
Final – © 1998 - UQAM Software Engineering Management Research Laboratory

FUNCTIONAL SIZE OF REAL TIME SOFTWARE: OVERVIEW OF
FIELD TESTS

Serge Oligny1, Alain Abran1, Jean-Marc Desharnais2, Pam Morris3

ABSTRACT

In most software cost estimation models, software size is the key cost driver.  Such models use
either a technical measure of software size, based on lines of code, or alternatively a functional
size measure which can be known earlier in the software life cycle.  However, even though
Function Points is the most widely used functional size measure in the MIS domain, practitioners
have often pointed out its limitations for measuring the size of real-time or embedded software;
therefore, it is not currently considered as an adequate input parameter for estimating real-time
software effort.

In 1997, a new extension to Function Points (referred to as Full Function Points – FFP) was
introduced for measuring the functional size of real-time software in order to address the most
obvious weaknesses of IFPUG’s Function Points while retaining compatibility with traditional
Function Points for MIS software.  Full Function Points was also recently accepted as a new
measurement standard for real-time software by the International Software Benchmarking
Standards Group.

This paper reports on the key concepts of this extension, as well as on the preliminary results of
the measurement field tests carried out in different organizations.  The ability of FFP to
adequately capture the functional size of real-time software is illustrated by FFP and FPA
measurements taken on the same software products. Preliminary results, using additional
collected data, to support exploratory analysis of the unit effort and schedule delivery date based
on FFP are also presented.

1. CONTEXT

Measures can be used to quantify software products as well as the process by which they are
developed.  Once these measures are obtained, they can be used to build cost estimation models
and productivity models [1],  for instance.  In this perspective, a key measure is the size of a
software product.  There are basically two kinds of size measures: technical measures and
functional measures.  On the one hand, technical size measures are used to quantify software
products and processes from a developer’s point of view.  These can be used in efficiency
analysis to improve the performance of the design, for instance. On the other hand, functional
measures are used to quantify software products and services from a user’s perspective. Being
independent of technical development and implementation decisions, functional measures can
therefore be used to compare the productivity of different techniques and technologies.  In this
context, major organizations frequently use functional size measurement methods  to quantify
the software products included in their outsourcing contracts.

Function Points Analysis (FPA), first introduced in 1979 by Allan Albrecht of IBM [2], is an
                                                  
1 Serge Oligny and Alain Abran are respectively Director – Technological innovations and Director of UQAM Software
Engineering Management Research Laboratory in Montréal (http://www.info.uqam.ca/Labo_Recherche/lrgl.html) , they
can be reached at oligny.serge@uqam.ca and abran.alain@uqam.ca

2 Jean-Marc Desharnais is Managing Partner and Principal Consultant with Software Engineering Laboratory in Applied
Metrics (http://www.lmagl.qc.ca/), he can be reached at desharnais.jean-marc@uqam.ca

3  Pam Morris is Director Consulting and Training with Total Metrics (http://www.totalmetrics.com), she can be reached at
Pam.Morris@Totalmetrics.com



Final – © 1998 - UQAM Software Engineering Management Research Laboratory

example of a functional size measure.  FPA measures the size of software in terms of the
functionality it delivers to end-users by quantifying such objects as inputs, outputs and files.
Since FPA was developed for an MIS4 environment, its concepts, rules and guidelines are adapted
to software typical of that environment. Consequently, FPA has gained a wide audience in this
specific area of software applications and is now being used extensively to, among other things,
analyze productivity and estimate project effort and costs [3,  1, 4, 5].  However, FPA has been
criticized as not being universally applicable to all types of software [6, 7, 8, 9, 10, 11, 12, 13,
14].  Here is how D.C. Ince describes the FPA scope issue:

“A problem with the function point approach is that it assumes a limited band of
application types: typically, large file-based systems produced by agencies such as banks,
building societies and retail organizations, and is unable to cope with hybrid systems such
as the stock control system with a heavy communication component.” [10, page 283)

When FPA is applied to such software, it does, of course, generate measurement results, but
these do not constitute an adequate size measurement.  Therefore, there is currently no FPA
equivalent for real-time software that would allow meaningful productivity benchmarking or the
development of estimation models based on an adequate functional size of real-time software.

2. REAL-TIME SOFTWARE LIMITATIONS OF FPA

2.1 Data limitations

Two kinds of control data structure are found in most types of software: multiple occurrence
groups of data and single occurrence groups of data.  Multiple occurrence groups of data display
more than one instance of the same type of record5.  Single occurrence groups of data display
one and only one instance of a data type.  Real-time software typically contains a large number
of single occurrence data types that are difficult to group into IFPUG-defined logical groups.  An
extension rule is necessary to adequately measure single occurrence  data types.

2.2 Transaction limitations

Real-time software processes have a specific transactional characteristic in common: the number
of their  sub-processes varies a great deal from one process to another.  A real-time functional
measurement method  must take into account the fact that some processes have only a few sub-
processes while others have a large number of them.  The following two examples, taken from
embedded automotive software, illustrate this point.

Example 1 - An engine temperature control process (process with a few sub-processes)

Suppose the main purpose of a process is to turn on an engine cooling system when required.  A
sensor provides the engine’s temperature (sub-process 1).  This temperature is compared to the
overheating threshold temperature (sub-process 2).  Finally a “switch-on” message could be sent
to the cooling system if required (sub-process 3).

In this example, the temperature control process consists of 3 sub-processes (see Table 1).

                                                  
4 MIS: Management Information Systems.
5 An engine control application, for instance, could have a group of control data containing information on each cylinder
(cylinder number, ignition timing, pressure, etc.).  Such a group of data has a multiple occurrence structure (one data
type  for each cylinder).  In other words, the cylinder data type  is repeated more than once.



Final – © 1998 - UQAM Software Engineering Management Research Laboratory

Process Sub-process description # of sub-
processes

Engine control Temperature entry 1

Read threshold for comparison 1

Send turn-on message 1

Total 3

Table 1 - Sub-processes of example 1

Example 2 - An engine diagnostic process (process with many sub-processes)

The main purpose of this second process is to turn on an inboard “engine” alarm when required.
Fifteen engine sensors (all different) send data to a diagnostic process (15 sub-processes, 1
unique sub-process for each kind of sensor).  For each sensor, the set of external data received is
compared to threshold values read from an internal file; there is a unique file for each kind of
sensor (15 more sub-processes, 1 unique sub-process for each kind of sensor).  Depending on a
number of conditions, an “engine” alarm mounted in the dashboard may be switched on (1 sub-
process).

In this example the engine diagnostic process consists of 31 sub-processes (see Table 2).

Process Sub-process description # of sub-
processes

Engine diagnostic Sensor data entry 15

Read thresholds for comparison 15

Send alarm message 1

Total 31

Table 2 - Sub-processes of example 2

In IFPUG FPA measurement definitions, the basis for measuring transactions is its unique
definition of an ‘elementary process’ which must leave the application in a consistent state.
Therefore, both examples 1 and 2 constitute a single IFPUG-defined elementary process each
[15].

Again, according to IFPUG FPA rules, approximately the same functional size would be assigned
to both processes although, intuitively, most real-time practitioners would perceive them as being
of different functional size.

3. FULL FUNCTION POINTS CORE CONCEPTS

Full Function Points was designed to measure the functional size of both MIS and real-time
software.  Since FFP is an extension of the IFPUG FPA measurement method, most IFPUG rules
are included as a subset for the measurement of the MIS functions within a measured software
product.

The key measurement concepts added in the Full Function Points extension to measure the
functional size of the real-time or embedded type of software, are summarized below:

• FFP measures the functional size from a full functional perspective instead of from a narrower
external user point of view.  FFP measures the functionality required to be delivered by a



Final – © 1998 - UQAM Software Engineering Management Research Laboratory

process to the users (human or mechanical) of that process, not just the functionality
experienced directly by its human users.  Sub-processes that read and write the data to and
from data groups are included in the measurement of functionality in addition to the sub-
processes required to receive data (entry) and extract data (exit).

• The functional size of a process is the sum of  the size of the individual  sub-processes. There
is no limit to the size assigned  to one specific process, since each individual sub-process is
measured.

• Changed functionality is measured  at the level of the sub-processes.  Only part of the
process (identified by the modified  sub-processes) is credited for the change.

These concepts are materialized by a fully documented method through detailed rules and
procedures  based on the identification of the following function types .

• External Control Entry (ECE): an ECE is a unique sub-process.  It is identified from a
functional perspective6.  An ECE manipulates control data coming from outside the
application’s boundary.  It is located at the lowest functional level of a process and acts on
only one group of data.  Consequently, if a process enters two groups of data, there are at
least 2 ECEs. Referring to the engine diagnostic process (example 2), 15 sensors send data to
the application (control data cross the application boundary).  Since there is a unique sub-
process for each sensor, 15 ECEs are counted in this example.

• External Control Exit (ECX): an ECX is a unique sub-process.  It is identified from a functional
perspective.  An ECX manipulates control data going outside of the application boundary.  It is
located at the lowest functional level of a process and acts on only one group of data.
Consequently, if a process exits two groups of data, there are at least 2 ECXs. Referring to the
engine diagnostic process (example 2), the sub-process that sends a message to the
dashboard is such an ECX.

• Internal Control Read (ICR): an ICR is a unique sub-process.  It is identified from a functional
perspective.  An ICR reads control data.  It is located at the lowest functional level of a
process and acts on only one group of data.  Consequently, if a process reads two groups of
data, there are at least two ICRs.  Referring to the engine diagnostic process (example 2), the
sub-processes that read the threshold values are ICRs.  In this example, 15 unique sub-
processes read different kinds of threshold values at different times for comparison purposes.
Therefore, this process embeds 15 ICRs.

• Internal Control Write (ICW): an ICW is a unique sub-process.  It is identified from a
functional perspective.  An ICW writes control data.  It is located at the lowest functional level
of a process and acts on only one group of data.  Consequently, if a process writes on two
groups of data, there are at least 2 ICWs.  For the purposes of illustration, suppose the engine
diagnostic process (example 2) is extended with the following functionality: "The 15 sets of
control data are stored.  They are all stored separately at different times in different files (15
different sub-processes)."  Since there are fifteen kinds of sensor control data updated at
different times (15 unique sub-processes), there are 15 ICWs, according to the FFP
measurement technique.

 

• Multiple data type groups, which can be either read or updated by the real-time or embedded
processes. These are similar to the Internal Logical files and External Interface files measured
by the FPA technique.

                                                  
6 This means that the sub-process is referenced in the requirements of the application, assuming they are complete.



Final – © 1998 - UQAM Software Engineering Management Research Laboratory

• Single data type (single occurrence) groups. These data groups may be created or updated by
the processes (Updated Control Group  - UCG) or only read by the processes (Read-only
Control Group - RCG).  The single occurrence data groups contain all instances of single
control values used by the processes.  There may be only one instance of a UCG or RCG per
measured application.

4. FEEDBACK FROM INITIAL FIELD TESTS

Initial field tests of the FFP measurement method were conducted prior to its initial release in
1997 [16].  One set of field tests was conducted by the research team that co-authored the FFP
measurement method and another set of tests was conducted by an industrial partner without
the assistance of the research team.

In the first field test, conducted by the research team, three real-time or embedded software
products were measured using both FFP and IFPUG’s FPA measurement methods.  The purpose
of the test was to compare the functional size obtained with both method.  The software
products measured were taken from the operational portfolio of organizations in the USA and in
Canada.  Results show that FFP provides a functional size that is close to FPA when there are few
sub-processes within each process.  Furthermore, for processes displaying a significantly larger
functional size, there is a considerably larger number of embedded sub-processes and the
functional size provided by the FFP measurement method is significantly larger than the
functional size provided by the FPA measurement method.

In the second set of field tests, conducted by an industrial partner from Japan without the
assistance of the research team, the FFP measurement method was used exclusively on real-time
operational software product.  The purpose of the tests was to evaluate the FFP measurement
method for relevance and usability.  Results obtained from this organization’s practitioners
indicate that:

• Concepts and measurement procedures in the FFP Counting Manual were relatively clear and
easy to understand. It was not difficult to count without the assistance of an FFP specialist.

• In the larger of these independent tests, FFP measured 79 processes out of the 81 expected
to be measured with an adequate functional size measurement method.  At the end of this
field test, the industrial partner concluded that FFP failed to take into account 2 of the 81
processes because the current design of FFP does not measure processes containing only
internal algorithms.  The FFP measurement coverage rate was therefore 97% of the overall
functionality that they felt should be included in the measurement of the functional size of
their real-time software.

Furthermore, all these tests indicated that the effort required to measure the functional size of an
application using the FFP measurement method is similar to the effort required for measuring it
using the FPA rules.  Even though more function types have to be measured with FFP, these
function types were more easily identified.  Indeed, the application specialists seemed to require
less assistance from function point experts when measuring with FPP than when using FPA, so
the identification of more function types did not increase the measurement effort during those
field tests.

5. INTERNATIONAL RECOGNITION FROM ISBSG AND NATIONAL ASSOCIATIONS

The International Software Benchmarking Standards Group (ISBSG) has recently recognized the
FFP measurement method at the interim status, meaning that this organization will accept
projects for its benchmarking repository for which functional size has been measured using FFP.



Final – © 1998 - UQAM Software Engineering Management Research Laboratory

This recognition was based on the unanimous votes of the seven national organizations currently
on  the board of the ISBSG.

The interim status is recognized by the ISBSG based on the following criteria:

• A clear need has been demonstrated for the proposed functional size measurement method,

• The promotion of the method is not driven by commercial interests and the method does not
contravene ISO requirements for a functional size measurement method (ISO-14143-1),

• Key concepts and all rules and procedures of the functional size measurement method must
be documented.  Examples must be provided for the rules.  All documentation must be
available, at least in English,

• A user group is in place, providing for the distribution of the documented standards and
improvements to the standards, ensuring that only one current official version exists,
implementing and controlling a certification process, maintaining a bibliography of relevant
publications and promoting the use of the functional size measurement method in the
industry.

6. ADDITIONAL FIELD TEST

The measurement results presented in this section were collected in field tests subsequent to the
release of the FFP measurement method.  Three of the industrial sites were in North America,
and the fourth in Asia;  seven of the software products measured were classified as
telecommunications software, another as power utility software, and a fourth as military
software.  All measurement procedures were executed by the same measurement expert with
twelve years of expertise in functional size measurement, thereby eliminating inconsistencies
across measurement experts.

The data sets available allow two types of exploratory analysis:

• Exploring a software sizing comparison between FPA and FFP

• FFP: some preliminary economic results

6.1 Exploring a software sizing comparison between FPA and FFP

Table 3 presents  measurement  results of seven distinct software products.  These products
were measured using both the IFPUG 4.0 rules and the Full Function Points rules.  They all come
from the same organization.  Out of these seven software products, four are typical real-time
systems, two are typical MIS systems and one is mostly MIS but includes some real-time
functionality.  Distinction between real-time and MIS software products is based on the
knowledge of functional experts and practitioners within the  organization.

The results presented in Table 3 suggest the following observations:

• The size results are similar when both methods are applied to MIS-type software products,
as demonstrated by measurements of products E and G,

• The software product “C” could not be measured at all using FPA because the functionality it
delivered could not be reliably categorized into FPA function types,  nor did it fit the definition
of elementary process according to IFPUG 4.0 rules.

• The size difference is significant in all cases where the software product has complex real-
time processes.  Products A, B, C and D are examples of this.  The FFP size  is considerably
greater than the FPA size.



Final – © 1998 - UQAM Software Engineering Management Research Laboratory

Product Product
type

FPA
size

FFP
size

Size
difference

Size
difference
(%)

A Real-time 210 794 584 74%

B Real-time 115 183 68 37%

C Real-time 0 2604 2604 100%

D Real-time 43 318 275 86%

E Mostly MIS 764 791 27 3%

F MIS (batch) 272 676 404 60%

G MIS 878 896 18 2%

Table 3 – Software sizing comparison between FPA and FFP

6.2 FFP: some preliminary economic results

Table 4 presents size  results for three real-time software products.  Each of them comes from a
different organization.  In these instances, it was also possible to gather two key process
measures: the actual effort (person-hours) expended to build and deliver each product and the
duration of this process in elapsed months.  From these data, two economic ratios are calculated:
the process unit effort, expressed in person-hours/FFP and the schedule delivery rate, expressed
in FFP/elapsed months.

Product FFP size Effort
(person-
hours)

Duration
(elapse
months)

Unit effort
(phs/FFP)

Schedule
delivery rate
(FFP/month)

H 205,4 3 913 26 19,1 7,9

I 138,0 6 580 16 47,7 8,6

J 198,0 7 448 14 37,6 14,1

Table 4 – Key economic ratios derived from FFP size measurements

Unfortunately, this sample size is still too small for comparison purposes and for further analysis.
However, further field tests are being planned to expand this data set.

7. CONCLUSION

Based on the shortcomings of the traditional Function Points measurement method when applied
to real-time or embedded software, Full Function Points was proposed in 1997 as a functional
size measurement method specifically designed for these types of software.  The key concepts of
this new measurement method have been presented.

Initial field test results have indicated: a) the adequacy of the FFP measurement method in terms
of a high functional coverage ratio when applied to the software it is intended to measure, b) the
nature of the difference observed in the measured functional size between the FFP and the FPA
measurement methods when they are both applied to the same real-time or embedded software,
and c) the recognition, by practitioners, of an adequate degree of applicability in typical industrial
environments where these types of software are developed and maintained.

Furthermore, this new measurement method has been recognized by the ISBSG, an international
software benchmarking organization, based on an extensive set of criteria.



Final – © 1998 - UQAM Software Engineering Management Research Laboratory

Additional field test results have been presented which: a) provide further support for the
observed difference between the FFP and the FPA measurement method when applied to real-
time or embedded software, and b) provide an initial indication of the magnitude of key process
ratios based on the FFP functional size measure, thus allowing exploratory research to be
pursued by supporting the formulation of preliminary hypotheses.

8. ACKNOWLEDGEMENTS

Authors wish to thank Nortel, Bell Canada and Hydro-Québec as well as other industrial partners
for providing project funds, industrial data and valuable feedback from real-time software
practitioners.

UQAM’s Software Engineering Management Research Laboratory co-sponsored the research
leading to this publication.  The Laboratory is supported through a partnership with Bell Canada.
Additional funding for the Laboratory is provided by the Natural Sciences and Engineering
Research Council of Canada.

9. BIBLIOGRAPHY

[1] Desharnais, J.-M., Statistical Analysis on the Productivity of Data Processing with
Development Projects using the Function Point Technique. Université du Québec à Montréal.
1988.

[2] Albrecht, A.J. (1979), Measuring Application Development Productivity, Proceedings of Joint
Share Guide and IBM Application Development Symposium, October, 1997, pp. 83-92.

[3] Abran, A., and Robillard, P. N., Function Point Analysis, An Empirical Study of its
Measurement Processes IEEE Transactions on Software Engineering, vol. 22, no. 12, pp.
895-909, Dec. 1996.

[4] Jones, C., Applied Software Measurement - Assuring Productivity and Quality, McGraw-Hill,
1996, 618 pages.

[5] Kitchenham, B., Making Process Predictions, in Fenton, N.E., Software Metrics: A Rigorous
Approach, Chapman & Hall, UK, 1991, 337 pages.

[6] Conte, S.D., Shen, V.Y., and Dunsmore, H.E., Software Engineering Metrics and Models,
Benjamin Cummins Publishing, 1986, 396 pages.

[7] Galea, S., The Boeing Company: 3D Function Point Extensions, V2.0, Release 1.0, Boeing
Information and Support Services, Research and Technology Software Engineering, June
1995.

[8] Grady, R. B., Practical software metrics for project management and process improvement
Prentice Hall, New Jersey, 1992, 270 pages.

[9] Hetzel, B., Making Software Measurement Work, QEB Publishing Group, 1993, 290 pages.

[10] Ince, D. C., History and industrial applications, in Fenton, N.E., Software Metrics: A
Rigorous Approach, Chapman & Hall, UK, 1991, 337 pages.

[11] Jones, C., A Short History of Function Points and Feature Points, Software Productivity
Research, Inc., Cambridge, Mass, 1988.



Final – © 1998 - UQAM Software Engineering Management Research Laboratory

[12] Jones, C., Applied Software Measurement - Assuring Productivity and Quality, McGraw-Hill,
1991, 493 pages.

[13] Kan, S. H., Metrics and Models in Software Quality Engineering, Addison-Wesley, 1993, 344
pages.

[14] Whitmire, S. A., 3-D Function Points: Scientific and Real-Time Extensions to Function
Points, Proceedings of the 1992 Pacific Northwest Software Quality Conference, 1992.

[15] IFPUG (1994). Function Point Counting Practices Manual, Release 4.0, International
Function Point Users Group - IFPUG, Westerville, Ohio, 1994.

[16] Maya M., Abran A., Oligny S., St-Pierre D., Desharnais J. M., "Measuring the Functional Size
of Real-Time Software", Proceeding of the 9th European Software Control and Metric
Conference, Rome Italy, 1998


