WORKSHOP ON QUALITY OF INFORMATION SYSTEM

Evaluating the Productivity and Reproducibility of a Measurement Procedure

Nelly Condori-Fernández and Oscar Pastor <u>{nelly, opastor}@dsic.upv.es</u> Department of Information Systems and Computer Science Valencia University of Technology, Spain

Research environment

- This research has been carried out within the OO-Method Research Group
- supported by the Ministry of Science and Technology under the DESTINO project
- in close collaboration with the company CARE Technologies S.A (Denia, Valencia province).

http://www.care-technologies.com

Contents

Introduction

- RmFFP: a measurement procedure
 RmFFP application
 Measurement process
 Evaluation of the application of RmFFP
 - Experiment planning
 - Data analysis and interpretation
 - Validity evaluation
- Conclusions and Future work

Contents

Introduction

RmFFP: a measurement procedure

- □ RmFFP application
- Measurement process
- Evaluation of the application of RmFFP
 - Experiment planning
 - □ Data analysis and interpretation
 - □ Validity evaluation
- Conclusions and Future work

RmFFP: Our measurement procedure

RmFFP

Origin: based on the COSMIC-FFP standard method

Domain: designed for the information systems management

Purpose: measurement of the functional size of the applications generated with OO-Method from requirement specifications

Artefact: Sequence diagram (signal, service, query, connect)

QoIS 2006

Application of RmFFP

Functional user requirements

RmFFP: measurement process

Contents

Introduction

- RmFFP: a measurement procedure
- Evaluation of the RmFFP application
 - □ Experiment planning
 - □ Data analysis and interpretation
 - □ Validity evaluation
- Conclusions and Future work

To analyze	RmFFP
for the purpose of	evaluating the user's productivity and the reproducibility of RmFFP
from the viewpoint of	the researcher
in the context of	computer science students measuring the OO- Method Requirements specification

Goal/Question/Metric (GQM)

[Basili&Rombach,1998]

RQ1: are the users productive using RmFFP? **RQ2:** Is RmFFP reproducible?

Subjects

- 35 computer science students at the Valencia University of Technology who had similar backgrounds in the use of the OO-Method Requirements Model.
- □ These subjects were students enrolled in the "Software Development Environments" course (February until June of 2005).

Experimental objects

Requirements specifications using OO-Method

Selection of variables

Formulation of Hypotheses

Hypothesis 1: Users' **productivity** when applying RmFFP is higher than results found in the literature.

Hypothesis 2: Functional size measures are **reproducible** when applying RmFFP under changed measurement conditions.

• Data recording and verification

Data recorded:

Functional size of the specification given.
Time used to carried out a measurement.

Data recording and validation

Data recorded:

Functional size of the specification given
Time used to carried out a measurement.

Verification of the results:

Two students confused the concepts of INCLUDE and EXTEND (relationships between use cases) for the application of the aggregation functions.

Contents

Introduction

RmFFP: a measurement procedure

- □ RmFFP application
- Measurement process
- Evaluation of the application of RmFFP
 - Experiment planning

□ Data analysis and interpretation

□ Validity evaluation

Conclusions and Future work

Productivity Analysis and Interpretation

Productivity:

RQ1: are the users productive using RmFFP?

3x

Productivity:

RmFFP

Mean = 131.48 Cfsu/hour

Nagano's proposal based on COSMIC-FFP

Mean = 45 Cfsu/hour

- We used the OO-Method
 Requirements Model, which is based on UML notation.
- The mapping rules defined allowed the reduction of the generality of COSMIC-FFP.
- The subjects were well-versed in the OO-Method Requirements Model and RmFFP.

- Nagano used the natural language for the functional specification of the switching systems.
- Nagano applied directly the generic rules of COSMIC-FFP.
- The subjects were trained to apply COSMIC-FFP. QoIS 2006

Productivity:

Reproducibility:

Closeness of the agreement between results of measurements of the same measurand carried out under changed conditions of measurement.

0

[ISO/IEC 14143-3] **Adapted from Kemerer** $REP_{i} = \frac{\sum_{k=1,k\neq i}^{n} \frac{Values_{k}}{n-1} - Value_{i}}{\sum_{k=1,k\neq i}^{n} \frac{Values_{k}}{n-1}}$ less variable more variable Applied by Abrahao et al.

QoIS 2006

Description statistics

Reproducibility:

33 subjects

Descriptive statistics		
Statistics	Reproducibility	_
Mean	0.051	→ 5,1% variability
Standard deviation	0.04164	-
Min	0.000	94,9% reproducibility
Max	0.15	

Analysis and Interpretation

Reproducibility:

33 subjects

Statistic	Reproducibility	
Mean Difference	0.05091	
95% Conf. Interval for the diff.	0.0361 (lower)	
	0.0657 (upper)	
t	7.024	
1-tailed p-value	.000	level of significance : very high

One Sample t-test for the reproducibility.

95% confidence that the data obtained would satisfy the hypothesis that RmFFP is reproducible

- Conclusion validity: issues that affect the ability to draw the correct conclusion:
 - Reliability of the application of RmFFP to subjects: following a prescribed procedure
 - Random heterogeneity of subjects: <u>same level</u> of experience working with the OO-Method Requirements Model.

Homogeneity reduces the external validity

- External validity: threats relating to the generalization of results to industrial practice.
 - Effect of not having a representative population in the experiment:
 - Effect of not having representative material in the experiment.

Larger number of subjects (students and **professionals**)

Representative requirement specification

QoIS 2006

Contents

- Introduction
- RmFFP: a measurement procedure
- Evaluation of the application of RmFFP
 - Experiment planning
 - □ Data analysis and interpretation
 - Validity evaluation

Conclusions and Future work

Conclusions and future work

- This paper describes an empirical study that evaluates the user's productivity and reproducibility of RmFFP
- With respect to productivity analysis:
 - the productivity of the subjects using RmFFP is several times higher than the productivity rate obtained by Nagano.
 - we confirm that, because of its generic character, a measurement method is less efficient than a measurement procedure.
 - We also find that RmFFP productivity is higher than industry rates found with IFPUG FPA (reported by the company Total Metrics).

Conclusions and future work

- With respect to reproducibility analysis:
 - We have corroborated that users of RmFFP produce reproducible assessments.
 - This result can be explained by the training carried out with the subjects.
 - Complementary rules defined to control the duplicity of data movements resolved some of the problems of interpretation of the RmFFP guidelines
- We are aware that it is necessary to carry out more empirical studies with industry professionals in order to confirm our initial results.

WORKSHOP ON QUALITY OF INFORMATION SYSTEM

Thank you very much for your attention

Nelly Condori-Fernández and Oscar Pastor <u>{nelly, opastor}@dsic.upv.es</u> Department of Information Systems and Computer Science Valencia University of Technology, Spain