COSMIC-FFP Some results from the field trials

Oligny, S., Abran, A., Symons, C.

Presented at

15th International Forum on COCOMO and Software Cost Estimation

Los Angeles, USA

October 24-27, 2000

Context

- COSMIC-FFP Brief review of key points
- Field trials results first analysis
- Field trials results second analysis
- Onclusion

Context...

- A new functional size measurement method, COSMIC-FFP, was put in the public domain a year ago,
- Field trials were conducted essentially until the end of summer 2000,
- The first experimental results of the field trials are presented here.

COSMIC-FFP – Key points...

Functionality = Data movements and Data manipulations

COSMIC-FFP – Key points...

Measurement process

COSMIC-FFP Measurement Manual, p. 12

COSMIC-FFP – Key points...

Measurement system

- Unit of measure: COSMIC Functional Size Unit (Cfsu).
- Yardstick (by convention): 1 Cfsu = 1 elementary data movement,
- Base Functional Components (BFC): entry (E), exit (X), read (R) and write (W)
- > Therefore each BFC receives 1 Cfsu.
- FFP results can be aggregated at the desired level of detail by arithmetically adding the size units assigned to sub-processes.

Field trials results

1st analysis: Study the range of functional process size.

2nd analysis: Study the role of the number of data attributes per data movement

Field trials results – data sample

- One organization, a world class manufacturer of real-time systems,
- Sample of 93 functional process taken from 6 software delivered in 1999 or 2000,
- Sample of 456 individual data movements from the same 6 software.

Field trials results – data sample

Software ID	No. of functional processes	Software size (Cfsu)
А	9	32
В	8	76
С	8	56
D	46	142
E	4	8
F	18	142
Overall	93	

Software ID	No. of func. processes	Software size (Cfsu)	Average size (Cfsu)	Standard deviation
А	9	32	3,6	0,5
В	8	76	9,5	1,9
С	8	56	7,0	2,1
D	46	142	3,1	0,7
E	4	8	2,0	0,0
F	18	142	7,9	7,1
Overall	93	456	4,9	4,1

Hypothese:

Establish an equivalence between COSMIC-FFP functional process and IFPUG elementary process...

- COSMIC-FFP was designed to better capture the amount of functionality within functional process
- We have corroborative evidence that the design of the method meets its goal
- The granularity of COSMIC-FFP allow to better capture the variations in functional size, as it is often observed in real-time software.

- Number of data attributes counted for 344 of the 456 individual data movements,
- Is there a significant difference in the number of data attributes moved by each type of data movement ?
- Would it justify different "weights" for each type of data movement ?

Data movement types	Average no. of data attribute	Standard deviation	Number of observations
ENTRY	3,1	2,9	96
EXIT	2,9	2,7	121
READ	3,5	4,1	63
WRITE	4,7	3,3	64

 H_0 : both type _(i,j) move on average the same number of data attributes.

P(H₀) below:

	ENTRY	EXIT	READ	WRITE	
ENTRY		0.6098	0.5188	0.0022	
EXIT			0.2620	0.0003	
READ				0.0271	
WRITE					

 H_0 rejected at the 0.05 level \leftarrow

- Analysis indicate a difference between WRITE and the other three data movement type (as a group),
- Magnitude of the difference is small though,
- Unless there would be experimental data supporting a difference of a larger magnitude, each type of data movement will be considered of equal "weight".

Conclusion...

• From the 1st analysis:

- The granularity of COSMIC-FFP allows to better capture the variations in functional size, as it is often observed in real-time software for instance.
- From the 2nd analysis:
 - Unless there would be experimental data supporting a difference of a larger magnitude, each type of data movement will be considered of equal "weight".

- These two analysis are the first field trial results to be published,
- There is much more to come in the following months,
- Disclosure of field trial results can be monitored at:

http://www.lrgl.uqam.ca/ffp.html

Acknowledgments

 The Software Engineering Management Research Laboratory of the Université du Québec à Montréal is supported through a partnership with Bell Canada.

 Additional funding is provided by the National Research Council of Canada.