IMPROVING SOFTWARE FUNCTIONAL SIZE MEASUREMENT

Serge Oligny*, Alain Abran', Denis St-Pierre?

!: UQAM’s Software Engineering Management Research Laboratory (http://www.Irgl.ugam.ca/),
Montréal, oligny.serge@ugam.ca and abran.alain@ugam.ca.

2 dstpierr@crim.ca.

Abstract

Software functional size measurement is
regarded as a key aspect in the production,
calibration and use of software engineering
productivity models because of its
independence of technologies and of
implementation decisions. In 1997, Full
Function Points (FFP) was proposed as a
method for measuring the functional size of
real-time and embedded software. Snce its
introduction, the FFP measurement method
has been field-tested in many organizations
which have provided feedback on ways to
improve it.

Based on this feedback and in association with
the Common Software Measurement
International Consortium (COSMIC), version
2.0 of the COSMIC-FFP measurement method
will be released in October 1999 for field-
testing. This paper describes the new features
of COSMIC-FFP version 2.0, including: a
generic software model adapted for the
purpose of functional size measurement, a
two-phase approach to functional size
measurement (mapping and measurement), a
simplified set of base functional components
(BFC) and a scalable aggregation function.
Through its generic software model of
functional users requirements, version 2.0 of
the COSMIC-FFP measurement method is
applicable to a broad range of software,
including embedded, MIS middleware and
system software.

1. INTRODUCTION

Full Function Points (FFP) is a measurement
method introduced in 1997 [1] for measuring
the functional size of real-time and embedded
software. Since its introduction, this
measurement method has been field-tested and
is currently used in many organizations [2, 3,
4].

The feedback received from the field tests [3],
as well as from day-to-day usage of the
method, the prospect of 1SO certification in
accordance with the recently released standard
14143 [5] and the momentum provided by the
Common Software Measurement International
Consortium (COSMIC) [6] have led to the
development of verson 20 of this
measurement method. This paper presents
some of the key improvements introduced by
COSMIC-FFP, version 2.0.

Section 2 summarizes the feedback gathered
from the industrial users, section 3 presents
four key improvements, and section 4 puts
these improvements in the historical context of
functional size measurement evolution.

2.MOTIVATION FOR IMPROVEMENTS

Since its introduction, the Full Function Points
measurement method has not only been
applied to real-time or embedded software, but
aso to a variety of technical and system
software and to some MIS software. Applying

© 1999, UQAM — Software Engineering Management Research L aboratory 1

the method to such a wide range of software
revealed:

a) The need to improve the mechanism by
which the functional user requirements
embedded in the software engineering
artifacts are mapped onto the base
functional components (BFC) [5] to
measure the functional size of the
corresponding software;

b) The need to refine the concept of
“software boundary” in order to address
functional user requirements allocated not
only to the pieces of software interacting
with end-users (application software), but
aso to pieces of supporting software
which are pat of the operating
environment when all these pieces are part
of agiven project;

c) The need to simplify the set of BFC used
to measure the functional size of software.

d) The need to increase the flexibility of the
measurement method in order to offer a
scalable resullt.

These requirements, along with those required
by 1SO compliance, were used as guides to
produce verson 2.0 of the COSMIC-FFP
measurement method.

3. COSMIC-FFP VERSION 2.0

Many of the improvements incorporated into
version 2.0 of the COSMIC-FFP measurement
method are marked by explicit concepts. Such
an approach means that the concepts are
distinguished from the rules and procedures
used to implement them. The measurement
method therefore gains in flexibility and
usability by alowing the practitioners to
quickly grasp the aim of the rules and,
consequently, adapt them to the measurement
context of their organization.

Requirement @), in section 2 above, was
mostly fulfilled by refining the measurement
process itself. The result is presented in

section 3.1. Requirement b) was fulfilled by
enriching the software model used by the
measurement method. The result is presented
in section 3.2. The simplification of the BFC
set (requirement c) above) led to a more
rigorous definition of the eements
contributing to the functional size of a piece of
software, and is presented in section 3.3.
Better scalability of the result (requirement d)
above) was also achieved through this newer
definition of the pieces contributing to the
functional size of software; the result is
presented in section 3.4.

3.1 A measurement process model

In essence, the COSMIC-FFP measurement
method consists of the application of a set of
rules and procedures to a given piece of
software; the result of the application of these
rules and procedures is a numerical figure
representing the functional size of the
software.

The method is designed to be independent of
the implementation decisions embedded in the
operational artifacts of the software to be
measured. To achieve this characteristic,
measurement is performed on a generic
software model onto which functional user
requirements found in the software artifacts
are mapped. Figure 3.1, below, depicts this
process.

FUR(1) of the Mapping COSMIC-FFP
Software to be | » » software FUR(1)
model
v

+

measured

M Functional size
——» of the software
ase FUR(1) model
r
:

(1): FUR: Functional | Users Requirements
(2): COSMIC-FFP functional size model includes concepts, definitions and relationship structure
of functional I size attri butes

Figure 3.1 — COSMIC-FFP measurement process
model

This model illustrates that, prior to applying
the measurement rules and procedures, the

© 1999, UQAM — Software Engineering Management Research L aboratory 2

software to be measured must be mapped onto
a generic model (the COSMIC-FFP software
model) that captures the concepts, definitions
and relationships (functional structure)
required for a functional size measurement
exercise.

3.2 A generic software model

A key aspect of software functional size
measurement lies in the establishment of what
is considered to be part of the software and
what is considered to be part of the operating
environment of the software. As a functional
size measurement method (FSM as defined in
[5]), COSMIC-FFP aims at measuring the size
of software based on identifiable functional
user requirements. Depending on how these
requirements are allocated, the resulting
software might be implemented in a number of
pieces. While all the pieces exchange data,
they will not necessarily operate at the same
“level”. The COSMIC-FFP software context
model, illustrated in Figure 3.2, recognizes
this general configuration by providing rules
to identify different LAY ERS of software.

Asillustrated in Figure 3.2, the functional user
requirements in this example are allocated to
three distinct pieces, each exchanging data
with another through a specific organization:
one piece of the software lies at the application
level and exchanges data with the software's
users and with a second piece lying at the
operating system level. In turn, this second
piece of the software exchanges data with a
third piece lying at the device driver level.
This last piece then exchanges data directly
with the hardware. The COSMIC-FFP context
model associates each level with a specific
LAYER. Each layer possesses an intrinsic
boundary for which specific users are
identified. The functional size of the software
described through the functional user
requirements is thus broken down into three
pieces, each piece receiving parts of the
functional user requirements.

Four important concepts relating to this model

s——————» Principal software item

are defined.
Functional
requirements
Users? T ‘
<
I Applications

— Modification to the operating syste

Allocatio

0.s.

% New device driver Device drivers

Hardware

(2): Human, engineered devices or other software.

Figure 3.2 — COSMIC-FFP software context model

Concept 1 —Layers

The software to be measured can be
partitioned into one or more pieces so that
each piece operates at a different level of
functional abstraction in the software’s
operating environment. There is a relationship
between each particular level of abstraction
based on the data exchanged between them.
Each such level is designated as a distinct
layer. Each layer encapsulates functionality
useful to a client layer and uses the
functionality provided by supporting layers.
One of these layers interacts with externa
end-users through 1/0 hardware and another
interacts with storage hardware through device
drivers.

Concept 2 - Boundary

Within each identified layer, the piece of
software to be measured can be clearly
distinguished from its surrounding peers by a
boundary. Furthermore, an implicit boundary
exists between each identified layer. The
software boundary is therefore a set of criteria,
perceived through the functional requirements
of the software, which alows a clear
distinction to be made between the items that
are part of the software (inside the boundary)
and the items that are part of the software
operating environment (outside the boundary).
By convention, al users of a piece of software
lie outside the boundary of this software.

© 1999, UQAM — Software Engineering Management Research L aboratory 3

Concept 3 — Software users

Within each identified layer, it is possible to
identify one or more users benefiting from the
functionality provided by the piece of software
lying inside the layer. By definition, users can
be human beings, engineered devices or other
software. Also by definition, pieces of the
measured software lying inside the immediate
neighboring layers are considered as users
(considered as “ other software”).

Concept 4 - Functional requirements
Software purposes can be formally described
through a finite set of requirements. The parts
of these requirements describing the nature of
the functions to be provided are designated as
functional requirements and institute the
exclusive perspective from which the
functiona size of the software is to be
measured. The parts of the requirements
describing how the software functions are to
be implemented are NOT considered for the
purposes of measuring the functiona size of
the software.

Figure 3.3 illustrates the software model
proposed by the COSMIC-FFP measurement
method. This model describes the perspective
from which the pieces of software identified
within each layer are perceived for the purpose
of functional size measurement.

According to this model, software functiona
requirements are implemented by a set of
functional processes. Each of these functional
processes is an ordered set of sub-processes
performing either a data movement or a data
manipul ation.

The COSMIC-FFP generic software model
distinguishes four types of data movement
sub-process. entry, exit, read and write. All
data movement sub-processes move data
belonging to exactly one data group. Entries
move the piece from outside the software 1/0
boundary to the inside; exits move it from
inside the software toward the outside of the
I/O boundary; reads and writes move data

across the storage boundary. These
relationships are illustrated in Figure 3.4.

Functional user
requirements

Software /*\

Functional process
type @

A

Sub-process

Data movement

b Data manipulation
type

type [©)]

(1): A sequence of data movement and transformation sub-process steps, triggered| |
event external to the software item, which is complete when the data processed
consistent with respect to the external triggering event.

(2): A sub-process entering, exiting, reading or writing a data

(3): A sub-process transforming a data item to create another one.

Figure 3.3 — COSMIC-FFP generic software model

By using the concepts, definitions and
structure of the COSMIC-FFP measurement
method, the functional user requirements
embedded in the artifacts of a piece of
software are mapped onto the COSMIC-FFP
software model, thereby instantiating it. This
instantiated model will contan al the
elements required for measuring its functional
size, while hiding information not relevant to
the measurement of its functional size.

<> Data movement types
USERS sub-processes
1/0 Boundary |_|
< .
Entry Exit
Manipulation
<> I o
Read Write
Storage Boundary |_| v
STORAGE

Figure 3.4 — COSMIC-FFP sub-process types

The COSMIC-FFP measurement rules and
procedures are then applied to this instantiated
COSMIC-FFP model in order to produce a
numerical figure representing the functional
size of the software.

Therefore, two distinct and related phases are
necessary to measure the functiona size of

© 1999, UQAM — Software Engineering Management Research L aboratory 4

software. mapping the functional user
requirements embedded in the artifacts of the
software to be measured onto the COSMIC-
FFP software model and then measuring the
specific elements of this software model.

3.3 Measurement system

The COSMIC-FFP measurement system
comprises a measurement principle, base
functional components (BFC) and a standard
unit of measure.

Measurement principle

The COSMIC-FFP measurement phase uses as
input an instance of the COSMIC-FFP
software model and, through a defined set of
rules and procedures, produces a numerical
figure the magnitude of which is directly
proportional to the functional size of the
model, based on the following principle:

The functional size of a piece of software is
directly proportional to the number of its
data-moving sub-processes.

COSMIC-FFP measurement principle

By convention, this numerical figure is then
extended to represent the functional size of the
software itself.

Two elements characterize this set of rules and
procedures. the BFCs which constitute the
arguments of the measurement function and
the standard unit of measurement, which is the
yardstick defining one unit of functional size
(one COSMIC functional size unit or
COSMIC-FSV).

Base functional components

Version 2.0 of COSMIC-FFP uses only four
base functional components (BFC): entry, exit,
reed and write. Data manipulation sub-
processes are not used as base functional
components. Version 2.0 of COSMIC-FFP

assumes, as an acceptable approximation for
many types of software, that the functionality
of this type of sub-process is represented
among the other four types of sub-process.

Sandard unit of measurement

The standard unit of measurement, that is, 1
COSMIC-FSU, is defined by convention as
equivalent to one single data movement at the
sub-process level.

The COSMIC-FFP measurement method does
not presume to measure all aspects of software
size. Dimensions of software “size” that differ
from elementary data movements are not
captured by this measurement method. A
constructive debate on this matter would first
require commonly agreed upon definitions of
the other elements and dimensions within the
ambiguous concept of “size” as it applies to
software. Such definitions are still, at this
point, the object of further research and much
debate.

3.4 Scalability

From the level of granularity offered by the
sub-process types, version 2.0 of the
COSMIC-FFP measurement method offers a
scalable result at the layer level, through the
use of an aggregation function.

Thus, the functional size of any functional
process is defined as the arithmetic sum of the
sizes of its constituent sub-processes. Results
can also be aggregated by layers by simply
adding the functional sizes of the constituent
functional processes.

It is worth noting that the smallest theoretical
functional size for a piece of software is 2
COSMIC-FSU, since any software exhibits, at
least, one input (entry or read) and one output
(exit or write). Furthermore, there is no upper
limit to the functional size of a piece of
software and, notably, there is no upper limit

© 1999, UQAM — Software Engineering Management Research L aboratory 5

to the functiona size of any of its measured
functional processes.

4. CONCLUSION

Functional size measurement of software
emerged 20 years ago from the empirical
results gathered on a sample of MIS
applications [7]. As it ganed wider
practitioner acceptance in the ‘80s, the
methods then available have been regularly
criticized, notably for their inability to
correctly measure the size of red-time
software [8, 9, 10, 11, 12, 13, 14, 15, 16].
Although many dternatives have been
proposed, from the mid-'80s to the mid-'90s
to address this problem, none of them seemed
to have gained sufficient recognition from
practitioners to be used on a regular basis
across a large number of organizations and in
many countries.

Verson 1.0 of Full Function Points was
proposed in 1997 as a public doman
aternative to solve this persistent difficulty.
Since then, field tests and repeated usage in
many organizations throughout North
America, Europe and Asia [2, 3, 4] have
demonstrated that FFP offers meaningful
results not only to measure the functional size
of real-time and embedded software, but also
to measure the functiona size of a wide range
of technical and system software and, in some
cases, of MIS software as well.

The improvements proposed in version 2.0 of
the COSMIC-FFP measurement method are
aimed at supporting these encouraging results
by providing enhanced applicability through @)
a solid metrological framework, and b)
explicit concepts enabling practitioners to
perform measurements in a more efficient
manner. Field tests are currently under way to
verify that those objectives have been met.

5. ACKNOWLEDGMENTS

The authors wish to thank Nortel, Bell Canada
and Hydro-Québec, as well as other industria
partners, for providing project funds, industrial
data and valuable feedback from real-time
software practitioners.

The authors would aso like to thank the
members of the COSMIC Group [6], notably
Charles Symons, Pam Morris and Grant Rules,
for the thoughtful comments, suggestions and
ideas they provided during the development of
version 2.0 of the COSMIC-FFP measurement
method.

UQAM’s Software Engineering Management
Research Laboratory co-sponsored the
research leading to this publication. The
Laboratory is supported through a partnership
with Bell Canada. Additional funding for the
Laboratory is provided by the Naturd
Sciences and Engineering Research Council of
Canada.

6. REFERENCES

[1] St-Pierre D., Maya M., Abran A., Desharnais
JM., Bourque P., “Full Function Points:
Counting Practices Manual”, Technical Report
1997-04, Université du Québec a Montréal,
Montréal, Canada, 1997. Avalable at
http://www.Irgl.ugam.ca/ffp.html.

[2] Morris P., Desharnais JM., “Measuring al
software, not just what the business uses’,
Proceedings of the IFPUG Fall Conference,
Orlando, Florida, September 21-25, 1998.

[3] Olign’g S., Abran A., Desharnais JM., Morris
P., “Functional size of rea-time software:
overview of field tests’, Proceedings of the
13" International Forum on COCOMO and
software cost modeling, Los Angeles,
California, October 6-8, 1998.

[4] Kececi N., Li M., Smidts C., “Function point
analysis. an application to a nuclear reactor
rotection system”, Proceedings of the
obability Safety Assessment '99 Conference,
Washington, D.C., August 22-25, 1999.

[5] ISO/IEC 14143-1: Information technology —
Software measurement — Functional size
measurement — Definition of concepts, October
1997.

[6] See www.cosmicon.com for details.

© 1999, UQAM — Software Engineering Management Research L aboratory 6

[7] Albrecht A.J, “Measuring Application
Development Productivity”, Proc. of the IBM
Applications Development Symposium,
Monterey, California, 1979.

[8] Conte S.D., Shen V.Y., Dunsmore H.E,
Software Engineering Metrics and Modéels,
Benjamin Cummins Publishing, 1986, 396

pages.

[9] Galea S., The Boeing Company: 3D Function
Point Extensions, V. 2.0, Release 1.0, Boeinﬂ
Information and SuPport Services, Researc
?ggsTechnology Sortware Engineering, June

[10] Grady R.B., Practical software metrics for
roject management and process improvement,
entice Hall, New-Jersey, 1992, 270 pages.

[171] Hetzel B., Making software measurement
work, QEB Publishing Group, 1993, 290

pages.

[12] Ince D.C., “History and industrial
applications’, in Fenton N.E, Software
Metrics: A Rigourous Approach, Chapman &
Hall, UK, 1991, 337 pages.

[13] Jones C., A short history of Function Points
and Feature Points, Software Productivity
Research Inc., Cambridge, Mass., 1988.

[14] Jones C., Applied Software Measurement —
Assurmg Productivity and Quality, McGraw-
Hill, 1991, 493 pages.

[15] Kan SH., Metrics and Modds in Software
Quality Engineering, Addison-Wesley, 1993,
344 pages.

[16] Whitmire SA., “3-D Function Points:
Scientific and Red-Time Extensions to
Function Points’, Proc. of the 1992 Pacific
Northwest Software Quality Conference, 1992.

© 1999, UQAM — Software Engineering Management Research L aboratory

