
 Measuring Components Unused Members

IWSM/MetriKon 2004

Measuring Components’ Unused Members

Hamdan Msheik, Alain Abran, Hamid Mcheick, Pierre Bourque
Software and IT Engineering Department, École de Technologie Supérieure,

 1100 Notre-dame Ouest, Montréal (Québec), Canada, H3C 1K3

hamdan.msheik.1@ens.etsmtl.ca, aabran@ele.etsmtl.ca, pbourque@ele.etsmtl.ca

Department of Computer Science, Université du Québec à Chicoutimi

 555, Boulevard de l’Université, Chicoutimi (Québec), Canada, G7H 2B1

hamid_mcheick@uqac.ca

Abstract:

Currently, components technology represents a major step in the evolution of
software technology as a whole. Although it has been undergoing continuous
enhancement, this technology suffers from a number of limitations: in
particular, components’ unused functionalities. For instance, a software
component incorporates a set of functions of which a size-varying subset is
actually used to satisfy the functional requirements of a particular software
application. Consequently, a subset of unused functionalities will persist in the
deployed application. This subset of unused functionalities provides no
functional value to the hosting application. Furthermore, these unused
functionalities consume memory and network resources and might compromise
application security if they are exploited inappropriately. In this paper, we
propose CUMM (Components’ Unused Member Measurement), a method to
measure components’ unused members (attributes and functionalities), and their
memory consumption inside a software application. Furthermore, we present a
set of analysis models which use the results of the CUMM to determine
percentages of unused members as well as the degree of generality of a
component’s members.

Keywords

Measurement, Components’ Unused Members Measurement, metrics, memory
consumption

1 Introduction

Software components have emerged as an important paradigm to address several
traditionally known problems such as complexity, reuse and reduction of
software development costs [1, 2]. The importance of components in software
development has led some to describe the use of components as another
computing revolution on a par with those of stored programs and programming
languages [3]. The use of components is aimed at achieving better reuse and at

Hamdan Msheik, Alain Abran, Hamid Mcheick, Pierre Bourque

 Software Measurement Conference

reducing the complexity of developed applications and the efforts expended on
development. Furthermore, components are attractive since they go hand in hand
with long advocated software design practices and characteristics such as
modularity and cohesion.

Software components have several commonalities with object-oriented classes,
to the point that they are sometimes undistinguishable from them. Jacobson in [4]
defines a component as a physical and replaceable part of a system that realizes
and conforms to a set of interfaces. According to this definition, a complete
application per se can be considered a component. In this paper, the word
component refers to: a complete software application, a software component
(subsystem) or a ordinary class constructed using an object-oriented
programming language.

Even though software components have been undergoing continuous
enhancement, they still suffer from the limitation of unused functionalities [5].
Typically, a component possesses a set of functions which satisfy specific
functionalities in a particular software application. When reused in a different
application, several component functionalities are unused and therefore provide
no value in the application context in which they are used. These unused
functionalities consume computing resources , such as memory and network
bandwidth, inefficiently. Furthermore, these unused functionalities might
compromise application security if they are exploited inappropriately. In this
paper, memory consumption refers to what the static code occupies in memory,
and not memory consumed by the dynamic creation of objects during runtime.

The unused functionalities exhibited by a software component in particular
application contexts are caused by the tendency of software components to be
coarse and large-grained. In such components, the set of useful and required
functionalities provided by a particular component varies according to the
particular software application context. Typically, during the development of
software application families, considerable effort is expended on the wrapping,
adaptation and customization of the functionalities of components shared by the
various constituent applications.
In this paper, we propose CUMM (Component Unused Member Measurement),
a method to calculate the number of a component’s unused attributes and
functionalities and their memory consumption. Furthermore, we present a set of
statistical formulas which make use of the measurement method result to
calculate: a) the percentages of unused functionalities and their memory
consumption on a per component and a per application basis, and b) the degree
of a component’s functional and attribute generality.

We begin section 2 by presenting a background of software measurement. Next,
we present the CUMM method and a set of statistical formulas which derive
from the results of the CUMM method. We present in section 4 an example

 Measuring Components Unused Members

IWSM/MetriKon 2004

which shows how to apply the CUMM method. Finally, we conclude in section 5
with a summary and a discussion.

2 Background

Software measurement can help evaluate software quality attributes and in making
better decisions and controlling software and its development process. In this
respect, the IEEE [6] defines software engineering as: “The application of a
systematic, disciplined quantifiable approach to the development, operation,
and maintenance of software; that is, the application of engineering to
software”.

 Software measurement theory allows for the mapping of the empirical domain to
a numerical domain. In other words, software objects are measured in terms of
quantitative values. Several software measures have been proposed over the
years, but the problem lies in the way the measures’ empirical quantitative values
are mapped to semantically meaningful qualitative values [7]. Research efforts
have been concentrated on providing sound models, methodologies and
measurement frameworks for the design and use of software measures so that
these measures are established for a software engineering discipline in a similar
way to the measures used in other engineering disciplines [7, 8].
Traditionally, and by analogy to the way other engineering disciplines define
measurement methods, several software measurement methods have been
defined in the form of mathematical formulas that lead to the calculation of
numerical values. The results of calculations are then used in various types of
models for evaluation and decision-making purposes. It is observed that fewer of
these measurement methods have been defined according to well-defined
measurement processes.

Therefore, to define the proposed CUMM method on a sound basis, we resorted
to the measurement process model suggested in [8], which is illustrated in Figure
1. This high-level model sets up a four-step road map to be used in the design
and validation of software measurement methods. According to [8], the first step
requires the “definition of the measurement method objectives, design and
selection of the metamodel for the objects to be measured, the characterization
of the concepts to be measured, and the definition of the numerical assignment
rules”.

 The second step requires the construction of the metamodel using the
appropriate software documentation and the application of the measurement
method to calculate the resulting numerical values. The third step requires the
analysis, documentation and auditing of the measurement result. In step four, the
actual exploitation of the measurement result will be carried out.

Hamdan Msheik, Alain Abran, Hamid Mcheick, Pierre Bourque

 Software Measurement Conference

Figure 1: Measurement process – high-level model [8]

3 Overview of the CUMM Method

The CUMM method measures the number of a software entity’s unused
members (attributes and functionalities), and their memory consumption inside a
software application. Furthermore, we present a set of analysis models that use
the results of the CUMM to determine the degree of generality of a software
entity’s members, as well as percentages of its unused members.

The CUMM method applies to software entities which are components
constructed using object-oriented programming languages. An entity measured
by the CUMM method can be: i) a complete software application treated as a
whole and single component, ii) a subsystem component, or simply iii) an
ordinary object-oriented class considered in the context of the CUMM method
as whole component.
The CUMM method measures the static memory consumption of the elements of
an entity. Put differently, the CUMM method does not calculate the memory
consumed by an entity’s dynamic objects created at runtime. An entity’s memory
consumption is the recursive summation of the memory consumed by the binary
code of the entity and its aggregate classes in a recursive manner.
Based on the measurement process model in Figure 1, the development of the
CUMM method is carried out according to the following steps:

3.1 Step 1: Design of the CUMM Method

The design of the CUMM method follows 4 substeps:

Substep 1: Definition of the objectives

The objectives of the CUMM method are to measure, within an enclosing entity
context: i) the number of the software entity’s unused members (attributes or
functionalities), and ii) the memory consumption of the entity’s unused
members. This enclosing entity context might be an outer component context or
an application context. In the CUMM method context, an application is an

 Measuring Components Unused Members

IWSM/MetriKon 2004

aggregation of one or more components in a recursive manner. The application
with its aggregate components can be considered as one component per se. The
measurement of unused members of a component within an enclosing entity
context refers to the unused members of the component itself and the unused
members of its nested component set in a recursive manner. It is important to
note that a component ’s inherited members are actually implicit members of that
component, and therefore they are all treated uniformly by the CUMM method.
The intended users of this method are developers, architects and project
managers; however, other stakeholders can use the measurement method results
for control and decision-making purposes.

Substep 2: Design and selection of the metamodel

The CUMM method must permit the measurer to measure an entity’s unused
attributes and functionalities and their memory consumption in a quantifiable
manner. As suggested by the measurement process model in Figure 1, to
measure an entity, a metamodel of that entity must be designed or selected. A
CUMM measurable entity can be instantiated according to the generic entity
metamodel given in Figure 2. As depicted, this metamodel does not necessarily
imply the real physical or logical composition relationship of an application and
its component set. In practice, applications are aggregates of components, which
in turn can be aggregates of other nested components.

Substep 3: Characterization of the concept to be measured

The measurement of unused attributes or functions of an entity is calculated
based on the measurable subcharacteristics of the measured entity. The generic
metamodel shown in Figure 2, in which the members of a measured entity are
characterized on two relevant CUMM method bases: use basis and memory
consumption basis. For instance, an entity member can be either used or unused
exclusively. Similarly, an entity member consumes memory resources whether
used or unused. A component member or functionality is considered unused if it
has never been referenced, either in the code of its enclosing entity context or in
its nested and aggregate components.

Substep 4: Definition of the numerical assignment rules

The numerical assignment rules permit the calculation of: a) the number of
unused members of a component, and b) the memory occupied by these unused
members.

The number of an unused member (attribute or function) is calculated by
counting the number of times that member type is referenced within the code of
the measured entity context. The summation of the number of members having a
zero reference value is effectively the number of unused members. According to
the component member being measured, the unit of the measurement result is
“attribute/per component”, denoted “ac”, or “function/per component” denoted
“fc”.

Hamdan Msheik, Alain Abran, Hamid Mcheick, Pierre Bourque

 Software Measurement Conference

The memory consumed by unused members of a particular component is
calculated as follows. For the component’s attribute members, the summation is
made of the memory consumed by each attribute’s type reference size. Similarly,
for the component’s functional members, the summation is made of the memory
consumed by each unused function. The measurement result unit is a “byte”.

Expressed in mathematical formulas, the numerical assignment rules for the
number of a component’s unused members are defined as follows:
Let A be the set of a component’s unused attributes and au ∈ ¥ be the number of
unused attributes, then au A= .

Let F be the set of a component’s unused functionalities and fu ∈¥ be the
number of unused functionalities, then fu F= .

Similarly, the numerical assignment rules for the memory consumed by unused
members are defined as follows:

Let aim be the memory consumed by the i-th unused attribute reference size of a
component. Then, mat is the total memory consumed by the unused attribute
elements in A and is calculated as

mat =
| |

1

A

ai
i

m
=

∑

Let fim be the memory consumed by the i-th unused functionality of a
component. Then, mft is the total of memory consumed by the unused
functionality elements in F and is calculated as

mft =
| |

1

F

fi
i

m
=

∑

3.2 Step 2: Application of the CUMM Method

The application of the measurement method requires three substeps:

Substep 1:

Gathering the software documentation related to the entities subject to
measurement. The documentation artefacts of the entity subject to measurement
can be either the source or reflective binary code of: the entity outer context,
the entity itself and, recursively, its nested entities.

Substep 2:

Constructing the software model by instantiating the generic metamodel. The
software model is constructed by instantiating the generic metamodel in Figure
2 taking as input the documentation artifacts gathered in substep 1. The
constructed model leads to the identification of the measurable characteristics
of the entity subject to measurement.

 Measuring Components Unused Members

IWSM/MetriKon 2004

Substep 3:

Applying the numerical assignment rules. The application of the numerical
assignment rules makes it possible to assign quantifiable values to the
measurable characteristics of the entity subject to measurement, and eventually
to calculate the measurement results.

Figure 2: Generic metamodel representation of the application and component entities

3.3 Step 3: Derived statistics of the measurement result

When the results are ready, they must be documented in a presentable format.
Furthermore, different types of analysis and derived statistics can be calculated
out of the result. For instance, the following derived statistics for the CUMM
method are potentially useful and provide value to the user of the CUMM
method:

1. Measuring the percentage of unused attributes of a component: This is done by
using the result calculated by applying the measurement method on unused
attributes and by calculating the total number of attributes.

2. Measuring the percentage of unused functionalities of a component: This is done
by using the result calculated by applying the measurement method on unused
functionalities and by calculating the total number of functionalities.

3. Measuring the percentage of unused attributes’ memory consumption of a
component: This is done by using the result calculated by applying the

Hamdan Msheik, Alain Abran, Hamid Mcheick, Pierre Bourque

 Software Measurement Conference

measurement method to measure the memory consumption of unused attributes
and by calculating the total memory consumed by used attributes.

4. Measuring the percentage of unused functionalities’ memory consumption of a
component: This is done by using the result calculated by applying the
measurement method to measure the memory consumption of unused
functionalities and by calculating the total memory consumed by used
functionalities.

5. Measuring the degree of a component’s attribute generality of a component: This
measures the degree of a component’s attributes generality with respect to the set
of applications that makes use of this component. The result of this measure
depends on the percentage of unused attributes of a component and on the number
of applications which use the component. The degree of a component’s generality
is a percentage calculated by summation of the percentages of unused attributes
of a component in each application where the component is used, and then
dividing by the number of these applications.

6. Measuring the degree of a component’s functional generality of a component :
This measures the degree of a component’s functional generality with respect to
the set of applications that make use of this component. The result of this
measure depends on the percentage of unused functionalities of a component and
on the number of applications which use the component. The degree of a
component’s generality is a percentage calculated by summation of the
percentages of unused functionalities of a component in each application where
the component is used, and then dividing by the number of these applications.

3.4 Step 4: Exploitation of the result

Finally, the results can be exploited to exercise the desired control and to make
appropriate decisions. The results give indicators to the users of CUMM so that
appropriate actions based on objective observations can be taken. For instance,
functional optimization can be performed to enhance the performance of the
application using the component. In addition, changes to the architecture, design
and implementation of the component can also be considered.

4 Example

To illustrate the applicability of the CUMM method, we use a simple example
(see Table 1) which consists of a small application that prints a welcome
message. The application consists of the class ShowWelcomeMessage and makes
use of the java.lang.String class of Java API [9] to construct a string object that
contains the welcome message and prints the value of the object on the screen.
This application in itself can be considered as a component in the context of the
CUMM method.

 Measuring Components Unused Members

IWSM/MetriKon 2004

In this example, we are mostly interested in step 2, which illustrates the
application of the CUMM method, and step 3 which elaborates on derived
statistics of the measurement results.
public class ShowWelcomeMessage {

 static String message;

 public static void main(String[] args) {

 message = new String("Good morning Everybody!");

 System.out.println(message);

 }

}

Table 1: Simple application that prints a welcome message

Step 2: Application of the CUMM method

Assumptions

For simplifying the computation, we assume in this example that:
1. The number of lines of code of a member is equivalent to its memory

consumption.
2. Every attribute or function line of code consumes one byte, which is not true

in real life since this relation depends on the type of attribute or the machine
code instructions corresponding to a line of code in a function.

3. When counting the lines of code of a component, empty lines and comments
are ignored.

Substep 1:

This step requires the gathering of documentation art ifacts to be used during the
measurement process. The ShowWelcomeMessage application contains two
components: ShowWelcomeMessage and String. Therefore, to apply the CUMM
method, the source or binary code of those two components is needed. The
source code for the ShowWelcomeMessage is shown in Table 1. The source code
for the String component is taken from Sun’s Java SDK 1.4.2 [9] and is not
shown in this paper for obvious reasons.

Substep 2:

This step requires the construction of the software model by instantiating the
generic metamodel shown in Figure 2 and using as input the documentation
artifact gathered in substep 1. The software model for the ShowWelcomeMessage
application is illustrated partially in Figure 3 and Table 2. To characterize the
memory consumption of an unused member, in this example, we will not
compute the memory consumed by each member, since this is a little complex
and requires analysis of the class binary code, a task which is better done by an

Formatted: Bullets and
Numbering

Hamdan Msheik, Alain Abran, Hamid Mcheick, Pierre Bourque

 Software Measurement Conference

automatic tool. Instead, for each method we will use the number of Java code
lines to give us an approximate indication of the amount of memory consumed
by unused members. It is important to mention that the class String contains a
relatively large number of methods, since it is among the foundation library
classes and which provides convenient methods for a variety of situations and
applications. In other words, when it comes to real applications , several methods
in this class are used.

Substep 3:
To obtain the measurement results, we use the information presented in Figure 3
and Table 2. The numerical rules are applied as follows.

The Component String contains 11 constructors, 54 functions and 7 attributes
a. The number of unused attributes au = 4 ac (attribute per component)

b. The number of unused functionalities fu = 63 fc

c. The total of memory consumed by the unused attributes mat =
| |

1

A

ai
i

m
=

∑ =

4 bytes
d. Based on the assumptions mentioned above, the total of memory

consumed by the unused functionalities, mft =
| |

1

F

fi
i

m
=

∑ = 562 bytes

The Component ShowWelcomeMessage contains 1 function and 1 attribute of type
String which is a nested component.

a. The number of unused attributes au = 4 ac

b. The number of unused functionalities fu = 63 fc

c. The total of memory consumed by the unused attributes mat =
| |

1

A

ai
i

m
=

∑ =

4 bytes

The total memory consumed by the unused functionalities mft =
| |

1

F

fi
i

m
=

∑ = 562 bytes

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

 Measuring Components Unused Members

IWSM/MetriKon 2004

Figure 3: Metamodel instance for the ShowWelcomeMessage application

Step 3: Calculation of derived statistics of the measurement results of the String
component

1. Percentage of unused attributes of the ShowWelcomeMessage component
a. unused attributes
b. 3 used attributes in the String component + 1 in the ShowWelcomeMessage

The percentage of unused attributes = (4 * 100) /(4 + 4) = 50%.

2. Percentage of unused functionalities of the ShowWelcomeMessage component

a. 63 unused functions
b. 2 used functions in the String component + 1 in the

ShowWelcomeMessage
The percentage of unused functionalities = (63 * 100)/(63 + 3) = 95.45%.

Hamdan Msheik, Alain Abran, Hamid Mcheick, Pierre Bourque

 Software Measurement Conference

Class ShowWelcomeMessage

Methods Used Lines
of
code

Main yes 4

Attributes

Message yes 1

Class String

Methods Use
d

Lines
of
code

public String() No 3

public String(String original) Yes 10

public int compareTo(String anotherString) No 30

public boolean equals(Object anObject) No 21

public String toString() Yes 3

... … …

Attributes

private int count Yes 1

private int hash No 1

private int offset Yes 1

private char value[] Yes 1

... … …

Table 2: Members of the classes ShowWelcomeMessage and String and
their number of lines of code

 Measuring Components Unused Members

IWSM/MetriKon 2004

3. Percentage of unused attributes memory consumption of the

ShowWelcomeMessage component
a. 4 unused attributes
b. 3 used attributes in the String component + 1 in the ShowWelcomeMessage

 The percentage of memory consumption of unused attributes = (4 * 100)
 /(4 + 4) = 50%.

4. Percentage of unused functionalities memory of the ShowWelcomeMessage

component
a. 63 unused functionalities which use 562 lines of code
b. 2 used functionalities which use 13 line s of code + 1 in the

ShowWelcomeMessage and which uses 4 lines of code

 The percentage of memory consumption of unused attributes = (562 *
 100)/(562 + 17) = 97.06%.

5. Degree of a component’s attribute generality of the ShowWelcomeMessage

component

Unavailable, since the ShowWelcomeMessage is not used in by other
components.

6. Degree of a component’s functional generality of the ShowWelcomeMessage

component. Similar to 5.

5 Summary and discussion

In this paper, we have proposed a measurement method to measure the number
of unused attributes and functionalities of a software component. Furthermore,
we provided a set of derived statistics to analyze the measurement results with
respect to certain aspects related to the unused attributes and functionalities per
component and per application. The results given by the measurement method
have a cross-cutting impact on a number of ISO/IEEE standard [6] quality
characteristics and subcharacteristics. For instance, unused functionalities could
indicate that the security subcharacteristic of the application which makes use of
these functionalities might be compromised. Similarly, the memory consumption
by unused attributes and functionalities indicates in turn an impact on the
efficiency characteristic. In the same vein, the maintainability characteristic is
impacted by the number of unused functionalities as to the efforts that might be
required when adapting and customizing the concerned software components.

Hamdan Msheik, Alain Abran, Hamid Mcheick, Pierre Bourque

 Software Measurement Conference

Finally, to better support the calculation of the measurement method result, we
intend in the future to develop a tool to automate the calculation tasks.
Furthermore, empirical studies can be conducted to evaluate the degree of
unused functionalities, attributes and their static memory consumption on a
number of components used in various products.

References

1. J. Li, "A Survey on Microsoft Component-based Programming Technologies,"
Concordia University, Montreal 1999.

2. SEI, "CBS Overview." [Online]: http://www.sei.cmu.edu/cbs/index.html: Software
Engineering Institute, 2003.

3. P. Maurer, Component-Level Programming: Pearson Education Inc., 2003.

4. I. Jacobson, "Component-based Development with UML," 1998.

5. M. S. Al-Hatali and H. G. Walton, "Smart Features for Compositional Wrappers,"
presented at ICSR7 2002 Workshop on Component-based Software Development
Processes, Austin, Texas, 2002.

6. IEEE standard glossary of software engineering terminology,” in IEEE Std 610.12
1990, 1990.

7. H. Zuse, A Framework of Software Measurement. Berlin, 1997.

8. J.-P. Jacquet and A. Abran, "From Software Metrics to Software Measurement
Methods: A Process Model," presented at Third International Symposium and Forum
on Software Engineering Standards (ISESS'97), Walnut Creek, CA, 1997.

9. Sun, "Java 2 Platform SE v1.4.2." [Online]: http://java.sun.com/j2se/1.4.2/docs/api/,
2004.

Formatted: Bullets and Numbering

 Measuring Components Unused Members

IWSM/MetriKon 2004

