
A METHOD FOR MEASURING THE FUNCTIONAL SIZE OF EMBEDDED SOFTWARE

Serge Oligny1, Jean-Marc Desharnais2, Alain Abran1

1: UQAM’s Software Engineering Management Research Laboratory (http://www.lrgl.uqam.ca/),
Montréal, oligny.serge@uqam.ca and abran.alain@uqam.ca.

2: SELAM (http://www.lmagl.qc.ca/), Montréal, desharnais.jean-marc@uqam.ca.

Abstract

Software has become a key component of most automated
process control devices. It offers a high degree of
flexibility in adjusting the behavior of those devices.
Proper management of the development and maintenance
of process control software is therefore a key issue be it
for reasons related to internal organization performance
or for benchmarking against the best in the industry.

Measures are essential for quantitative management;
they are needed to analyze both the quality and the
productivity of the software processes. For instance,
technical measures are useful to quantify the
performances of a product’s design through efficiency
analysis. On the other hand, functional measures are
needed for quantifying products from a user perspective
and are well suited for productivity analysis. For
instance process control projects that exhibit cost or
schedule difficulties originating from the work related to
the software components could benefit from functional
measures to alleviate such difficulties. Functional
measures are independent of technical and
implementation decisions, they can be used to compare
the productivity of different techniques and technologies.

This paper presents a measure of a fundamental
dimension of software: its size. Although software
functional size measures are not new, the most popular
one, called function points, have often been described as
ill-suited for the quantification of real-time or embedded
software for a number of reasons. The measure
presented in this paper, called Full Function Point
(FFP), has been specifically designed for real-time or
embedded type of software.

The paper explains the criteria for designing an adequate
software functional size measure. The characteristics of
FFP and the associated measurement method is then
presented along with references to relevant
documentation. Results are introduced; these results
demonstrate that, from a practitioner perspective, Full
Function Point is a functional measure that adequately
captures the perceived functional size of real-time or
embedded software. The paper conclude on the evolution
perspectives for this size measure.

1. Introduction

Due to the important role played by software in today's
process control devices, the use of measures to manage
the software development processes and products is
recognized as an essential element in effective software
management. One important measure is the size of the
software product. There are basically two kinds of
software size measures: technical measures and
functional measures. Technical measures, like the
number of lines of code, size software products from the
developer's point of view. They are useful for conducting
efficiency analysis, for instance. Functional measures
size software products from the user's point of view.
Being independent of technical development and
implementation decisions, they are useful for performing
productivity analysis and for building estimation models.

Function Point Analysis (FPA), first introduced by Allan
Albrecht in 1979 [1], is an example of a functional size
measure. FPA measures the size of a software product in
terms of the functionality it delivers to the users, taking
into account objects such as inputs, outputs and files.
FPA is now widely used in the MIS domain, where it is
becoming the de facto standard. FPA is being used
extensively, among other things, to analyze productivity
and to estimate software costs. However, FPA has not
enjoyed the same degree of acceptance in the domain of
embedded real-time software. In fact, a literature review
has shown that the data sets used in most publications
originate from MIS software applications. Several
authors concur that when FPA is applied to real-time
software, the results do not constitute an adequate size
measurement [2], [5], [9], [13]. Currently, there is no
FPA-equivalent technique for the real-time domain.

Six previous attempts to adapt FPA to real-time software
have been identified in the literature: Feature Points [5],
Mark II [12], Asset-R [9], 3D Function Points [13],
Application Features [8] and IFPUG Case Study 4 [4].
These attempts can be classified into five types of
solutions: introducing new components to be measured in
addition to those already proposed by FPA (Feature
Points, Asset-R, 3D Function Points); adjusting the final
function point count (Asset-R); estimating the final
function point count (Application Features); continuous
adjustment of the matrices used to assign points to the
different components (Mark-II) and the orthodox
approach (IFPUG Case Study 4). However, it seems that
none of these approaches has succeeded in gaining

market acceptance, even though some of them were
proposed a decade ago.

This paper presents the results of a research project
carried out at the Software Engineering Management
Research Laboratory at the Université du Québec à
Montréal in cooperation with the Software Engineering
Laboratory in Applied Metrics (SELAM) to propose a
functional size measure specifically adapted to the
functional characteristics of real-time software. The
proposed measurement method, called Full Function
Points (FFP) [10], is based on the observation that real-
time software has the following specific transactional and
data characteristics:

• Transactional characteristics: The number of sub-
processes found in a real-time process varies
substantially. By contrast, processes in the MIS
domain display a more stable number of sub-
processes.

• Data characteristics: There are usually a large
number of single-occurrence control variables in a
real-time software product. These variables are
characterized by the fact that there is only one
occurrence of them in the whole application (for
example, the status of a physical device).

To take into account these characteristics, FFP introduce
six components to be measured: four components to take
into account the transactional characteristics and two
components to take into account the data characteristics.
FFP define detailed procedures and rules to identify and
weight these components.

Furthermore, FFP were designed to offer quality
characteristics from a measurement perspective,
including:

• Relevance: Practitioners perceive that the
measurement technique adequately measures the
functional size of their applications.

• Instrumentation: Instrumentation means the
transformation of the preliminary specifications of a
measurement technique into a set of well-
documented procedures. These procedures will
ensure the application of the measurement technique
in a consistent manner across contexts, culture and
time, and independently of the designers of the
technique. An example of instrumentation is the FPA
Counting Practices Manual [3]. Instrumentation is
an essential factor in achieving repetitiveness, which
means that different individuals, in different contexts
and at different times and following the same
measurement procedures, will obtain measurement
results that are relatively similar, have been obtained
with minimal judgment and can be audited.

• Practicality and applicability: The measurement
technique is based on current software design
practices, as observed in the industry, and on the
content of the documentation of user requirements
from a functional perspective.

• Transferability: The measure should allow
transferability to a standards-setting and monitoring
body.

FFP were field-tested in different organizations. The
feedback obtained from these organizations was positive
[6] [7] [11]: for these organizations, FFP results represent
a more relevant measure of the functional size of their
real-time software than traditional Function Points did.
These organization’s practitioners believe that, using Full
Function Points, the functional size was measured
objectively, precisely and in an auditable manner.
Furthermore, they believe that someone else with the
same set of rules would come up with the same results.
The concepts, counting rules and procedures in the FFP
counting manual were deemed relatively clear and easy
to understand. The effort required to measure an
application with FFP was judged to be similar to that
required using traditional Function Points.

In this paper, the key concepts of FFP are described and
the results of field tests conducted are discussed. Section
2 introduces the basic concepts of FFP. Section 3
describes the field tests conducted and highlights the
main results. The final section presents some
observations and topics for further research.

2. Full Function Points Basic Concepts

To measure the specific functional characteristics of real-
time software adequately, it is necessary to consider both
the sub-processes performed by each control process and
the single-occurrence control data. Full Function Points
(FFP) introduces data and transactional function types
accordingly. Furthermore, the concept of boundary
allows to distinguish between the software components
that are included in the measured product from the ones
which can be found in its surroundings.

• Boundary: The boundary of a piece of software is
the functional frontier allowing the segragation of
the components that are included in the measured
product (inside the boundary) and the components
that are part of the environment of the measured
product (outside the boundary).

• Data function types:
Updated control group (UCG): A group of control
data updated by the software being measured.
Control data means data used by the application to
control, directly or indirectly, the behavior of an
application or of a mechanical device.
Read-only control group (RCG): A group of
control data used, but not updated, by the software
being measured.

• Transactional function types:
Within the boundary of the software being
measured, all processes are identified. Within each
identified processes the following four transactional
function types are identified.
External Control Entry (ECE): A sub-process that
receives control data coming from outside the
application’s boundary. For instance, each sub-

process receiving data coming from one sensor is
considered an ECE.
External Control Exit (ECX): A sub-process that
sends control data outside the application boundary.
For instance, each sub-process sending a signal to a
device’s control panel display is considered an
ECX.
Internal Control Read (ICR): A sub-process that
reads a group of control data. For instance, each
sub-process that obtain a threshold value from a
group of control data is considered an ICR.
Internal Control Write (ICW): A sub-process that
writes to a group of control data. For instance each
sub-process updating current value of key variables
inside the measured application is considered an
ICW.

The FFP transactional function types are identified at the
sub-process level (Figure 1), instead of the process level
as it is done with traditional FPA. It can thus be said that
FFP take into account a finer level of granularity, the
sub-process level, while FPA only considers the process
level. A finer level of granularity is important in real-time
software since, unlike MIS processes, real-time processes
display a variable number of sub-processes.

Figure 1: FFP transactional function types

The identification of the transactional function types of
an application includes the following major steps [10]:

1. Identify the boundary of the software application to be
measured;

2. Identify and assign points to each data control groups;
3. Identify the different processes performed by an

application from a functional perspective;
4. From a functional perspective, identify the different

sub-processes performed by each process;
5. For each sub-process, determine whether to count it as

an Entry, Exit, Read or Write function type, according
to their definitions and counting rules;

6. Assign the corresponding points to each sub process.
7. Sum up sub process points for each process, then for

the entire application.
8. Functional size is the sum of processes points (step 7)

and points allocated to data (step 2).

The complete set of FFP concepts, definitions, counting
procedures and rules, as well as a counting example, can
be found in the FFP Counting Practices Manual [10].

3. FFP Field Tests

3.1 Initial Field Tests

Initial field tests of the FFP measurement method were
conducted prior to its initial release in 1997 [14]. One set
of field tests was conducted by the research team that co-
authored the FFP measurement method and another set of
tests was conducted by an industrial partner without the
assistance of the research team.

In the first field test, conducted by the research team,
three real-time or embedded software products were
measured using both FFP and IFPUG’s FPA
measurement methods. The purpose of the test was to
compare the functional size obtained with both method.
The software products measured were taken from the
operational portfolio of organizations in the USA and in
Canada. Results show that FFP provides a functional
size that is close to FPA when there are few sub-
processes within each process. Furthermore, for
processes displaying a significantly larger functional size,
there is a considerably larger number of embedded sub-
processes and the functional size provided by the FFP
measurement method is significantly larger than the
functional size provided by the FPA measurement
method.

In the second set of field tests, conducted by an industrial
partner from Japan without the assistance of the research
team, the FFP measurement method was used exclusively
on real-time operational software product. The purpose
of the tests was to evaluate the FFP measurement method
for relevance and usability. Results obtained from this
organization’s practitioners indicate that:

• Concepts and measurement procedures in the FFP
Counting Manual were relatively clear and easy to
understand. It was not difficult to count without the
assistance of an FFP specialist.

• In the larger of these independent tests, FFP
measured 79 processes out of the 81 expected to be
measured with an adequate functional size
measurement method. At the end of this field test,
the industrial partner concluded that FFP failed to
take into account 2 of the 81 processes because the
current design of FFP does not measure processes
containing only internal algorithms (processes that
do not refer at all to any data groups). The FFP
measurement coverage rate was therefore 97% of the
overall functionality that they felt should be included
in the measurement of the functional size of their
real-time software.

Furthermore, all these tests indicated that the effort
required to measure the functional size of an application
using the FFP measurement method is similar to the
effort required for measuring it using the FPA rules.
Even though more function types have to be measured
with FFP, these function types were more easily
identified. Indeed, the application specialists seemed to
require less assistance from function point experts when
measuring with FPP than when using FPA, so the

Control Process

is composed of

Entries Exits Reads Writes

Control Process = Entries + Exits + Reads + Wrties

FFP

identification of more function types did not increase the
measurement effort during those field tests.

3.2 Additional Field Tests

The measurement results presented in this section were
collected in field tests subsequent to the release of the
FFP measurement method. Three of the industrial sites
were in North America, and the fourth in the Pacific
region; seven of the software products measured were
classified as telecommunications software, another as
power utility software, and a fourth as military software.
All measurement procedures were executed by the same
measurement expert with twelve years of experience in
functional size measurement, thereby eliminating
inconsistencies across measurement experts.
The data sets available allow two types of exploratory
analysis:
• Further comparison between FPA and FFP
• FFP: some preliminary economic results

3.2.1 Exploring a software sizing comparison between
FPA and FFP

Table 1 presents measurement results of seven distinct
software products. These products were measured using
both the IFPUG 4.0 rules and the Full Function Points
measurement method. They all come from the same
organization. Out of these seven software products, four
are typical real-time systems, two are typical MIS
systems and one is mostly MIS but includes some real-
time functionality. Distinction between real-time and
MIS software products is based on the knowledge of
functional experts and practitioners within the
organization.

The results presented in Table 1 suggest the following
observations:
• The size results are similar when both methods are

applied to MIS-type software products, as
demonstrated by measurements of products E and G;

• The software product “C” could not be measured at
all using FPA because the functionality it delivered
could not be reliably categorized into FPA function
types, nor did it fit the definition of elementary
process according to IFPUG 4.0 rules;

• The size difference is significant in all cases where
the software product has complex real-time
processes. Products A, B, C and D are examples of
this. The FFP size is considerably greater than the
FPA size.

Product Type Size(FPA) Size(FFP)
A Real-time 210 794
B Real-time 115 183
C Real-time N/A 2604
D Real-time 43 318
E Mostly MIS 764 791
F MIS(batch) 272 676
G MIS 878 896

Table 1 –Sizing comparison between FPA and FFP

3.2.2 FFP: some preliminary economic results

Table 2 presents size results for five software products.
Products H, I, J and K are real-time software and product
L is MIS software. Projects data comes from four
different organizations. In these instances, it was also
possible to gather two key process measures: the actual
effort (person-hours) expended to build and deliver each
product and the duration of this process in elapsed
months. From these data, two economic ratios are
calculated: the process unit effort, expressed in person-
hours/FFP and the schedule delivery rate, expressed in
FFP/elapsed months.

Product Size1 Effort2 Duration3 U.E.4 S.D.R.5

H 205 3 913 26,0 19,1 7,9
I 138 6 580 16,0 47,7 8,6
J 198 7 448 14,0 37,6 14,1
K 837 2 500 19,0 3,0 44,1
L 608 438 2,7 0,7 225,2
Notes:

1: Software product size in FFP
2: Development effort in person-hour
3: Development project duration in calendar months
4: Unit effort in person-hour per FFP
5: Schedule delivery rate in FFP per months

Table 2 – Key economic ratios derived from FFP size
measurements

This sample size is still too small for comparison
purposes or for statistical analysis. Further field tests are
being conducted to expand this data set.

4. Conclusion

Based on the shortcomings of the traditional Function
Points measurement method when applied to real-time or
embedded software, Full Function Points was proposed
in 1997 as a functional size measurement method
specifically designed for these types of software. The
key concepts of this new measurement method have been
presented.

Initial field test results have indicated: a) the adequacy of
the FFP measurement method in terms of a high
functional coverage ratio when applied to the software it
is intended to measure, b) the nature of the difference
observed in the measured functional size between the
FFP and the FPA measurement methods when they are
both applied to the same real-time or embedded software,
and c) the recognition, by practitioners, of an adequate
degree of applicability in typical industrial environments
where these types of software are developed and
maintained.

Furthermore, this new measurement method has been
recognized by the ISBSG (http://www.isbsg
.org.au/index.html), an international software
benchmarking organization, based on an extensive set of
criteria.

Additional field test results have been presented which:
a) provide further support for the observed difference

between the FFP and the FPA measurement method
when applied to real-time or embedded software, and b)
provide an initial indication of the magnitude and range
of key process ratios based on the FFP functional size
measure, thus allowing exploratory research to be
pursued by supporting the formulation of preliminary
hypotheses.

5. Acknowledgments

Authors wish to thank Nortel, Bell Canada and Hydro-
Québec as well as other industrial partners for providing
project funds, industrial data and valuable feedback from
real-time software practitioners.

UQAM’s Software Engineering Management Research
Laboratory co-sponsored the research leading to this
publication. The Laboratory is supported through a
partnership with Bell Canada. Additional funding for the
Laboratory is provided by the Natural Sciences and
Engineering Research Council of Canada.

6. References
[1] Albrecht, A. J., “Measuring Application

Development Productivity”, Proceedings of
Joint Share, Guide and IBM Application
Development Symposium, October 1979, pp.
83-92.

[2] Galea, S., “The Boeing Company: 3D Function
Point Extensions, V2.0, Release 1.0”, Seattle,
WA: Boeing Information and Support Services,
Research and Technology Software
Engineering, June 1995.

[3] IFPUG, “Function Point Counting Practices
Manual, Release 4.0”, International Function
Point Users Group - IFPUG, Westerville, Ohio,
1994.

[4] IFPUG, “IFPUG Case Study 4”, International
Function Point Users Group - IFPUG,
Westerville, Ohio, 1997.

[5] Jones, C., “Applied Software Measurement -
Assuring Productivity and Quality, McGraw-
Hill, New York, 1991, 493 pages.

[6] Maya, M., St-Pierre, D., Abran, A. and
Desharnais, J-M, “Full Function Points:
Function Points Extension for Real-Time
Software - Counting Experiments at Nortel”,
Confidential Reports, Université du Québec a
Montréal, March and May, 1997.

[7] Maya, M., St-Pierre, D., Abran, A., and
Desharnais, J-M, “Mesure de la taille
fonctionnelle des logiciels temps réel -
Comptage chez Hydro Quebec”, Confidential
Report, Université du Québec à Montréal, Avril,
1997.

[8] Mukhopadhyay, T. and Kekre, S., “Software
Effort Models for Early Estimation of Process
Control Applications”, IEEE Transactions on
Software Engineering, Vol. 18, No. 10, October
1992, pp. 915-924.

[9] Reifer, D. J., “Asset-R: A Function Point Sizing
Tool for Scientific and Real-Time Systems”,
Journal of Systems and Software, Vol. 11, No.
3, March 1990, pp. 159-171.

[10] St-Pierre, D., Maya, M., Abran, A. et
Desharnais, J-M, “Full Function Points -
Counting Practices Manual”, Technical Report
1997-04, Software Engineering Management
Research Laboratory, Université du Québec à
Montréal (UQAM), September 1997, 49 pages.

[11] St-Pierre, D., Abran, A., Araki, M., and
Desharnais, J-M, Adapting Function Points to
Real-Time Software”, presented at IFPUG 1997
Fall Conference, International Function Point
Users Group, Scottsdale, Arizona, September,
1997.

[12] Symons, C.R., “Function Point Analysis:
Difficulties and Improvements”, IEEE
Transactions on Software Engineering, Vol. 14,
No. 1, January 1988.

[13] Whitmire, S. A., “3-D Function Points:
Scientific and Real-Time Extensions to Function
Points”, Proceedings of the 1992 Pacific
Northwest Software Quality Conference,
Portland, OR, 1992.

[14] Maya M., Abran A., Oligny S., St-Pierre D.,
Desharnais J. M., "Measuring the Functional
Size of Real-Time Software", Proceeding of the
9th European Software Control and Metric
Conference, Rome Italy, 1998

