

A summary

October 2000

1

Co-authored by: S. Oligny, A. Abran Université du Québec à Montréal -Software Engineering Management Research Laboratory

Agenda

- **1. Context Software size**
- **2. COSMIC-FFP Key aspects**
- **3. COSMIC-FFP the field trials**
- 4. A simple example in 4 steps
- 5. Want to know more ?
- 6. Conclusion

Context – Software size

Context..

ã 2000 UOAM

Research Laboratory

Software Engineering Management

Size of what ...

Project Size The total effort, estimated or actual in work-hours or staffmonths

Software size the size of the requirements (functions) or of the deliverables

(modules, lines of code)

Context..

ã 2000 UOAM

Research Laboratory

Software Engineering Managemen

Software size measurement

HOW BIG IS IT ? Mmm... so many programs, so many lines of code...

- Meaningful to the technical staff,
- Meaningless to management,
- Poor portability,
- Only known precisely when too late to use
- Mmm... so much functionality delivered to the users...
- Meaningful to management,
- Meaningful to technical staff,
- Portable,

FUNCTIONAI

- Can be measured early on,
- Must be independent from effort, method or technology

The 'Functional Size' of software

> ISO/IEC/JTC1/SC7 Standard #14143 definition:

" Functional Size : A size of software derived by quantifying the functional user requirements"

Context..

Context..

ã 2000 UQAM

Research Laboratory

Software Engineering Management

An analogy...

2000 sq. ft.

4000 sq. ft.

500 cfsu

7

Context..

ã 2000 UOAM

Research Laboratory

Software Engineering Management

Different kinds of software

'MIS' = Management Information Systems, i.e.Business 'data-rich' software

"So you want to measure Software Functional Size?"

Context

ã 2000 UOAM

Research Laboratory

Software Engineering Management

ã 2000 UQAM Software Engineering Management Research Laboratory

Overview of the model

COSMIC-FFP Measurement Manual, p. 12

COSMIC FFP – Key aspects ã 2000 UQAM

Software Engineering Management

Research Laboratory

ã 2000 UQAM Software Engineering Management Research Laboratory

Software layers

Key aspects

Identifying functional processes

Triggering

NOTE:

Data movement. A data movement moves attributes belonging to a single data group.

AH ONOSOO Ta 2000 Software Engineering Management Research Laboratory

Summary

COSMIC FFP – Key aspects

ã 2000 UQAM Software Engineering Management Research Laboratory

lary
uno
are
2
4
0
Ś

	Data group															
Functional process																
Functional process																
Functional process																
Functional process																
Functional process																
Functional process																
Functional process																
Functional process																
Functional process																
Functional process																
Functional process																
Functional process																
Functional process																

18

Unit of measure

ã 2000 UOAM

Research Laboratory

Software Engineering Managemen

- Unit of measure: COSMIC Functional Size Unit (cfsu).
- Yardstick (by convention): 1 cfsu = 1 elementary data movement,
- Base Functional Components (BFC): entry (E), exit (X), read (R) and write (W)
- Therefore each BFC receives 1 cfsu.

Aggregation function

COSMIC FFP – Key aspects

ã 2000 UOAM

Research Laboratory

Software Engineering Managemen

- FFP results can be aggregated at the desired level of detail by arithmetically adding the size units assigned to sub-processes.
- There is no upper limit to the functional size of a functional process.
- The aggregation function is scalable. A functional size figure can thus be obtained for functional constructs (process, layer, ...) composed of sub-processes.

A simple example in 4 steps

- > 1. Identification of external interactions ,
- > 2. Identification of functional processes,
- > 3. Analyzing functional processes interactions,
- > 4. Apply measurement function

External interactions...

What are the devices interacting with the software ?

ã 2000 UQAM Software Engineering Management Research Laboratory

The rice-cooker state is communicated via two lights...

Lights operation is governed by the cooking mode...

Temperature controlled according to a pre-determined time profile...

And the heater is controlled according to the difference actual/target...

ã 2000 UQAM Software Engineering Management Research Laboratory

Starting with time triggered processes...

ã 2000 UQAM Software Engineering Management Research Laboratory

3

Then with processes triggered by other events...

ã 2000 UQAM Software Engineering Management Research Laboratory

3

Let's now look at the Set mode process...

ã 2000 UQAM Software Engineering Management Research Laboratory

3

Let's now look at the lights control process...

ã 2000 UQAM Software Engineering Management Research Laboratory

3

Let's now look at the "Calculate target temperature" process...

ã 2000 UQAM Software Engineering Management Research Laboratory

3

Let's now look at the "Control temperature" process...

ã 2000 UQAM Software Engineering Management Research Laboratory

3

Measurement ...

The calculate target temperature functional process...

ID	Triggering event	Sub- processes	Functional size		
30sec	Yes	ENTRY	1 cfsu		
E_time		ENTRY	1 cfsu		
Sel_mode)	READ	1 cfsu		
R_temp		WRITE	1 cfsu		

ã 2000 UQAM Software Engineering Management Research Laboratory

Measurement ...

Summary

Layers	F. Process	Finny	Exit	Real	Witte	TOTAL
-	Set Mode	1	-	-	1	2 cfsu
-	Control lamps	1	1	1	-	3 cfsu
-	Calc. target temp.	2	-	1	1	4 cfsu
-	Control temp.	2	1	1	-	4 cfsu
	TOTAL	6	2	3	2	13 cfsu

COSMIC-FFP – the field trials

Field Trials

Research Laboratory

The Field Trials process

Overview

GOAL: Standardize a minimum subset of data for later benchmarking and improvement of the measurement method...

... based on the framework already developed by ISBSG

Efeld Trials

Software Engineering Management

Research Laboratory

Project

COSMIC.F

Field Trials

a 2000 UQAM Software Engineering Management

Research Laboratory

- The organization (type of business),
- Type of software,
- Type of project (dev., maintenance, ...),
- Development and target platform,
- Duration

Effort

- Effort recording method
- Completeness of effort data
- Confidence in effort data
- Level of effort
- High level breakdown of effort

Want to know more ?

Publications

Already published:

23 papers already published by COSMIC team members or by independent authors.

Downloadable for free at:

www.lrgl.uqam.ca/ffp.html

Coming months:

FESMA Conference, October, Madrid, Spain COCOMO Conference, October, Los Angeles, USA ACOSM Conference, November, Sydney, Australia ESCOM Conference, April 2001, London, UK

ã 2000 UOAM

Research Laboratory

Software Engineering Management

Research underway

- Inter-measurer consistency study (P. Nolin, UQAM with Hydro Quebec);
- Conversion from FFP V1, MkII and IFPUG (V. Ho,UQAM)
- > Early COSMIC-FFP (Chapter 7) UQAM & R. Meli (Italy)
- Correlation of expert view of functionality with COSMIC FFP size, using AHP (G. Wittig, E. Rudolph, Australia)
- Procedure for UML-based specifications (V. Bevo, UQAM)
- > Automatic measurement from source code (V. Ho, UQAM)
- Size contribution of Technical and Quality requirements (C. Lokan, Australian Defence Academy & UQAM)
- Other aspects of size algorithmic complexity N. Kececi (USNRC), F. Bootsma, (Nortel) planning to study
- Supporting requirements identification with CBR approach (J.M. Deshamais, UQAM)

ã 2000 UOAM

Research Laboratory

Software Engineering Management

Tools and Benchmarks

Software Engineering Management

Research Laboratory

- Hierarchy Master FFP v. 1 fully supported, V. 2 in development (J. Ng, Australia)
- Sphera measurement support and estimating tool for V. 2 in development (R. Meli, Italy)
- Commitment to deliver Field Trial results to ISBSG

Want to know more ?.

On the Web...

Complete documentation on the Web

- ✓ Concepts and definitions,
- ✓ Measurement Manual,
- ✓ Publications,
- ✓ http://www.lrgl.uqam.ca/ffp.html
- ✓ http://www.cosmicon.com

Conclusion

Conclusions

2 2000 LOAM

Research Laboratory

Software Engineering Managemen

Final remarks...

COSMIC-FFP was designed for ISO compliance,

COSMIC-FFP has been designed FOR the industry, WITH the industry,

COSMIC-FFP is an open and transparent initiative, fully documented and easily available.