
This paper is an extract from Project Control for Software Quality, Editors, Rob Kusters, Adrian
Cowderoy, Fred Heemstra and Erik van Veenendaal. Shaker Publishing, 1999. ISBN 90-423-0075-2.

ON THE COMPATIBILITY BETWEEN FULL FUNCTION
POINTS AND IFPUG FUNCTION POINTS

Serge Oligny, Alain Abran

Abstract
Release 1.0 of the Full Function Points measurement method was proposed in 1997 to measure the

functional size of real-time or embedded software. Since then, field tests have shown the applicability
and usefulness of this measurement method not only for real-time or embedded software, but also for
other types of software like system software and MIS software.

This paper investigates the issue of measurement compatibility between the designs of both the
FFP and IFPUG measurement methods. Such compatibility is required to perform mathematical
operations involving results from both methods and mixing them into a single functional size measure.
The compatibility of both measurement objects and measurement processes is analyzed and the
accuracy of their aggregation function is identified as being dependent on the level of granularity at
which the measurement functions are applied. Comparing the two approaches, we find that the
precision of this aggregation function corresponds to the lowest common denominator of the two
approaches.

1. Context
Release 1.0 of Full Function Points (FFP) was proposed in 1997 as a functional size measurement

method derived from the International Function Point Users Group (IFPUG) method.
Strictly speaking, the Full Function Points measurement method is a conceptual superset of the

IFPUG method, as documented in [1, p. 15]. The extensions proposed by the FFP measurement
method were originally intended to extend the applicability of the IFPUG method to the field of real-
time and embedded software, as presented in [3, 4]. The FFP approach suggests adding the points
obtained by the IFPUG method to the points obtained through the FFP extensions for the
measurement of control data and control transactions.

The following issue can then be raised: Is it conceptually sound to add the points obtained through
the FFP extension to the points obtained through the IFPUG approach?

This paper explores this issue and shows that the two approaches offer a degree of compatibility
which allows FFP and IFPUG functional size figures to be combined into a single size figure.

The comparison between the two approaches is based on version 4.0 of the IFPUG method [2], and
the extensions proposed in version 1.0 of the FFP method [1]. These are the two most recent versions
currently available.

2. A common framework for comparison
A functional size measurement method consists of applying a set of rules and procedures to a

given software; the result of the application of these rules and procedures is a numerical figure
representing the functional size of the software. In both the FFP and IFPUG Function Points
approaches, the rules and procedures are described in a document referred to as the “Counting
Practices Manual”. The essence of each approach is described in these measurement standards
documents.

A closer look at the contents of these manuals shows that both approaches:
• On the one hand, are intended to be independent of the implementation decisions embedded in

the operational artifacts of the software to be measured, and,
• On the other hand, involve an obligation to apply measurement rules and procedures to some

visible artifacts related to the software to be measured.
A more detailed view of the measurement approach proposed by FFP and by IFPUG Function

Points is presented in Figure 1 below. This figure illustrates the common framework for comparing
FFP and IFPUG Function Points.

Figure 1 – A common framework for comparing FFP
and IFPUG Function Points

This framework illustrates that, prior to applying the measurement rules and procedures, the
software to be measured must be mapped onto a specific software model that captures the concepts
and definitions required for a functional size measurement exercise. Although this model is not
explicitly defined as such in the Counting Practices Manual of each approach, both rely on an implicit
model of the software to be measured. It is on the objects of this implicit software model that a) the
software to be measured is mapped, and b) the rules and procedures of each approach are applied in
order to produce a numerical figure representing the functional size of the software. Therefore, two
distinct and related processes are necessary to measure the functional size of software: mapping of
the artifacts of the software to be measured onto an implicit software model and then measuring
specific features of this software model.

The mapping process takes as input the artifacts of the software to be measured (as they are
found/documented within the organization) and produces as output an instance of a software model.
This instantiated software model is defined by the concepts and definitions found in each approach.

Next, the measurement process takes as input the instantiated software model and produces as
output the numerical figure representing the functional size of the software model. By convention,
this numerical figure is then extended to represent the functional size of the software itself. The
functional size figure is therefore derived by applying the documented set of rules and procedures
described in each approach.

The framework presented in Figure 1 will be used as a common basis for comparing FFP and
IFPUG Function Points. For the two approaches to be compatible, their software models must be
compatible and their measurement processes must be compatible.

Measurement
Process

Rules and
Procedures

Instance of a
software model

Concepts and
Definitions

Functional size
of the software

model

Mapping
Process

Software to be
measured

&RXQWLQJ 3UDFWLFHV 0DQXDO

3. Comparing the software models
In order to compare the software models generated by the FFP and the IFPUG Function Point

approaches, it is necessary to extract from each approach the concepts that characterize them. Five
concepts characterize the software model of the FFP approach, while four concepts characterize the
software model of the IFPUG approach. These are presented in Table 1 below. The software model
of each approach will be deemed to be compatible if all concepts are compatible.

Table 1 – Concepts characterizing the software models measured
by FFP and IFPUG Function Points

CONCEPTS FFP IFPUG
Boundary Boundary Boundary
Users Users Users
Data objects Group of Control Data Logical Files
Process objects Control Process Elementary Process
Sub-process objects Sub-process N/A

The definitions of each concept according the FFP and IFPUG Counting Practices Manuals are
presented in Table 2. Key embedded definitions have also been included in Table 2, where relevant,
in order that each concept can be grasped with a minimum of ambiguity. A comparative analysis of
the concepts of each approach is presented next.

3.1. Boundary
According to the FFP Counting Practices Manual [1, p. 15] , the FFP boundary concept is identical

to the one proposed by IFPUG. The boundary concepts of the two approaches are entirely compatible
therefore.

3.2. Users
The FFP definition of users includes and extends the IFPUG definition to encompass other

software and mechanical devices interacting with the measured software. The FFP definition is
therefore a superset of the IFPUG definition. The definitions of users in the two approaches are thus
deemed to be compatible.

3.3. Data objects
The IFPUG definition of data objects and associated rules and hints [2, section 5, p. 6 and 13]

relates them to what is perceived by the users of the software. The FFP definition [1, p. 17] also
relates data objects to the users’ perspective, although, given the FFP definition of the concept of
users, the vocabulary is adapted to widen this perspective. Both approaches identify data objects from
a logical perspective, as distinct from the implementation instances. The FFP approach explicitly
excludes technical and implementation considerations in the identification of data objects. Both
approaches distinguish between data objects which are read-only and data objects which are updated.
At the core of both approaches lies the idea that the concept of data objects enables the grouping of
logically related data from a perspective which is similar in nature but which differs in scope due to
the differences in the definitions of users. The FFP concept of data objects is a superset of IFPUG’s
data objects. The concepts are therefore deemed to be compatible.

CONCEPTS FFP definition IFPUG definition
Boundary Identical to IFPUG [1, p. 15] “The border between the application or project

being measured and the external applications or
the user domain. A boundary establishes what
functions are included in the function point
count.” [2, Glossary p. 2]

Users “Human beings, applications or mechanical
devices which interact with the measured
application.” [1, p. 45]

“(1) The person or organization that uses the
measured application. Included would be the
requirement author, end users, management
users, auditors, and operations. (2) The human
being who uses the application” [2, Glossary p.
5]

Data object “ Group of data: data identified and grouped
together based on the functional perspective.”
“ Control data: data used by the application to
control, directly or indirectly, the behavior of an
application or a mechanical device.”
“Functional perspective: point of view of the
functionality delivered by the application; it
excludes technical and implementation
considerations.” [1, p.16]

“ Data function types: the functionality provided
to the user to meet internal and external data
requirements. Data function types are either
internal logical files (ILFs) or external interface
files (EIFs).”
“ ILF : an ILF is a user identifiable group of
logically related data or control information
maintained within the boundary of the
application being counted”.
“EIF : a user identifiable group of logically
related data or control information maintained
outside the boundary of the application being
counted.” [2, Glossary p. 2, 3 and 4]

Process object “ Control process: process that controls, directly
or indirectly, the behavior of an application or a
mechanical device.”
“ Process: A set of operations or activities which
acts on inputs to produce a result.” [1, pp. 18,
44]

“ Elementary process: the smallest unit of
activity that is meaningful to the end user in the
business. It must be self-contained and leave the
business of the application being counted in a
consistent state.” [2, Glossary p. 3]

Sub-process object “ Sub-process: […] the smallest processing step
identifiable from a functional perspective as
either an entry, exit, read or write.”
“Functional perspective: point of view of the
functionality delivered by the application; it
excludes technical and implementation
considerations.” [1, p. 44]

Not applicable

Table 2 – Definitions of FFP and IFPUG software model concepts

3.4. Process objects
The FFP definition of process object is based on the traditional definition of process (“…input

and… results…”) and the link between the object and the concept of users. The IFPUG definition of
process object is based implicitly on its size (“…smallest unit…”) under two conditions (“…self-
contained… leave the application… in a consistent state”) and on the concept of users
(“…meaningful to the end user…”). The IFPUG approach does not provide rules to evaluate what is
bigger and what is smaller, although it does provide a few hints [2, section 6, p. 14, 25 and 39] to
guide the practitioners.

The IFPUG definition implicitly define the process object to be measured as a grouping of sub-
processes leaving the software (application) in a consistent state from the perspective of the end users.
This grouping is a subset of the processes found in the software. The FFP definition explicitly define
the process object to be measured as the set of all processes found in the software. The two
approaches are deemed to be compatible since the FFP definition of the process objects is a superset
of the IFPUG definition.

3.5. Sub-Process
The sub-process concept is not formally identified in the IFPUG software model. In FFP, the sub-

process concept is dependent on the control process concept [1, p. 18], for which there is an
equivalent in the IFPUG approach (section 3.4 above). The sub-process concept is strictly a logical
sub-division of the control process proposed by the FFP approach. It lies at a level of granularity
below the lowest level proposed by the IFPUG approach. Therefore, under the restriction of
aggregating the FFP results at the process object level (section 4.3 below), the sub-process concept is
a subset of the process objects proposed by the IFPUG approach.

3.6. Summary
The software model generated by each approach have been characterized through five concepts

(FFP) and four concepts (IFPUG) respectively. It has been shown that four of these concepts are
compatible, being either identical or defined by the FFP Counting Practices Manual as a superset of
the corresponding concept in the IFPUG approach. A fifth concept is proposed by the FFP approach
(sub-process) which is a subset of the process objects in the IFPUG approach. This concept does not
invalidate the compatibility of the other four concepts in the two approaches, therefore the software
models proposed in each approach are deemed to be compatible.

4. Comparing the measurement processes
The compatibility of the measurement processes will be evaluated on the basis of three distinct

criteria: a) the compatibility of the objects receiving “points”, b) the compatibility of the
“measurement” functions, and c) the compatibility of the “aggregation” functions.

In order for the two approaches to be compatible, they must use compatible objects to generate
“point” figures. As presented in section 3, the objects used to generate points are drawn from similar
and compatible concepts embedded in the software model implicit in each approach.

Furthermore, for the two approaches to be compatible, they must generate points using compatible
functions. These functions accept characteristics of the measured object as input and produce a
numerical figure representing the functional size of these objects as output.

Finally, for the two approaches to be compatible, they must generate the total size of the measured
software using a compatible function for the final aggregation of the individual numerical figures
assigned to each measured object.

4.1. Compatibility of the measured objects
On the one hand, both the FFP and the IFPUG measurement approaches use types of data as a

measured object type of the software model (“data objects”). As presented in section 3.3, these
objects are compatible.

On the other hand, the FFP measurement method uses the “sub-process objects” as the measured
object type of its implicit software model. Through its aggregation function (section 4.3), the FFP
approach offers the ability to derive a functional size for a control process. A control process is a
“process object” compatible with the IFPUG measurement approach (section 3.4) but at a different
level of granularity. Therefore, the measured objects of the two approaches are compatible, with the
restriction that the measurement results be kept at the “process object” level when using the FFP
approach.

4.2. Compatibility of the measurement functions
Both the FFP and the IFPUG measurement methods propose five distinct measurement functions,

depending on the nature of the measured objects. These are presented in Table 3, below. In this
Table, each measurement function is identified (ID column) for easier reference. The approach, the
“concept object” and the object instances (Acronym) measured by each function are mentioned and
the argument(s) are listed. Functions arguments are equivalent across the two approaches since they

are based on identical definitions and their values are obtained through a simple count of the number
of their instances in a measured object.

Table 3 – Inventory of the measurement functions proposed by the FFP and
the IFPUG measurement methods

ID Approach Concept object Acronym Argument
1 FFP Data object – read RCG (mult.) DET and RET
2 FFP Data object – updated UCG (mult.) DET and RET
3 FFP Data object – single read RCG (single) DET only
4 FFP Data object – single updated UCG (single) DET only
5 FFP Sub-process objects ECE,ECX,ICR,ICW DET only
6 IFPUG Data object – read EIF DET and RET
7 IFPUG Data object – updated ILF DET and RET
8 IFPUG Process object – input EI DET and RET
9 IFPUG Process object – output EO DET and RET
10 IFPUG Process object – inquiry EQ DET and RET

4.2.1. Compatibility of “data object” measurement functions
Measurement functions 1 and 2 on the one hand (FFP) and measurement functions 6 and 7 on the

other hand (IFPUG) are exactly the same since, from [1, p. 17], “…multiple occurrence groups of
data have the same structure as ILFs and EIFs in FPA; they are counted in exactly the same way as
these two FPA function types.”

Measurement functions 3 and 4 (FFP) are unique in their mathematical forms and use only a DET
count as the argument. They have no direct equivalents in the IFPUG measurement approach. They
are designed to yield a numerical value encompassing the progression in magnitude proposed by the
IFPUG approach, as stated in [1, p. 13]. Unlike measurement functions 1, 2, 6 and 7 however, the
range of values of these two measurement functions is not upper-bounded. Consequently, these two
FFP measurement functions offer a superset of the range of values offered by the other “data object”
measurement functions, implicitly assuming a constant RET count of 1.

FFP measurement functions 3 and 4 are thus deemed to be entirely compatible with IFPUG
measurement functions 6 and 7 respectively, in the range of values offered by IFPUG. Compatibility
is preserved outside this range of values on condition that the extrapolation trends shown by
measurement functions 6 and 7 are accepted.

4.2.2. FFP “process object” measurement functions
First consider FFP measurement function 5. This measurement function assigns “points” to “sub-

process” objects based on the DET count referred to by each measured sub-process. As stated in
section 4.1 above, compatibility is to be considered at the process level, as in the IFPUG approach.
By virtue of its aggregation function, the FFP approach allows the assignment of points at the process
level. The number of points assigned to a process is simply the arithmetic sum of the points assigned
to each of its constituent sub-processes through measurement function 5.

Furthermore, it is to be noted that the definition of the sub-process objects entails an indirect
consideration for RET; from [1, p. 18]: “…if a process enters two groups of data, there are at least 2
external control entries (ECEs)” and each data object has a different RET by definition. Such
statements are part of the definition of all four types of sub-process [1, pp. 18-19], meaning that a sub-
process implicitly refers to only one RET.

It is thus implicit that a measurement function exists in the FFP approach that allows the
measurement of “process objects”. This implicit function is a composite of measurement function 5
and the FFP aggregation function; it uses, implicitly or explicitly, both DETs and RETs as arguments.
It is to be noted that there is no upper bound to the range of values offered by this implicit FFP

process object measurement function, by virtue of the properties of its embedded aggregation
function.

4.2.3. IFPUG “process object” measurement functions
IFPUG process object measurement functions 8, 9 and 10 are similar in form. They differ slightly

in the range and distribution of their output values based on the mandatory functional nature of the
process object onto which they are applied. It is to be noted that measurement functions 8, 9 and 10
have their highest and lowest values bounded by constants. Furthermore, consider the following
specific measurement rules proposed by IFPUG as part of the definition of one type of process
object:

“An external input (EI) processes data or control information that comes from outside the
application's boundary... The processed data maintains one or more ILFs” [2, section 6, p.4].

This measurement rule implicitly refers to the inner processing of the measured process object by
alluding to processing steps that would be identified as at least one “entry” and at least one “write”
sub-process respectively in the FFP measurement approach. Figure 5 below illustrates this
comparison.

It can thus be seen that, although not explicitly defined in the IFPUG measurement functions, the
IFPUG approach implicitly refers, by construction, to concepts compatible with the FFP “sub-process
objects”.

Figure 5 – Comparison of the “process object” measurement
functions of the two approaches

4.2.4. Compatibility of “process object” measurement functions
Although different in their form, it can be seen that, at the “process object” level, FFP

measurement function 5 and IFPUG measurement functions 8, 9 and 10 all refer to common
compatible objects. Furthermore, they generate values of compatible magnitude within the bounded
range offered by IFPUG measurement functions 8, 9 and 10 at the same level of granularity.

As a corollary to this analysis, it can be seen that the relation between the points assigned to a
process object by IFPUG measurement functions 8, 9 and 10 and the count of this process object’s
implicit sub-processes (entailed by specific IFPUG definitions and rules) is coarser than the
corresponding relation offered by the FFP process object measurement function. This is a direct
consequence of the finer level of granularity of the objects onto which the FFP approach assigns
points: the sub-processes.

Process object
(“EI”)

Data object
(“ILF”)

IFPUG Approach

$

%

- Sub-processes A and B are implicitly
 identified by IFPUG definition of the
 process object and associated rules.

Process object
(“Control process”)

Data object
(“UCG”)

FFP Approach

$

%

- Sub-processes A and B are explicitly
 identified as “entry” and “write” by
 FFP sub-process concept rules.

Boundary Boundary

The set of measurement functions offered by both approaches is therefore deemed to be
compatible within the bounded range of values offered by the IFPUG approach. Outside this range,
the FFP approach is deemed to be compatible with the IFPUG measurement functions under the
condition of accepting that the FFP approach offers a logical extension that is based on the same
concepts as the ones used inside the range.

4.3. Compatibility of the aggregate function
Both the FFP and the IFPUG measurement approaches propose a mechanism to construct the

functional size of the software model from the functional size of the individual measured objects in
this model. This mechanism use the same type of objects in both approaches: data object and process
object. This aggregation function is simply the arithmetic sum of the functional size of the measured
objects. It is exactly the same function in both measurement approaches and, therefore, the two
approaches are compatible under this criterion.

It is to be noted, however, that the accuracy of this function is dependent on the level of granularity
at which the measurement functions are applied. With both approaches, when adding points using the
aggregation function, the precision of this function will correspond to the lowest common
denominator of the two approaches.

5. Summary and conclusion
The analysis of the compatibility of the measurement approaches proposed by IFPUG (4.0) and

FFP (1.0) was conducted within the common framework documented in section 2. It was established
that, in order to be deemed compatible, the two approaches would have to offer a compatible software
model and a compatible measurement process.

By breaking up the software models of each approach into their constituent concepts and
comparing the corresponding concepts, it was shown in section 3 that these software models are
compatible, either because the concepts are identical or because the concepts proposed by the FFP
approach are supersets or subsets of the corresponding concepts proposed in the IFPUG approach.

By breaking up the measurement process into its three constituents and examining the
compatibility of each constituent, it was shown in section 4 that the IFPUG measurement process
offers a bounded range of functional size values, while the FFP measurement process does not.
Therefore, the compatibility of the two measurement processes is established according to two ranges
of values:

• Within the range of values offered by the IFPUG measurement process, both measurement
processes are entirely compatible at the data and process object level.

• Outside the range of values offered by the IFPUG measurement process, the two measurement
processes are compatible under the following conditions:

a) results are considered at the process object level,
b) FFP measurement functions 3 and 4 (Figure 4) are an extrapolation of the range of values

provided by IFPUG measurement functions 6 and 7 (Figure 4),
c) FFP measurement function 5 (Figure 4) combined with FFP aggregation function provide an

extrapolation of the range of values provided by IFPUG measurement functions 8, 9 and 10 at
the process object level.

The conditions for compatibility outside the range of values provided by the IFPUG approach are
deemed reasonable for many purposes, including functional measurement of sizeable chunks of a
software, measurement of entire software products and measurement of software portfolios.

The impact of these constraints is limited when compared to the benefits of using only one
functional measurement approach throughout the organization or the benefits of adequately including

real-time, embedded and technical software functional size in the economics of an organization’s
software process management.

Practice tends to show [5, 6] that the FFP approach, while offering results very similar to those of
the IFPUG approach when applied to MIS software, offers more adequate results when applied to
real-time, embedded or technical software by virtue of the fact that a) its measurement functions are
not bounded by constants and, b) the level of granularity is more relevant to these type of software.

Furthermore, in situations requiring the measurement of smaller pieces of software, the FFP
approach offers a finer degree of granularity than the one offered by the IFPUG approach by virtue of
the identification and measurement of sub-processes.

6. References
[1] “ Full Function Points: Counting Practices Manual”, Software Engineering Management Research

Laboratory, Université du Québec à Montréal, Technical Report no. 1997-04, September 1997. See
www.lrgl.uqam.ca/ffp.html

[2] “ Function Points Counting Practices Manual – Release 4.0”, International Function Point Users Group
(IFPUG), Westerville, Ohio, USA, January 1994.

[3] “ Adapting Function Points to Real-Time Software”, Abran, A., Maya, M., Desharnais, J.-M. and St-
Pierre, D., American Programmer, vol. 10 no. 11 (November), pp. 32-43, 1997.

[4] “ Measuring the Functional Size of Real-Time Software”, Maya M., Abran A., Oligny S., St-Pierre D.,
Desharnais J. M., Proceedings of the 9th European Software Control and Metric Conference (ESCOM-
ENCRESS 98), Rome, Italy, May 1998.

[5] “ Measuring ALL the Software not just what the Business Uses”, Morris P.; Desharnais J.-M.,
Proceedings of the International Function Point Users Group (IFPUG) Fall Conference held in Orlando,
Florida. Westerville, Ohio, USA, September 1998.

[6] “ Functional Size of Real-Time Software: Overview of Field Tests”, Oligny S.; Abran, A.; Desharnais, J.-
M.; Morris, P. , Proceedings of the 13th International Forum on COCOMO and Software Cost Modeling,
Los Angeles, CA, October 1998.

This paper is an extract from Project Control for Software Quality, Editors, Rob Kusters, Adrian
Cowderoy, Fred Heemstra and Erik van Veenendaal. Shaker Publishing, 1999. ISBN 90-423-0075-2.

This book represents the proceedings of ESCOM SCOPE 99 Conference, a joint event representing
the 10th conference on European Software Control and Metrics, and the 2nd conference of the SCOPE
network of European evaluators of software product quality. The conference was held on 27-29 May
1999, Herstmonceux, England.

The paper has been downloaded from http://www.escom.co.uk/escom

Permission is given for it to be printed, electronically stored and distributed and photocopied but may
not be sold or included in a product for sale, and the document must be maintained complete and
without modification of content.

Copyright © Shaker Publishing, 1999.

ESCOM Conference Office, 1 Walstead Cottages, Walstead, West Sussex RH16 2QQ, United
Kingdom. Email office@escom.co.uk

