COSMIC-FFP — Someresultsfrom thefield trials
Oligny S., Abran A., Symons C.
Abstract

Field trials of the COSMIC-FFP functional size measurement method were initiated at the
end of 1999 with the aim of advancing the method from a 'proposal’ status to a 'proven’ status by
demonstrations and tests with real data on development projects from software from a variety of
functional domainsin a variety of organizations.

Data has been collected in a number of organizations since then and the analysis of the first
results started in July 2000. This paper summarizes the context of the COSMIC-FFP field trials
and presents some of the key observations obtained to date. Parts of the analysis focused on the
relationship between software size and project variables like effort and schedule while other
parts of the analysis focused on the relationship between the components contributing to the
functional size of the software. Notably the relevance of considering the count of data attributes
as a contributor to functional size and the distribution and variation of the size displayed by the
functional processes of real-time software was investigated.

The paper concludes on the status of the COSMIC-FFP measurement method, outlining the
key events and further results to be expected by early 2001.

1. Context

Quantifying the sze of software is generdly recognized as one of the key to adequate estimation of
effort, cost and schedule of software projects. Source lines of code was the first generdly accepted
measure for this purpose and is gill used extensively, as demondrated by the many estimation models
that have included this measure as a key parameter [1, 2]. As a measure of software Size though, the
source code measure carries some inherent limitations, and this has been recognized by software
engineering practitioners and researchers dike [3]. Among the practitioners, Allan Albrecht was the first
to propose, over 20 years ago, a new way of quantifying software size based on the user’s view of the
software [4]. Albrecht's 1979 method, now referred to as the IFPUG method, is still used today and
provides ussful results in many organizations, but it aso has some limitations and these have been well
documented over the past 15 years. One of these limitations is the difficulty of applying such a method
outside the MIS domain, as documented by [3, 5, 6, 7, 9, 10, 11, 12, 13, 14]. In 1996, the industry
sponsored the development of an IFPUG extension for rea-time and embedded software, which was
put into the public domain under the name of Full Function Points [8, 15, 16]. This extension enjoyed
fair recognition, notably within the telecommunications industry and the embedded software sector of
the automotive industry.

Copyright 2000, Common Software M easurement | nternational Consortium (COSMIC) 1

Building on the srengths of this work and with the support of the industry, the Common Software
Measurement International Consortium (COSMIC) was formed in 1998 to design and bring to market
anew generation of software measurement methods. The COSMIC group reviewed existing methods
(IFPUG, Markll [17], NESMA [18] and version 1.0 of the Full Function Point methods [8]), studied
their commondlties, and proposed the basic principles on which a new generation of software functiona
size measurement method could be based [19, 20, 21]. In November of 1999, the group published
verson 2.0 of COSMIC-FFP [23], a measurement method implementing these principles, and put its
measurement manual on the Web for public access. Overdl, close to 40 people from 8 countries
participated in the design of this measurement method. The Measurement Manud, describing the
method, is available in English, French and Spanish; Jgpanese and Itdian versgons are in preparation.
The purpose of this paper is to introduce the COSMIC-FFP functional size measurement method and
to present some resullts of the field trids, gathered over the past year.

2. COSMIC-FFP, A Summary

2.1. COSMIC Key Concepts

From the perspective proposed by COSMIC, software is part of a product designed to satisfy
functional user requirements. From this high-level perspective, functiond user requirements can be
dlocated to hardware, to software or to a combination of the two. The functiona user requirements
alocated to software are not necessarily dlocated to a single unit of software. Often these requirements
are dlocated to pieces of software operating a different layers of specidization and cooperating to
supply the required functiondity to the product in which they areincluded. Thisisillugtrated in Figure 1.

requirement
s

allocated to
. principal
software
pgoe%ic;eor requirement
' — s — lower layer
functional allocated to [~ software
requirement
device driver
— | layer software

Figure 1 — Allocation of functional user requirements, adapted from [19]

All functiond user requirements alocated to any one piece of software can be decomposed into, and
represented by, functional processes. In turn, each functional process is represented by sub-processes.
A sub-process can be ether a data movement type or a data transform type. Verson 2.0 of the
COSMIC-FFP measurement method recognizes only data movement type sub-processes. Further

Copyright 2000, Common Software M easurement | nternational Consortium (COSMIC) 2

research is deemed necessary to incorporate data transform sub-process types into the measurement
method. In the meantime, an approximation assumption is made such that each data movement his
associated with a congtant amount of data transformation. This assumption, which should be vaid for
most MIS, red-time and operating system software, is currently being tested and andlyzed through
indudrid fied trids, but will clearly not be vdid for dgorithm-intensve software as used in, for example,
scientific or engineering domains. The COSMIC representation of functional user requirements is
illugrated in Fgure 2.

Functional User
Requirements

Software /{\

Functional
processes

A

Sub-process

Data and Data
movement type transform type

Note: Data transform type is not considered in version
2.0 of the COSMIC-FFP measurement method.

Figure 2 — COSMIC representation of functional user requirements
within a piece of software [19]

The COSMI C-FFP measurement method defines four types of data movement which form the basis
for expressing the COSMIC-FFP standard unit of functiona sze. Hence, a generic modd is proposed
for measuring functiond size of any type of software that is not ‘dgorithm-intensve . Furthermore, the
COSMIC-FFP software model was designed to be compliant with the 1S0O-14143 standard [22] for
software functiond size measurement. The COSMIC-FFP generic software modd is illugtrated in
Figure 3.

USERS (persons, engineered devices or

any “things” including other software) Software boundary
l I "
ENTRY EXIT

< Sub-process types
READ WRITE

FUNCTIONAL PROCESS

Figure 3 — COSMIC-FFP generic software model

Copyright 2000, Common Software M easurement | nternational Consortium (COSMIC) 3

2.2.COSMIC Measurement System

The COSMIC-FFP measurement method explicitly defines a measurement system which includes a
measurement principle, base functiond components, a sandard unit of measure and an aggregation
function.

Measurement principle: based on the COSMIC-FFP generic software model (Fig. 3), the method,
through a defined set of rules and procedures, produces a numerica figure the magnitude of which is
directly proportiond to the functiona size of this model. These rules presuppose the principle that the
functiond sze of a piece of software is directly proportiond to the number of its data-moving sub-
processes. By convention, this numerical figure is then extended to represent the COSMIC-FFP
functiond sze of the software itsdif.

Base functional components version 2.0 of the COSMIC-FFP measurement method uses only
four base functiona components: entry, exit, read and write; each one is defined in [27]. Data transform
type sub-processes are not used as base functiona components due to the gpproximation assumption
described earlier.

Sandard unit of measurement: the standard unit of measurement, that is, 1 Cfsu, is defined by
convention as equivdent to one single data movement type a the sub-process leve. A further
refinement, gtill being considered by the COSMIC group, is to define the standard unit of measurement
based on the number of data eement types moved by a data movement type sub-process. Empirica
evauation of this refinement is andyzed in section 4.3 of this paper.

Aggregation function: The functiona Sze of the data movement base functional components can be
combined to obtain the Sze of any higher-level functiona structures such as that of functiona processes,
components within layers or whole gpplications. This is performed by arithmetically adding together the |
functiona szes of the congtituent functiond structures according to the purpose of the measurement.

The measurement system proposed by the COSMIC-FFP measurement method offers a scalable
result, which means that the functiona sze figure can be congtructed at the desired leved of abstraction.
Furthermore, as demonstrated by Fetcke in [24], the COSMIC-FFP measurement system meets the
dominance and the monotonicity properties, two distinctive and desirable measurement properties,
violated by some other functiond size measurement methods, and contributing theoreticaly to a) better
predictability of effort estimates (in the case of dominance) [24, pp.150] and b) better predictability of
functiond szeitsdf (in the case of monotonicity) [24, pp. 152].

3. COSMIC-FFP Field Trials

The general am of the trids was to advance the COSMIC FFP method from a ‘proposal’ status to a
‘proven’ status by demonstrations and tests with real data on development and maintenance software

Copyright 2000, Common Software M easurement | nternational Consortium (COSMIC) 4

projects from a variety of functiona domains in a variety of organisations. More specificdly, the field
trials were organized:

to test that the COSMIC FFP V.2 documentation is understandable and interpretable in a common and
repeatable way across software developers working in different domains, with different methods of
expressing requirements and with different development technologies, and can be applied with
acceptable effort,

to test that the functiona size measures obtained properly reflect the functionality of the related
software requirements as perceived by experts in the requirements and/or that the functional size
measures correlate with development effort,

to enable a full transfer of the COSMIC FFP method to the organisations participating in the field
trias, such that they regard it as ‘implemented’,

to establish initia benchmark performance levels according to the COSMIC FFP method, against
which the participating organisations can compare their own performance.,

to establish approximation approaches (‘ estimating rules of thumb’) to the full COSMIC FFP method
which can be used very early in the life of determining the requirements for an item of software

to establish, if feasible, converson rules from exigting functiond szing methods.

A protocol was documented to collect specific and standardized data from each participating
indugtrid partner. Collected data was sent to UQAM Software Engineering Management Research
Laboratory for centralized analysis.

4. Some Field Trials Results

The preliminary results presented in this section are addressing two specific topics. The first one is
an andyds of the variability of the size of functiona processes, leading to some ingghts on the reative
limitations of an existing measurement method. The second one is an analysis of the rdative contribution
of the count of data attributes to the measurement of software functiona size. A description of the data
sample is presented fird.

4.1. Description of the data sample

The data used in the two andyss beow are drawn from sx software projects within one
organization. This organization is a world class manufacturer of red-time sysems. Within each
measured software only one layer was identified. All projects were completed either in 1999 or early
2000. These software represents a total of 93 functional processes according the COSMIC definition
of a functiond process. The totd Sze of the sx software is 456 Cfsu; there was therefore 456
eementary data movements identified at the functiona level, out of which it was possible to count the
actua number of data attributes moved around in 344 cases.

Copyright 2000, Common Software M easurement | nternational Consortium (COSMIC) 5

4.2. Thesize of functional process

An andysis of the average size of these functional processesis presented in Table 1 below. It can be
observed that the average size varies sgnificantly from project to project (Soread in the order of 5:1).
Project E isasingular case, snce dl four identified functiona processes have the same functiond size (2
Cfsl). Project B shows the largest average (9,5 Cfsu), while projects F and C dso display szeable
functional processes (7,9 and 7,0 Cfsu respectively).

Project ID No. of Func. Pr. | Software size Avg. size of Standard
(Cfsu) Func. Pr. (Cfsu) deviation

B 8 76 9,5 1,9

C 8 56 7,0 2,1

D 46 142 3,1 0,7

E 4 8 2,0 0,0

F 18 142 7,9 7,1

Overall 93 4,9 4,1

Table 1 — Functional size of the functional processes sample

A further analyss of the digtribution of functional Sze is presented in Figure 4 below. Ranges of sze
are illugtrated by a spread of plus or minus one sandard deviation around the average vaue, and a
condraint isillugtrated by asmallest sze of 1.

A e

B

c [T 7o |
I:l Average +/- 1 std. dev.
I:l Constraint

D I__l_l 3,1
I X Averagevalue

E I 2,0

F I 7.9

Overall I 49 |

T T T T T T T T T .1 T T T T 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Average Size of Functional Process (Cfsu)

Copyright 2000, Common Software M easurement | nternational Consortium (COSMIC) 6

Figure 4 — Sze distribution of functional processes sample

A useful comparison between COSMIC-FFP and the IFPUG measurement methods is based on
the following hypothess. Pat of the IFPUG dementary process definition which dates that “an
elementary process is sgnificant to the users’ is equivaent to the COSMIC-FFP definition of functiona
process which gtates that “afunctiona process starts with atriggering event. .. and ends when producing
aresult identifiable by the users.” If accepted, this hypotheses equates the IFPUG dementary process
with the COSMIC-FFP functional process.

Under such circumstances, the range of values that would have been assgned to the functiona
processes isillugtrated in Figure 5 by the vertical shaded box (spanning the sizesof 3to 7 Cfsu). It can
then be observed that, for project B, the IFPUG method would have systemdticaly “undersized” al
functiond processes, while at the same time “under-sizing” a certain number of functiona processes in
projects C and F. Yet, in a project like A, dl functiond processes would have been szed smilarly
usng the IFPUG method. Overdl, Figure 5 contributes to illudtrating empiricaly why non-MIS
software is reported to be undersized when the IFPUG method is used.

A I 36

B

C d

:Il I:l Average +/- 1 std. dev.

[[] constraint

D -

|: 1 I X Averagevalue

I:l IFPUG allowed range

E I 2,0

F | 7.9

Overall | | 2o | |

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Average Size of Functional Process (Cfsu)
Figure 5 - Sze distribution of functional processes sample showing IFPUG limitations

The COSM I C-FFP measurement method was designed to better capture the amount of functiondity
within afunctiona process. The above andlyss, illustrated in Figure 5, provides corroborative evidence
that the design of COSMIC-FFP actualy meetsits god: the granularity of COSMIC-FFP dlows much
better to capture the functional sze variations within individud functional processes exhibiting quite
diginct averages and standard deviations for each software while the adlowed range of the IFPUG
method is much smdler and, therefore, less sendtive to the large diversity of functional processes
encountered in red-time software.

4.3. Theimpact of the number of data attributes

Copyright 2000, Common Software M easurement | nternational Consortium (COSMIC) 7

A totd of 456 individua data movements were identified within the six projects During the
measurement exercises, effort was expended to identify the number of data attributes moved by each
individual data movements. For some data movements this number was estimated, while for others it
was counted. 1t was thus possible to count (not estimate) the number of data attributes involved in 344
data movements (more than 75% of the sample). These are retained here for further andysis. The
average number of data atributes involved in a Single data movement, dong with the sandard deviation
and number of observationsis presented for each data movement typein Table 2 below.

Data Movement type Average Standard Number of

deviation observation
ENTRY 3,1 2,9 96
EXIT 2,9 2,7 121
READ 3,5 4,1 63
WRITE 4,7 3,3 64

Table 2 — Basic demographics of the number of data attributes per data movement type

A firg digribution analysis, based on a range of plus or minus one standard deviation around the
average vaue for each data movement type, is illustrated in Figure 6 below. In this diagram, the range
of possble vaues is congrained on the lower sde by the vadue 1, since a data movement involves a
least 1 data attribute.

ENTRY i 3,1 |:| Average +/-1std. dev.
D Constraint
I X Average value
EXIT
READ | =s |
WRITE | X
1 2 3 4 5 6 7 8 9 10
Number of data attributes moved

Figure 6 — Basic demographics of the number of data attributes per data movement type

Copyright 2000, Common Software M easurement | nternational Consortium (COSMIC) 8

A firg datigtical test was performed in order to determine whether or not there is a sgnificant
difference between the average number of data attributes moved by each type of data movement (null
hypotheses). The null hypothesesis regjected at the 0.05 level (P(Ho) = 0.0025.

It was therefore gppropriate to investigate which data movements type differed from which others
regarding the number of data attributes they moved. A prerequisite for a paired t-test is the assumption
that the variances are equa across each type of data movement (null hypotheses). This hypotheses was
veified usng Levene stest successfully, at the 0.05 level (Pr. > F =0.1882). A paired t-test could thus
be applied.

The paired t-test results, shown in Table 3 below, brings out two group of data movement type
regarding the number of data attributes moved: on the one hand ENTRY, EXIT and READ can not be
datidicdly distinguished from each other and, on the other hand, WRITE do differ dgnificantly (at the
0.05 level) from the other three data movement types.

- ENTRY EXIT READ WRITE

‘ n.a. 0.6098 0.5188 0.0022

n.a. 0.2620 0.0003
n.a. 0.0271

n.a.

Table 3 — Pair wise probability of equality between averages (null hypotheses)

A further andyds of the digtribution of data movement types was performed, this time to study the
proportion of data movement typesinvolving ranges of data attributes. Results areillugtrated in Figure 7
below. It can be seen from this andyss that dl (100%) of the ENTRYs moved at most 10 data
attributes, 98% of the EXITs moved at most 10 data attributes, 95% of the READs moved at most 10
data attributes and 98% of the WRITES moved at most 10 data attributes.

I]
1 I I I I I I I I
0% 10% 20% 30% 40% 50% 60% 0% 80% 90%

Proportion of data movements

Copyright 2000, Common Software M easurement | nternational Consortium (COSMIC) 9

Figure 7 — Distribution of the data movement types for groups of data attributes

Based on these two andyses, it is postulated that assigning an equa weight to dl type of data
movements is indeed judtified given the small magnitude of the differences between the WRITE and the
other three types of data movement.

5. Conclusion

Although the quantification of software Sze is key to an gopropriate usage of most estimation modd,
it is dill the object of much research. Technicad measure of software size, like lines of code, appeared
more than 20 years ago. Although Hill in use today, they digplay some limitations. Functiond measure
of software sze, like Albrecht’'s Function Point, was proposed during the ‘70s as an dternative to
mitigate those limitations but suffer from other shortcomings. In 1998 the COSMIC Group proposed a
new functiona sze measurement method (COSMIC-FFP) to “push the envelope”’ beyond those known
shortcomings.

Notably, The COSMIC-FFP measurement method was designed to better capture the amount of
functionality within a functiond process. This paper bought forward corroboretive evidence that the
design of COSMIC-FFP actudly meets this god: the granularity of COSMIC-FFP alows much better
to cgpture the functional Sze varidions within individua functional processes exhibiting quite distinct
averages and standard deviaions for each software while the dlowed range of the IFPUG method is
much smaller and, therefore, less sendtive to the large diversity of functional processes encountered in
redl-time software.

Furthermore, the analyss of the number of data attributes moved by a sub-process type show that,
on average, three types of data movement are undigtinguishable in this regard while the magnitude of the
difference with the fourth type is smdl, favoring equa weights between each sub-process types and,
therefore, providing an gpproach to functiona size measurement closer to direct observation.

6. ACKNOWLEDGMENTS

The authors of this paper wish to acknowledge the specific contributions of Pam Morris, Grant Rule,
Peter Fagg and Denis St-Pierre in the eaboration of the COSMIC-FFP measurement method, the
support of Moritsugu Araki, Reiner Dumke and Risto Nevaainen, and the thoughtful and generous
comments from all the reviewers of the COSMIC-FFP Measurement Manua [23].

Copyright 2000, Common Software M easurement | nternational Consortium (COSMIC) 10

7. BIBLIOGRAPHY

[1]

[2]

(3]

[4]

[5]

[6]

[7]

[8]

(9

[10]

[11]

[12]

[13]

[14]

[15]

[16]

B.W. Boehm, R.W. Wolverton, “Software cost modeling: some lessons learned”, Journal of
System and Software, 1:195-201, 1980.

V. Cété, P. Bourque, S. Oligny, N. Rivard, “Software metrics. an overview of recent results’,
Journal of System and Software, 8:121-131, 1988.

C. Jones, Applied software measurement - Assuring productivity and quality, 2 Edition. New
York, NY: McGraw-Hill Inc., 1996.

A.J. Albrecht, “Measuring Application Development Productivity,” presented at 1BM Applications
Development Symposium Monterey, CA, 1979.

S.A. Whitmire, “3D Function Points. Scientific and Redl-Time Extensons to Function Points,”
presented at Pacific Northwest Software Quality Conference, 1992.

D.J. Reifer, “Asst-R: A Function Point Sizing Tool for Scientific and Red-Time Systems,”
Journal of Systems Software, Val. 11, p. 159-171, 1990.

T. Mukhopadhyay and S. Kekre, “Software effort models for early estimation of process control
gpplications,” |EEE Transactions on Software Engineering, Vol. 18, p. 915-24, 1992.

A. Abran, JM. Desharnais, M. Maya, D. St-Pierre, P. Bourque, “Design of a functiond size
measurement for real-time software”, Research report no. 13, Software Engineering Management
Research Laboratory, Université du Québec a Montréal, Montreal, Canada, November 1998.

S.D. Conte, H. E. Dunsmore, V. Y. Shen, Software engineering metrics and models. Menlo
Park: The Benjamin/Cummings Publishing Company, Inc., 1986.

R.B. Grady, Practical software metrics for project management and process improvement.
Englewood Cliffs, New Jersey: Prentice-Hall Inc., 1992.

B. Hetzel, Making Software Measurement Work - Building an Effective Measurement
Program Boston: QED Software Evaluation Series, 1993.

S.H. Kan, Metrics and models in software quality engineering. Readings, Massachusetts:
Addison-Wed ey Publishing Company, 1995.

D.C. Ince, “Higtory and industria application”, in N.E. Fenton, Software metrics: a rigorous
approach, Chapman & Hall, UK, 337 pages, 1991.

S. Galea, “The Boeing Company: 3D function point extensons, v. 2.0, rdease 1.0°, Boeing
Information and Support Services, Research and Technology Software Engineering, June 1995.

A. Abran, M. Maya, JM. Desharnais, D. St-Fierre, “Adapting Function Points to red-time
software”, American Programmer, Vol. 10, no. 11, p. 32-43, November 1997.

D. St-Pierre, M. Maya, A. Abran, JM. Desharnais, P. Bourque, “Full Function Points: Function
Points Extension for Red-Time Software - Counting Practices Manua”, Technica Report no.
1997-04, Software Engineering Management Research Laboratory, Université du Québec a
Montréal, Montreal, Canada, September 1997. Downloadable at http://mww.Irgl.ugam.calffp.html.

Copyright 2000, Common Software M easurement | nternational Consortium (COSMIC) 11

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

C.R. Symons, Software sizing and estimating — Mkll FPA (function point analysis), John Wiley
& sons, Chichester, UK, 1991.

The Netherlands Software Metrics Users Association (NESMA), “Definitions and counting
guidelines for the application of function point analysis, verson 2.07, 1997.

C.R. Symons, P. G. Rule, “One size fits dl — COSMIC ams, design principles and progress’,
Proceedings of ESCOM 99, p. 197-207, April 1999.

A. Abran, “FFP Reéease 2.0: An Implementation of COSMIC Functiona Size Measurement
Concepts’, Proceedings of FESMA ‘99, Amsterdam, Oct. 1999.

C.R. Symons, “ COSMIC aims, design principles and progress’, Proceedings of IWSM ’99,
pp. 161-172, September 1999. Proceedings are downloadable a
http:/iwww.Irgl.ugam.caliwsm99/index2.html.

International Organization for Standardization (1SO), “ISO/IEC 14143-1:1997 — Information
technology — Software measurement — Functional size measurement — Definition of concepts’,
October 1997.

A. Abran, J-M. Desharnais, S. Oligny, D. St-Pierre, C. Symons, “COSMIC-FFP M easurement
Manual, verson 2.0", Ed. S. Oligny, Software Engineering Management Research Laboratory,
Université du Québec a Montréal, Montrea, Canada, Oct. 1999. Downloadable at
http://www.Irgl.ugam.ca/ffp.html

T. Fetcke, “A Generalized Structure for Function Point Analysis’, Proc. of the International
Workshop on Software Measurement (IWSM ‘99), Lac Supérieur, Canada, Sept. 1999,
Downloadable at http://Amww.Irgl.ugam.calffp.html.

Copyright 2000, Common Software M easurement | nternational Consortium (COSMIC) 12

