dhabi, United Arab Emirates, 
P.O. BOX. 38722 

 a.khelifi@alhosnu.ae3 
 
 

Abstract 
 

Software component technology has become a 
major pillar of the IT evolution. The benefits of this 
technology, such as reuse, enhanced quality and 
relatively short application development time, have 
been key drivers of its industrial adoption. However, 
in its progress towards maturity, component 
technology has suffered from a number of limitations, 
such as unused component members (data and 
functionalities). For instance, a reusable software 
component incorporates a set of members, a size-
varying subset of which is actually used to satisfy the 
functional requirements of a particular software 
application. This means that a complementary subset 
of unused members will persist in the deployed 
application, where this subset provides no functional 
value to the host application. Furthermore, these 
unused members can consume memory and network 
resources and might compromise application 
integrity and/or security if they are exploited 
inappropriately. In this paper, we propose CoMet, a 
prototype tool which applies CUMM (Component 
Unused Member Measurement) method to measure 
unused component members (attributes and 
functionalities) and their usage percentages in a 
software application.  
 
 

1. Introduction 
 

Software component technology emergence has 
been directed towards tackling traditional problems , 
such as application complexity, parts reuse and the 
reduction of software development costs [1, 2]. 
Components are attractive because they exhibit long 
advocated software characteristics like  modularity 
and cohesion. Moreover, their impact on software 
development has been described as another 
computing revolution on a par with those of stored 
programs and programming languages [1]. 

Although software components and object-
oriented classes exhibit a number of differences, they 
have enough commonalities to the extent that they 
are used interchangeably. Jacobson [2] defines a 
component as a physical and replaceable part of a 
system which realizes, and conforms to, a set of 
interfaces. According to this definition, a complete 
application per se can be considered as a component, 
as can a single class. In this paper, the term 
component will therefore refer to: a complete 
software application, a software component 
(subsystem) or an ordinary class constructed using an 
object-oriented programming language.  

While software components have been subject to 
continuous enhancement, they still suffer from 
certain limitations, in particular the presence of 
unused functionalities [3,15]. Typically, a component 
“owns” a set of functions satisfying specific 



 2 

functionalities in a particular software application. 
Whenever a new application is developed, and when 
this application reuses a particular component, it 
actually reuses subsets of the data and functionalities 
possessed by that component. In other words, the 
complementary subsets of the component’s used data 
and functionalities are unused, and therefore their 
presence provides no value to the newly developed 
application. Consequently, these sets of unused 
functionalities inefficiently consume computing 
resources such as memory and network bandwidth. 
Moreover, these unused data and functionalities can 
be a source of side-effects which might compromise 
application integrity and security if this behavior is 
exploited inappropriately.  

The evolution of component development is 
expected to rely heavily on software engineering 
principles and practices such as  software 
measurement methods. For instance, we believe that 
the application of software measurement methods on 
components could contribute to their quality, 
popularity, exploitation and widespread industrial 
acceptance. In this respect, it is of interest to assess 
the extent of a component’s unused members and to 
provide the measurement results to software 
engineers so that they can make informed decisions 
regarding the suitability of that component to their 
applications. In [4], a measurement method –  
CUMM (Component Unused Member Measurement 
– was proposed to calculate the number of unused 
members a component has. Up to now, using CUMM 
to calculate a component’s unused members was a 
manual process, and obviously an awkward and time-
consuming one. 

In this paper, we propose CoMet as an 
experimental prototype tool which uses CUMM to 
measure a component’s unused members and their 
usage percentages. In section 2,  background 
information on component-based software 
engineering and software measurement is presented. 
The CUMM method is presented in section 3, and the 
CoMet tool in section 4. Section 5 briefly presents 
current and future work, and section 6 presents a 
summary and a discussion. 
 
2. Background 
 
2.1 Component-based software engineering 
 

Software engineering processes have evolved 
through several programming paradigms over the 
relatively short history of software development. 
Since its emergence in the early ’90s, component-

based software engineering has become a major trend 
in software development processes. 

One of the goals of software engineering is to take 
the software construction process to higher levels of 
automation [5] in order to reduce software 
complexity and increase reuse. This transfer to higher 
automation levels is realized through software 
development techniques such as component assembly 
and the use of compositional languages.  

The component-based software engineering 
(CBSE) process is divided into two distinct processes 
[6, 7]: component engineering and application 
engineering. The first deals with the analysis and 
development of domain-generic and domain-specific 
components, while the latter deals with software 
application development by assembly, composition, 
integration and the plugging in of components like  
COTS (commercial off-the-shelf), as well as others 
developed in-house.  

The Software Engineering Institute at Carnegie 
Mellon University [8] uses the expression CBSD to 
refer to the process of software development by the 
assembly and integration of software components. 
Essentially, CBSE and CBSD refer to more or less 
the same process. The focus of CBSE is the 
development of software by assembling and 
integrating COTS and other existing types of 
components , with an emphasis on composition rather 
than on programming [9]. It assumes that certain 
software parts are common to several software 
applications; therefore, it would be advantageous to 
reuse them for reasons such as [8] these:  
• Better COTS quality and diversity 
• Pressure to reduce development and maintenance 

costs 
• Use of standards and open systems, and the 

emergence of integration mediators such as 
CORBA ORBs (Object Request Brokers) 

• Increase in the enterprise’s inventory of 
potentially reusable software components 

 
2.2. Component-based software construction 
 

Software construction can be considered as a 
subprocess which matches the implementation phase 
in the software development life cycle. According to 
the SWEBOK (Software Engineering Body of 
Knowledge) [14], software construction per se is a 
software engineering knowledge area which 
encompasses the activities of software coding, 
validation and unit testing. This  software construction 
subprocess must be instantiated taking into account 
four general principles (reduction of complexity, 
anticipation of diversity, structuring for validation 



 3 

and the use of external standards), as well as the tools 
used by this subprocess such as compilers, code 
generators and development tools [14].  

As software design breaks software down into 
smaller parts for construction, those parts are 
expected to comply with the general principles of 
software construction. Interestingly, component-
based software construction meets these four general 
principles. For instance, components can reduce the 
complexity of an application through being modular, 
reusable parts available from specialized suppliers 
instead of being developed in-house. In addition, 
being reusable and replaceable, they will comply  
with the principle of anticipation of diversity. 
Furthermore, breaking down a software application 
into modular components will make it is easier to 
validate them. Finally, software components 
generally conform to component models (CORBA, 
EJB, .NET), and as such they abide by standards.  
 
2.3 Software measurement 
 

Software measurement can help in the evaluation 
of software quality attributes , so that better software 
development decisions can be made and better 
process control can be exerted. Moreover, the 
application of software measurement is needed in 
order to move activities in the software engineering 
process from a set of craft activities towards rigorous 
and well controlled engineering activities guided by 
rigorous measurement. In this respect, the IEEE [10] 
defines software engineering as “the application of a 
systematic, disciplined quantifiable approach to the 
development, operation, and maintenance of 
software; that is, the application of engineering to 
software.” 

Software measurement theory allows the empirical 
domain to be mapped to a numerical domain. In other 
words, software objects are measured in terms of 
quantitative values rather than qualitative ones. Over 
the years, various software measures have been 
proposed and classified into three major classes: 
process measures, product measures and resource 
measures [11].  

Unfortunately, the way in which the empirical 
quantitative values of software measures are mapped 
to semantically meaningful qualitative values is still 
problematic [12]. Research in software measurement 
is aimed at  providing sound models, methodologies 
and measurement frameworks to the design and use 
of software measures. The objective of these models, 
methodologies and measurement frameworks is to 
establish software measures for the software 
engineering discipline in a way similar to that in 

which measures are established in other engineering 
disciplines [12, 13]. 

Traditionally, several software measurement 
methods have been defined in the form of 
mathematical formulas for deriving numerical values. 
The calculation results are then used in various types 
of models for evaluation and decision-making 
purposes. It is observed that few of these 
measurement methods have been defined according 
to well-defined measurement processes. 

Therefore, to ensure the soundness of the CUMM 
design, we used the measurement process model 
suggested in [13] and illustrated in Figure 1. This 
high-level model is  a four-step roadmap to be 
followed in the design and validation of software 
measurement methods. The first step requires the 
“definition of the measurement method objectives, 
design and selection of the metamodel for the objects 
to be measured, the characterization of the concepts 
to be measured, and the definition of the numerical 
assignment rules.” The second step requires the 
construction of the metamodel using the appropriate 
software documentation and the application of the 
measurement method to calculate the numerical 
values. The third step requires the analysis, 
documentation and auditing of the measurement 
result. In the fourth step, the actual exploitation of the 
measurement result will be carried out.  
 

 
Figure 1. Measurement process – high-level model 

[13] 
 
3. Overview of the CUMM Method 
 
3.1 The CUMM design 
 

CUMM is  a software measurement method which 
measures the number of software entity (component) 
unused members (attributes and functionalities), their 
usage percentages and their memory consumption in 
a host software application [4].  

CUMM applies to software entities which are 
components constructed using object-oriented 
programming languages. It is important to mention 
that the terms entity and component are used 
interchangeably in the context of CUMM. An entity 
measured by this method can be: i) a complete 
software application treated as a single, whole 
component, ii) a subsystem component, or, simply, 
iii) an ordinary object-oriented class considered in the 
context of CUMM as a whole component. 



 4 

In addition, CUMM has been provided with ad 
hoc analysis models which use CUMM results to 
determine: a) the degree of generality of a software 
component’s members, and b) the number of the 
component’s unused members as a percentage.  

When measuring the memory consumption of the 
elements (attributes and functionalities) of an entity,  
CUMM measures only the static memory consumed 
by the elements of an entity. In other words, CUMM 
does not calculate the amount of dynamic memory 
consumed by the objects created by an entity at 
runtime. The amount of an entity’s consumed 
memory is the summation of the memory consumed 
by the binary code of that particular entity and the 
memory consumed by its aggregate classes in a 
recursive manner. More information on CUMM 
application and calculation can be found in [4] and in 
Box A. 
 

 
The number of unused members (attributes or 

functions) is calculated by counting the number of 
times that member type is referenced in the code of 
the measured entity context. The summation of the 
number of members having a zero reference value 
is effectively the number of unused members of a 
component. According to the component member 
being measured, the unit of the measurement result 
is “attribute per component”, denoted “ac”, or 
“function per component”, denoted “fc”.  

The memory consumed by unused members of 
a  particular component is calculated as follows: 
For the component’s attribute members, the 
summation is made of the memory consumed by 
each attribute’s type reference size. Similarly, for 
the component’s functional members, the 
summation is made of the memory consumed by 
each unused function. The measurement result unit 
is a “byte”. 

Expressed in mathematical formulas, the 
numerical assignment rules for the number of a 
component’s unused members are defined as 
follows: 

Let A  be the set of a component’s unused 

attributes and au ∈¥  be the number of unused 

attributes, then au A= . 

Let F be the set of a component’s unused 
functionalities and fu ∈¥ be the number of 

unused functionalities, then fu F= . 

 
Box A. CoMet Numerical Assignment Rules  

3.2 Applying CUMM 
 

The application of the method requires three 
substeps:  

Substep 1: Gather the software documentation 
related to the entities subject to measurement. In the 
context of CUMM entities, they can be either 
topmost or inner entities, an inner entity being a 
component used by another, outer component which 
is referred to as the outer context of the entity. 
Documentation artifacts of an entity subject to 
measurement can be in the form of either the source 
or reflective binary code of: a) the entity’s outer 
context, b) the entity itself, and c) recursively, any 
nested entities  it owns. 

Substep 2: Construct a software model by 
instantiating the CUMM generic metamodel (see 
Figure 2). The software model is constructed by 
instantiating the generic metamodel in Figure 2, 
taking as input the documentation artifacts gathered 
in substep 1. The constructed model leads to the 
identification of the measurable characteristics of the 
entity subject to measurement.  
 

 
Figure 2. Generic metamodel representation of the 

application and its components  
 

Substep 3: Apply the numerical assignment rules. 
The application of the numerical assignment rules 
makes it possible to assign quantifiable values to the 
measurable characteristics of the entity subject to 
measurement, and, eventually, to calculate the 
measurement results. 
 



 5 

4. CoMet (Component Measurement) 
Tool 
 
4.1 Overview 
 

The CoMet measurement process takes as input 
component binary code artifacts, performs 
measurement data collection, analysis and 
calculation, and provides the calculation results, as 
shown in Figure 3. 
 

 
Figure 3. CoMet measurement process  

  
4.2 CoMet environment 
 

CoMet has been developed as a Java prototype 
tool to automate the CUMM measurement process. 
This automation considerably reduces the 
measurement effort that would otherwise be incurred 
had the measurement process been performed 
manually. CoMet is an experimental tool developed 
to measure components written in Java. 

The current version of CoMet makes use only of 
the binary code artifacts of a software component to 
calculate the measurement results. There are several 
reasons for this: a) for certain components, especially 
proprietary ones, the only code artifact available for 
measurement is the binary code, b) it is relatively 
much easier to conduct measurement activities on the 
reflective binary code than on the source code, since 
the former is cleaner and more condensed, c) it is 
advantageous to reuse open source libraries to reduce 
the development effort required to build CoMet. 

Internally, CoMet is  developed as a collection of 
Java classes and reuses BCEL (Byte Code 
Engineering Library), an apache open source project 
for manipulating Java byte code [14]. 
 
4.3 CoMet realization 
 

CoMet is designed with a GUI interface through 
which the user specifies the component to be 
measured and observes the measurement results 
reported when the calculation has been terminated 
(see Figure 6). 

CoMet takes as input the name of the component 
to be measured (see top of Figure 6) and the binary 
code of the application which uses that component. 
The binary code of the application must be available 
on the classpath of CoMet. As output, it generates a 

report detailing the measurement results. The 
information presented in the report shows the number 
of unused members (attributes and methods) and the 
percentage of their usage, as shown in Figure 5.The 
CoMet analysis method is a two-part process – 
source analysis followed by measurement data 
extraction. During the execution of the first process, 
the component-referenced member types are indexed 
using a recursive depth-first transversal algorithm. 
When the recursive algorithm terminates, the analysis 
of member methods begins. The analysis of member 
method results generates a call graph and collects 
relevant measurement data. The second major step 
consists in: a) transforming the measurement data 
collected into meaningful measurement information 
through the application of the CUMM calculation 
formulas, and b) presenting the measurement to the 
user. 

An object model (see Figure 4) was developed to 
represent the measurement data harvested from the 
indexing process to allow simplified subsequent 
transformation. In this model, classes and members 
are separated, so as to permit direct access and 
accelerate the look-up process during the member 
analysis. The model registry class acts both as a 
repository and a factory to prevent duplicate 
representation of identical data. In addition, the 
model was designed in a way which facilitates an 
eventual integration with a database for data 
persistence and optimization of subsequent analysis 
of data. 

 
Figure 4. CoMet Object Model (simplified) 

 
4.4 CoMet in action 
 

To illustrate the features of CoMet, a small 
example is used (see Figure 5) containing a 
component consisting of the class 
ShowWelcomeMessage with one data member and 
one method member. As shown in Figure 6, and, as 



 6 

unexpectedly as it might seem, CoMet calculated the 
total number of methods used by this component as 
869. Obviously, this number of methods comes from: 
a) the inherited methods from the Object father class 
of all Java classes, b) the methods of all the classes 
(String, System, etc.) used by the 
ShowWelcomeMessage, and c) recursively, the 
methods inherited by those classes used by the 
ShowWelcomeMessage component. The 
ShowWelcomeMessage component in its current 
state makes use of 448 methods. Expressed as a 
percentage, the ShowWelcomeMessage component 
makes use of only 51.55 percent of the loaded 
methods. As for the number of data members of the 
ShowWelcomeMessage component, the same 
argument holds as for the method members.  
 
 
public class ShowWelcomeMessage { 
  static String message; 
  
  Public static void main(String[] args) { 
    message = new String("Hello  
                   from CoMet!"); 
          
    System.out.println(message); 
  } 
} 

Figure 5. Example 
 

 
Figure 6. CoMet measurement results  

 

4.5 Current limitation 
 

CoMet in its current state has  a limitation as to the 
functionalities implemented so far to automate 
CUMM application. For instance, if there are 
component members used solely inside the body of a 
member method, they are not yet taken into 
consideration. Consequently, the CoMet calculated 
measurement results are not completely accurate in 
some instances. However, they do still provide a 
relevant indicator of the number of a software 
component’s unused members and their usage in a 
software application. 
 
5. Current and future work 
 

Currently, our research is focused on addressing 
the implementation issue that leads to inaccurate 
results in certain instances , as mentioned in section 
4.3. Now, a number of features can be added to 
CoMet, and in future work we are considering the 
addition of an implementation module to analyze a 
component member’s byte code and to calculate the 
memory consumed by unused members.  

Another possible enhancement would be to target 
the user interface, which could be useful in giving the 
user more control over: a) the components to be 
measured, b) the path-setting of the application that 
uses the component being measured, and c) the 
inclusion or exclusion, on an optional basis, of 
certain library components , such as Java API, so that 
they will be ignored during the measurement process.  

Ultimately, we will consider conducting 
experimental measurement case studies covering a 
number of open source components to measure their 
members’ percentage usage and memory 
consumption in different application settings.  
 
6. Summary and conclusion 
 

In this paper, we have presented CoMet, a tool to 
automate measurement of a software component’s 
unused members according to the CUMM 
measurement method. The current version of CoMet 
provides a valuable indicator to users of CUMM. The 
results calculated by the measurement method have a 
cross-cutting impact on a number of ISO/IEEE 
standard [10] quality characteristics and 
subcharacteristics. For instance, unused 
functionalities could indicate that the security 
subcharacteristic of the application that makes use of 
these functionalities might be compromised. 
Similarly, the maintainability characteristic is 



 7 

impacted by the number of unused functionalities in 
terms of the effort that might be required when 
adapting and customizing the software components 
concerned. 
 
7. References 
 
[1] P. Maurer, Component-Level Programming, Pearson 
Education Inc., 2003. 
 
[2] I. Jacobson, “Component-based Development with 
UML,” 1998. 
 
[3] M. S, Al-Hatali and H. G. Walton, “Smart Features for 
Compositional Wrappers,”  ICSR7 2002 – Workshop on 
Component-Based Software Development Processes, 
Austin, Texas, 2002. 
 
 [4] H. Msheik, A. Abran, H. Mcheik and P. Bourque, 
"Measuring Components Unused Functions," 14th 
International Workshop on Software Measurement (IWSM) 
IWSM -Metrikon 2004, Konigs Wusterhausen, Magdeburg, 
Germany, 2004, pp. 367-380. 
 
[5] A. Abran, J. Moore, P. Bourque, R. Dupuis and L. 
Tripp, Guide to the Software Engineering Body of 
Knowledge – SWEBOK – 2004 version: IEEE-Computer 
Society Press, Los Alamitos, California, 2001. 
 
[6] S. Ghosh, "Improving Current Component 
Development Techniques for Successful Component-Based 
Software Development", ICSR7 2002 Workshop on 
Component-based Software Development Processes, 
Austin, Texas, 2002. 
 
[7] A. Rashid, "Aspect-oriented and component-based 
software engineering," IEEE Proceedings – Software, vol. 
148, pp. 87-88, 2001. 

 
 [8]  SEI, "CBS Overview." [Online]: 
http://www.sei.cmu.edu/cbs/index.html: Software 
Engineering Institute, 2003. 
[9] C. P. Clements, "From Subroutines to Subsystems: 
Component-Based Software Development," in Component-
Based Software Engineering: Selected Papers from the 
Software Engineering Institute,: IEEE Computer Society 
Press, Los Alamitos, California, 1996. 
 
[10] IEEE, "Standard Glossary of Software Engineering 
Terminology ,” IEEE Standard 610.12, Computer Society, 
Los Alamitos, California, 1990. 
 
[11] R. R. Dumke and A. S. Winkler, "Managing 
component-based software engineering with metrics," Fifth 
International Symposium on Assessment of Software Tools 
and Technologies, 1997. 
 
[12] H. Zuse, A Framework of Software Measurement. 
Berlin, 1997. 
 
[13] J.-P. Jacquet and A. Abran, "From Software Metrics to 
Software Measurement Methods: A Process Model," IEEE 
Third International Symposium and Forum on Software 
Engineering Standards (ISESS'97), Walnut Creek, 
California, 1997. 
 
[14] Apache, [Online]:  
http://jakarta.apache.org/bcel/manual.html. 
 
[15] H. Msheik, A. Abran and E. Lefebvre, "Compositional 
structured component model: handling selective functional 
composition," 30th Euromicro Conference on Component-
Based Software Engineering, Rennes, France, IEEE 2004, 
pp. 74-81. 

 


